

FCC RF Test Report

APPLICANT	:	Espressif Systems (Shanghai) Co.,Ltd.
EQUIPMENT	:	2.4GHz Wi-Fi & BT IoT Module
BRAND NAME	:	ESPRESSIF
MODEL NAME	:	ESP8684-WROOM-02UC
FCC ID	:	2AC7Z-ESP868402UC
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DTS) Digital Transmission System
TEST DATE(S)	:	Feb. 25, 2023 ~ Mar. 16, 2023

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	
SUI	MMAR	RY OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TEST	RESULT	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	20
	3.3	Power Spectral Density Measurement	21
	3.4	Conducted Band Edges and Spurious Emission Measurement	
	3.5	Radiated Band Edges and Spurious Emission Measurement	41
	3.6	AC Conducted Emission Measurement	45
	3.7	Antenna Requirements	47
4	LIST	OF MEASURING EQUIPMENT	48
5	UNCE	ERTAINTY OF EVALUATION	49
API	PEND	IX A. CONDUCTED TEST RESULTS	
API	PEND	IX B. AC CONDUCTED EMISSION TEST RESULT	
API	PEND	IX C. RADIATED SPURIOUS EMISSION	
API	PEND	IX D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR310905A	Rev. 01	Initial issue of report	Mar. 08, 2023

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Report only	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 1.97 dB at 2483.620 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 7.83 dB at 0.171 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Espressif Systems (Shanghai) Co.,Ltd. Suite 204, Block 2, 690 Bibo Road, Zhang Jiang Hi-Tech Park, Shanghai, China

1.2 Manufacturer

Espressif Systems (Shanghai) Co.,Ltd.

Suite 204, Block 2, 690 Bibo Road, Zhang Jiang Hi-Tech Park, Shanghai, China

1.3 Product Feature of Equipment Under Test

Product Feature		
Equipment	2.4GHz Wi-Fi & BT IoT Module	
Brand Name	ESPRESSIF	
Model Name	ESP8684-WROOM-02UC	
FCC ID	2AC7Z-ESP868402UC	
HW Version	V1.0	
SW Version	v1.1.3.4	
EUT Stage	Identical Prototype	

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	40		
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)		
	BLE 1Mbps: 15.74 dBm (0.0375 W)		
Maximum Quinut Dowar to Antonno	BLE 2Mbps: 15.93 dBm (0.0392 W)		
Maximum Output Power to Antenna	BLE 500kbps: 15.47 dBm (0.0352 W)		
	BLE 125kbps: 15.47 dBm (0.0352 W)		
99% Occupied Bandwidth	BLE 1Mbps: 1.083MHz		
	BLE 2Mbps: 2.106MHz		
Antenna Type / Gain	Glue stick antenna with gain 1.57 dBi		
Type of Modulation	Bluetooth LE : GFSK		

Remark: For BLE 1Mbps/500kbps/125kbps mode, the whole testing has assessed BLE 1Mbps by referring to their higher conducted power.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for

Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)			
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158 FAX : +86-512-57900958			
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.	
Test Site No.	CO01-KS 03CH05-KS TH01-KS	CN1257	314309	

1.7 Test Software

ſ	ltem	Site	Manufacturer	Name	Version
I	1.	03CH05-KS	AUDIX	E3	6.2009-8-24
	2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

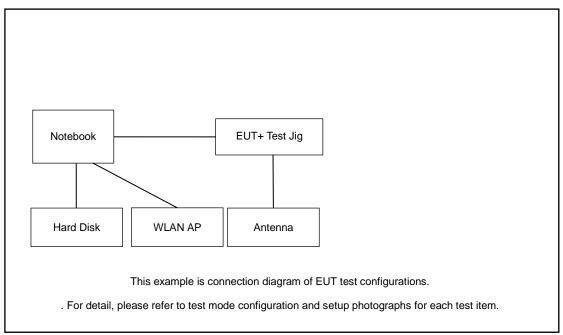
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

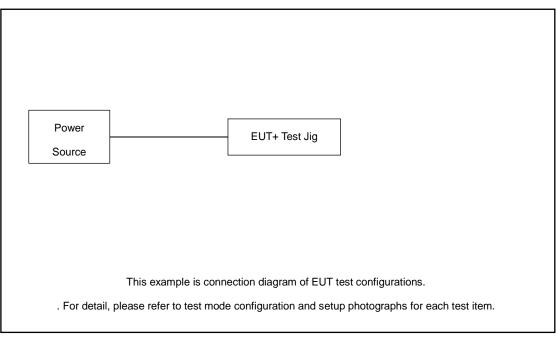
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
Test item	Bluetooth – LE / GFSK				
	Mode 1: Bluetooth Tx CH00_2402 MHz				
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz				
TCs	Mode 3: Bluetooth Tx CH38_2478 MHz				
	Mode 4: Bluetooth Tx CH39_2480 MHz				
	Mode 1: Bluetooth Tx CH00_2402 MHz				
Radiated	Mode 2: Bluetooth Tx CH19_2440 MHz				
TCs	Mode 3: Bluetooth Tx CH38_2478 MHz				
	Mode 4: Bluetooth Tx CH39_2480 MHz				
AC					
Conducted	Mode 1: Bluetooth Tx + Powered from test Jig				
Emission					
Remark: For	Remark: For Radiated Test Cases, The tests were performance with Test Jig.				



2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
2.	Notebook	Lenovo	V130-14IKB004	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
3.	Hard Disk	Lenovo	F310	DoC	Shielded, 1.2m	N/A
4.	Test Jig	N/A	N/A	N/A	N/A	N/A
5.	Antenna	N/A	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For BLE RF test items, use the test program " EspRFTestTool" to make the EUT transmit continuously.

For AC power line conducted emissions, use the test program "EspRFTestTool" to make the EUT continuous transmit

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss

Offset = RF cable loss

Following shows an offset computation example with cable loss 5.50 dB.

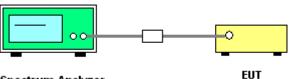
 $Offset(dB) = RF \ cable \ loss(dB)$ = 5.50 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

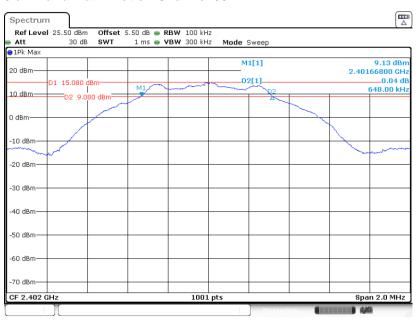

3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

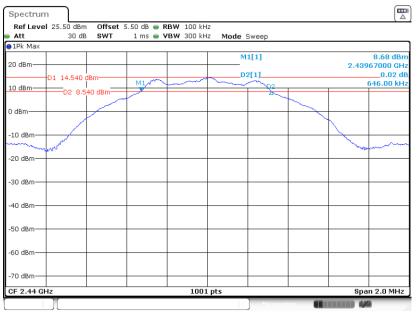
- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1% to 5% of the 99% OBW and the VBW is set to 3 times of the RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup


Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

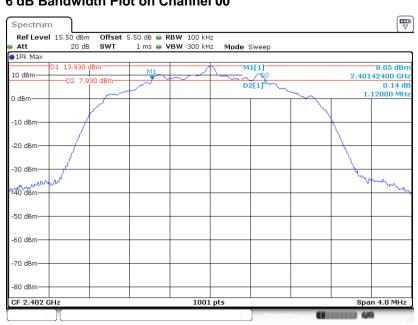

BLE 1Mbps:

6 dB Bandwidth Plot on Channel 00


Date: 13.MAR.2023 17:06:43

6 dB Bandwidth Plot on Channel 19

Date: 13.MAR.2023 17:09:30



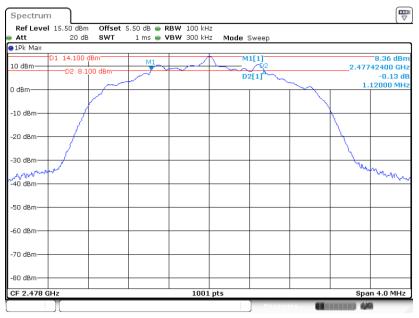
6 dB Bandwidth Plot on Channel 39

Date: 13.MAR.2023 17:11:49

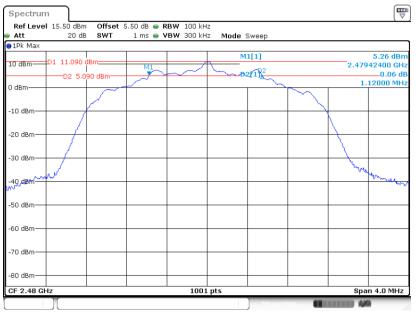

BLE 2Mbps:

6 dB Bandwidth Plot on Channel 00

Date: 25.FEB.2023 00:57:52



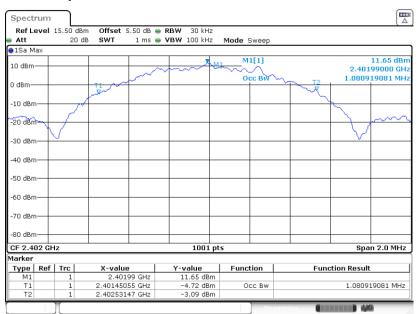
6 dB Bandwidth Plot on Channel 19


Date: 25.FEB.2023 01:17:53

6 dB Bandwidth Plot on Channel 38

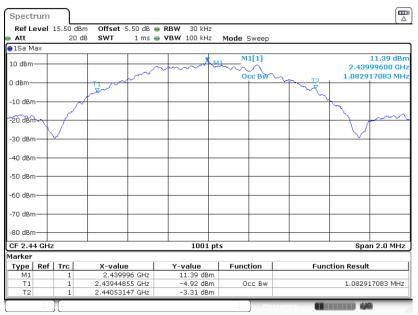
Date: 25.FEB.2023 01:36:44

6 dB Bandwidth Plot on Channel 39

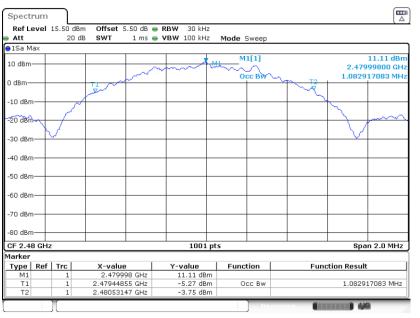

Date: 25.FEB.2023 01:31:00

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


BLE 1Mbps:

99% Occupied Bandwidth Plot on Channel 00

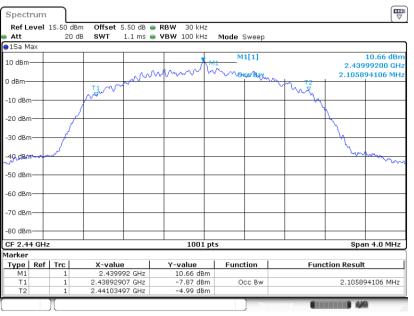

Date: 13.MAR.2023 17:07:35

99% Occupied Bandwidth Plot on Channel 19

Date: 13.MAR.2023 17:10:01

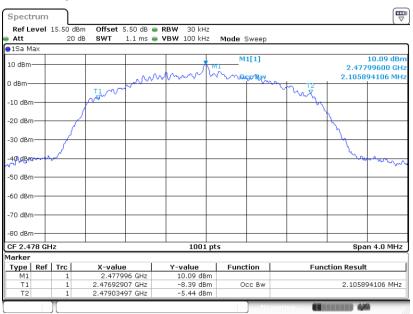
99% Occupied Bandwidth Plot on Channel 39

Date: 13.MAR.2023 17:12:20

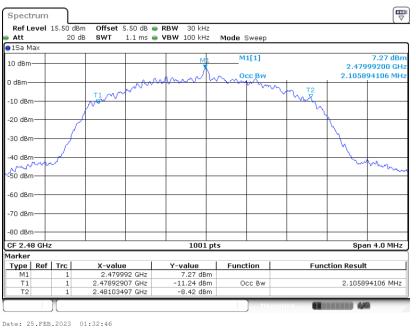

BLE 2Mbps:

99% Occupied Bandwidth Plot on Channel 00

Date: 25.FEB.2023 00:59:38



99% Occupied Bandwidth Plot on Channel 19


Date: 25.FEB.2023 01:19:21

99% Occupied Bandwidth Plot on Channel 38

Date: 25.FEB.2023 01:38:31

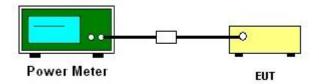
99% Occupied Bandwidth Plot on Channel 39

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

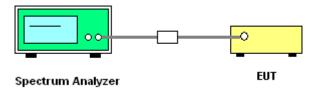
3.2.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

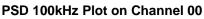

3.3.2 Measuring Instruments

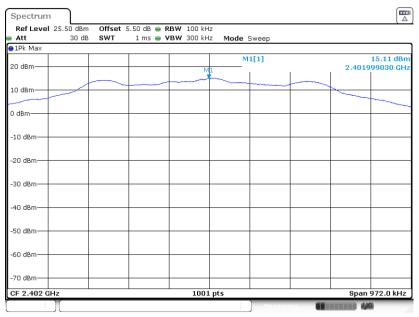
The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

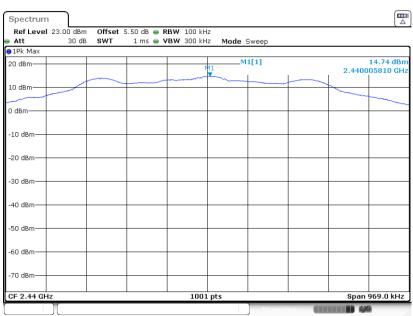
- 1. The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

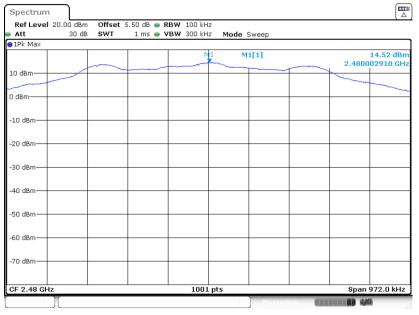

3.3.5 Test Result of Power Spectral Density


Please refer to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)


BLE 1Mbps:

Date: 13.MAR.2023 17:08:01


PSD 100kHz Plot on Channel 19

Date: 13.MAR.2023 17:10:50

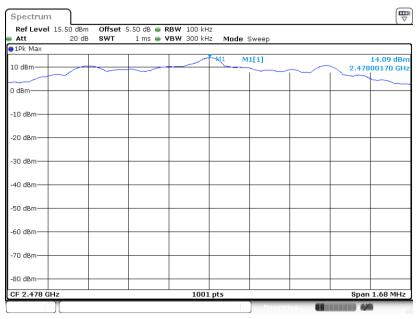
PSD 100kHz Plot on Channel 39

Date: 13.MAR.2023 17:12:43

BLE 2Mbps:

PSD 100kHz Plot on Channel 00 Spectrum Ref Level 15.50 dBm Offset 5.50 dB 🖷 RBW 100 kHz Att 20 dB SWT 1 ms 👄 **VBW** 300 kHz Mode Sweep ●1Pk Max M1[1] 13.86 dBn 2.40200000 GH м1 10 dBm 0 dBm--10 dBm -20 dBm -30 dBm -40 dBm -50 dBn -60 dBm -70 dBm -80 dBm 1001 pts Span 1.68 MHz CF 2.402 GHz 140

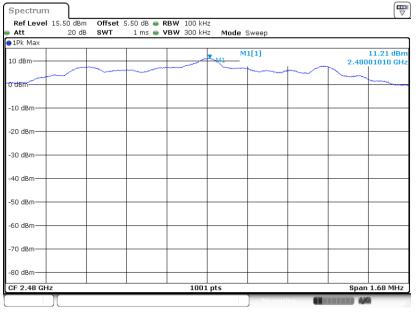
Date: 25.FEB.2023 00:58:30



PSD 100kHz Plot on Channel 19

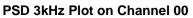
14.60 dBr 2.44000170 GH		M1[1]	THE .			1Pk Max
	2	M1[1]	- MI			
						10 dBm
) dBm
			_			10 dBm
			_			20 dBm—
			_			30 dBm—
						40 dBm—
			_			50 dBm—
						60 dBm
						70 dBm—
			_			80 dBm—
						-60 dBm

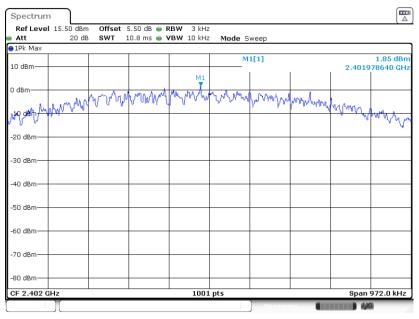
Date: 25.FEB.2023 01:18:31

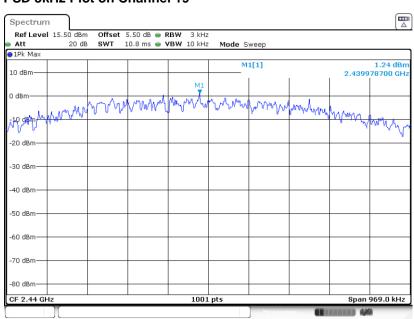

PSD 100kHz Plot on Channel 38

Date: 25.FEB.2023 01:37:22

PSD 100kHz Plot on Channel 39

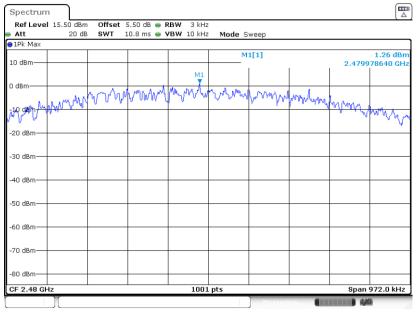



Date: 25.FEB.2023 01:31:38


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

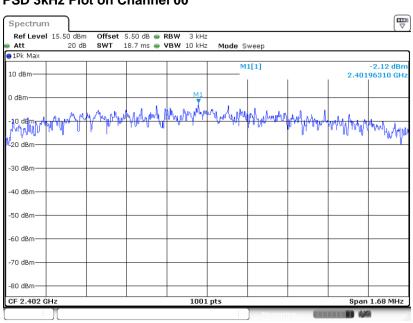
BLE 1Mbps:

Date: 13.MAR.2023 17:07:04



PSD 3kHz Plot on Channel 19

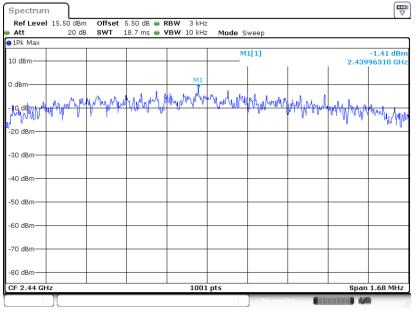
Date: 13.MAR.2023 17:09:50



PSD 3kHz Plot on Channel 39

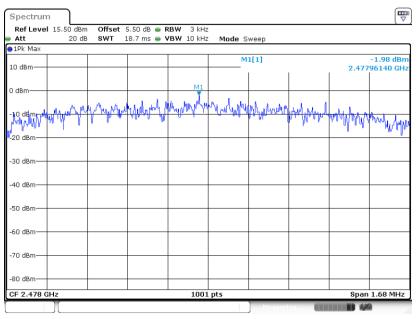
Date: 13.MAR.2023 17:12:09

BLE 2Mbps:



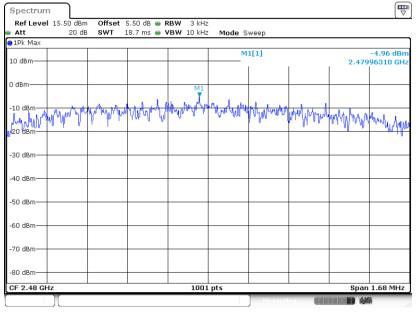
PSD 3kHz Plot on Channel 00

Date: 25.FEB.2023 00:58:11



PSD 3kHz Plot on Channel 19

Date: 25.FEB.2023 01:18:12


PSD 3kHz Plot on Channel 38

Date: 25.FEB.2023 01:37:03

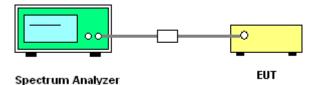
PSD 3kHz Plot on Channel 39

Date: 25.FEB.2023 01:31:19

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

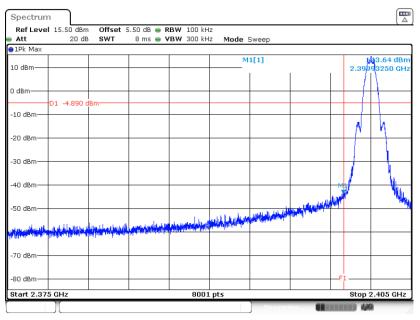

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

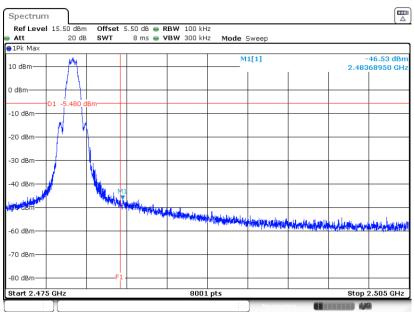
3.4.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

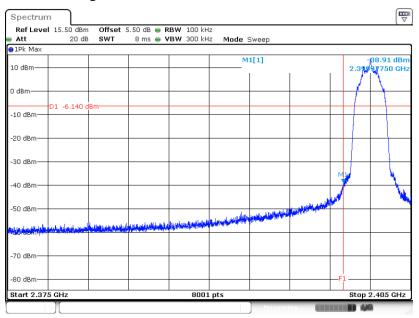
3.4.4 Test Setup



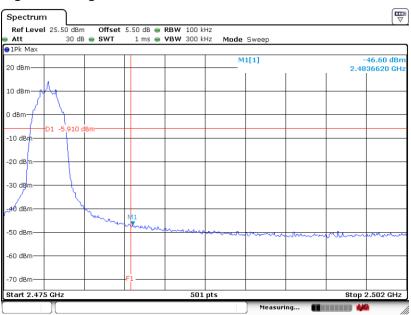
3.4.5 Test Result of Conducted Band Edges Plots


BLE 1Mbps:

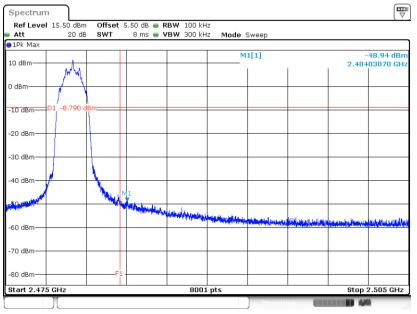
Date: 13.MAR.2023 17:08:15



Date: 13.MAR.2023 17:12:56

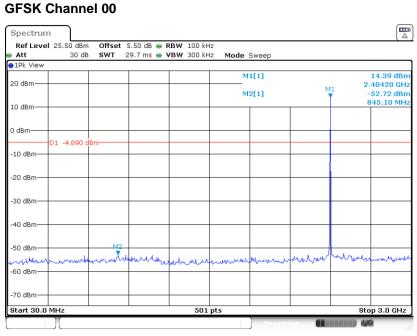

BLE 2Mbps:

Low Band Edge Plot on Channel 00

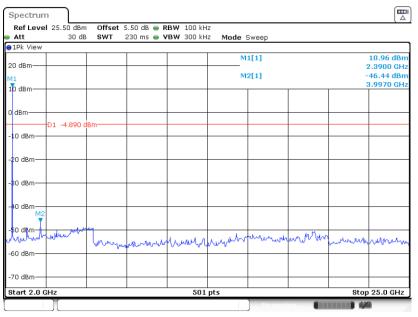

Date: 25.FEB.2023 00:58:49

Date: 27.FEB.2023 15:58:36

High Band Edge Plot on Channel 39

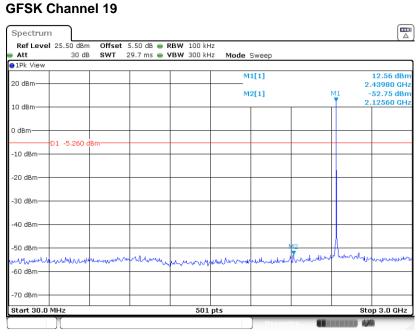

Date: 25.FEB.2023 01:31:56

3.4.6 Test Result of Conducted Spurious Emission Plots

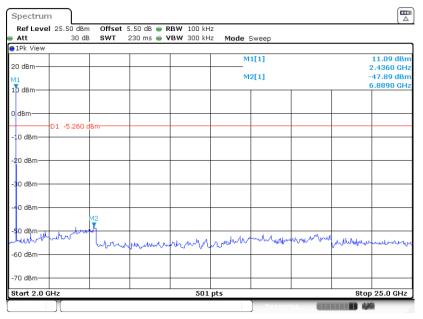

BLE 1Mbps:

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 13.MAR.2023 17:08:32


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 13.MAR.2023 17:08:50

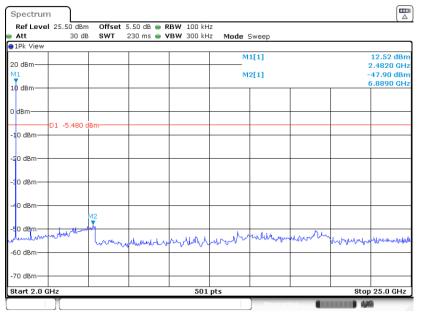


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 13.MAR.2023 17:11:06

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 13.MAR.2023 17:11:18



Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Spectrum					
Ref Level 25.50 dBm	Offset 5.50 dB				
Att 30 dB 1Pk View	SWT 29.7 ms 🛛	● VBW 300 kHz 🛛 №	lode Sweep		
			M1[1]		12.54 dB
20 dBm			M2[1]	N	2.48130 GH
10 dBm			mz[1]		436.10 MH
TO OBIII					
0 dBm					
D1 -5.480 dl	Bm				
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm M2					
T	when my when	he more way much	welling	and when the work	Widentily mm
-60 dBm		a and a second a second			
-70 dBm					
Start 30.0 MHz		501 pts			Stop 3.0 GHz

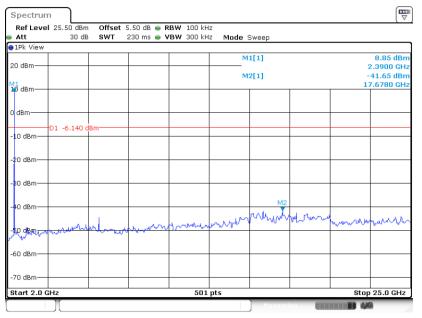
Date: 13.MAR.2023 17:13:09

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 13.MAR.2023 17:13:23

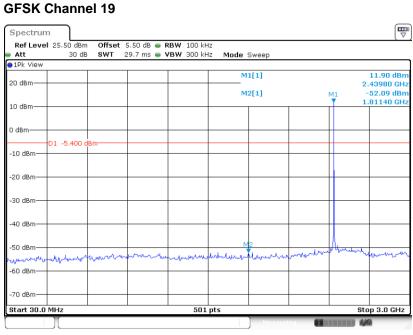
BLE 2Mbps:

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

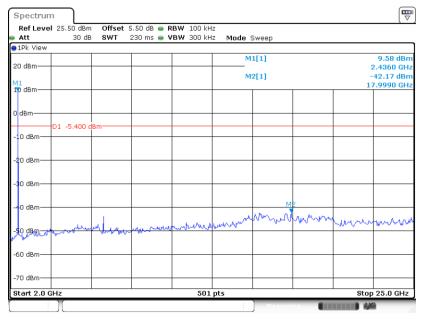

GFSK Channel 00

Date: 25.FEB.2023 00:59:10

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps


GFSK Channel 00

Date: 25.FEB.2023 00:59:29

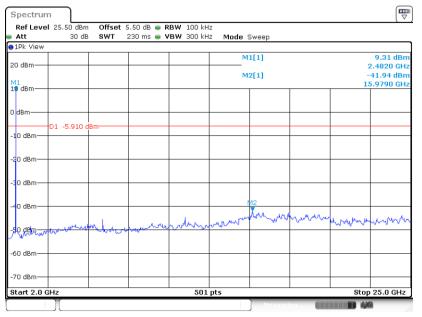


Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

Date: 25.FEB.2023 01:18:52

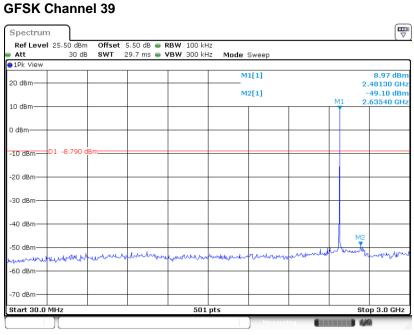
Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 19

Date: 25.FEB.2023 01:19:12

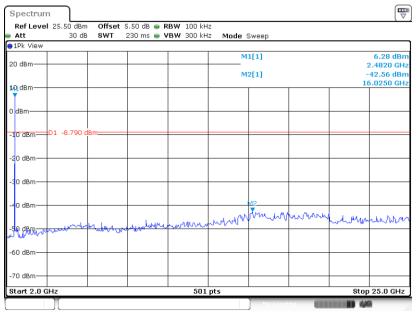


Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

Date: 25.FEB.2023 01:38:02


Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 38

Date: 25.FEB.2023 01:38:22



Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

Date: 25.FEB.2023 01:32:17

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 39

Date: 25.FEB.2023 01:32:37

3.5 Radiated Band Edges and Spurious Emission Measurement

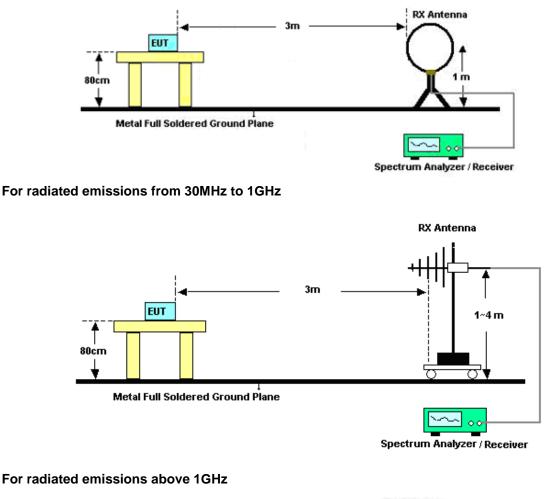
3.5.1 Limit of Radiated Band Edges and Spurious Emission

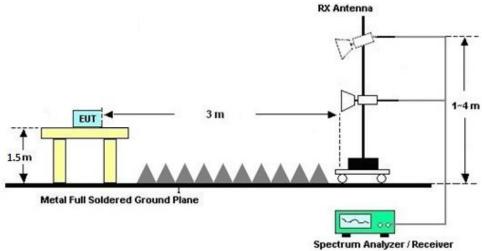
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.5.3 Test Procedures


- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated emissions below 30MHz

Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AC7Z-ESP868402UC

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.6 AC Conducted Emission Measurement

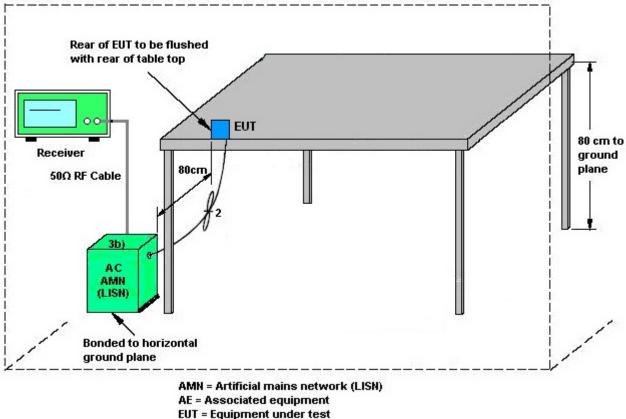
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

ISN = Impedance stabilization network

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

Non-standard antenna connector is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 12, 2022	Feb. 25, 2023~ Mar. 13, 2023	Oct. 11, 2023	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070 300MHz~40GH z Jan. 05, 2		Jan. 05, 2023	Feb. 25, 2023~ Mar. 13, 2023	Jan. 04, 2024	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 05, 2023	Feb. 25, 2023~ Mar. 13, 2023	Jan. 04, 2024	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz;M ax 30dBm	Oct. 13, 2022	Feb. 27, 2023~ Mar. 16, 2023	Oct. 12, 2023	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44G,MAX 30dB	Mar. 24, 2022	Feb. 27, 2023~ Mar. 16, 2023	Mar. 23, 2023	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 16, 2022	Feb. 27, 2023~ Mar. 16, 2023	Oct. 15, 2023	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	2022, May 24	Feb. 27, 2023~ Mar. 16, 2023	May 23, 2023	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218642	1GHz~18GHz	Apr. 18, 2022	Feb. 27, 2023~ Mar. 16, 2023	Apr. 17, 2023	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101093	18GHz~40GHz	Jan. 08, 2023	Feb. 27, 2023~ Mar. 16, 2023	Jan. 07, 2024	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	380826	9KHz-1GHz	Jul. 11, 2022	Feb. 27, 2023~ Mar. 16, 2023	Jul. 10, 2023	Radiation (03CH05-KS)
Amplifier	EM	EM18G40GA	060852	18~40GHz	Jan. 05, 2023	Feb. 27, 2023~ Mar. 16, 2023	Jan. 04, 2024	Radiation (03CH05-KS)
high gain Amplifier	EM	EM01G18GA	060839	1Ghz-18Ghz	Oct. 12, 2022	Feb. 27, 2023~ Mar. 16, 2023	Oct. 11, 2023	Radiation (03CH05-KS)
Amplifier	EM	EM01G18GA	060833	1Ghz-18Ghz	Jan. 05, 2023	Feb. 27, 2023~ Mar. 16, 2023	Jan. 04, 2024	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Feb. 27, 2023~ Mar. 16, 2023	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Feb. 27, 2023~ Mar. 16, 2023	NCR	Radiation (03CH05-KS)
Antenna Mast	ast ChamPro EM 1000-A 060762-A 1 m~4 m NCR		NCR	Feb. 27, 2023~ Mar. 16, 2023	NCR	Radiation (03CH05-KS)		
EMI Receiver	iver R&S ESCI7 100768 9kHz~7GHz; May 2		May 24, 2022	Mar. 01, 2023	May 23, 2023	Conduction (CO01-KS)		
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 13, 2022	Mar. 01, 2023	Oct. 12, 2023	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	May 24, 2022	Mar. 01, 2023	May 23, 2023	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2022	Mar. 01, 2023	Oct. 11, 2023	Conduction (CO01-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty			
Conducted Power	±0.46 dB			
Conducted Emissions	±0.48 dB			
Occupied Channel Bandwidth	±0.1 %			
Conducted Power Spectral Density	±0.40 dB			

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.78dB
of 95% (U = 2Uc(y))	2.7608

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB	
of 95% (U = 2Uc(y))	5.008	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.008

----- THE END ------

Appendix A. Conducted Test Results

Report Number : FR310905A

Bluetooth Low Energy

Test Engineer:	Jiang Jun	Temperature:	20~26	°C
Test Date:	2023/2/25~2023/3/13	Relative Humidity:	40~51	%

BLE1M-Ant1 <u>TEST RESULTS DATA</u> <u>6dB and 99% Occupied Bandwidth</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	1.08	0.65	0.50	Pass		
BLE	1Mbps	1	19	2440	1.08	0.65	0.50	Pass		
BLE	1Mbps	1	39	2480	1.08	0.65	0.50	Pass		

<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	15.74	30.00	1.57	17.31	36.00	Pass	
BLE	1Mbps	1	19	2440	15.65	30.00	1.57	17.22	36.00	Pass	
BLE	1Mbps	1	39	2480	15.69	30.00	1.57	17.26	36.00	Pass	

TEST RESULTS DATA
Average Power Table
(Reporting Only)

Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
BLE	1Mbps	1	0	2402	0.21	15.08
BLE	1Mbps	1	19	2440	0.21	14.89
BLE	1Mbps	1	39	2480	0.21	14.92

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail			
BLE	1Mbps	1	0	2402	15.11	1.85	1.57	8.00	Pass			
BLE	1Mbps	1	19	2440	14.74	1.24	1.57	8.00	Pass			
BLE	1Mbps	1	39	2480	14.52	1.26	1.57	8.00	Pass			
Note:	PSD (dBm	n/ 100	0kHz) is	a referer	nce level use	d for Conduc	ted Band Ed	ges and Cond	ducted Spuric	us Emission 20dBc limit.		

Bluetooth Low Energy

Test Engineer:	Jiang Jun	Temperature:	20~26	°C
Test Date:	2023/2/25~2023/3/13	Relative Humidity:	40~51	%

					<u>6d</u>	TEST	E2M-Ant1 RESULTS 6 Occupie	
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	2Mbps	1	0	2402	2.102	1.120	0.50	Pass
BLE	2Mbps	1	19	2440	2.106	1.120	0.50	Pass
BLE	2Mbps	1	38	2478	2.106	1.120	0.50	Pass
BLE	2Mbps	1	39	2480	2.106	1.120	0.50	Pass

TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	15.92	30.00	1.57	17.49	36.00	Pass
BLE	2Mbps	1	19	2440	15.93	30.00	1.57	17.50	36.00	Pass
BLE	2Mbps	1	38	2478	14.94	30.00	1.57	16.51	36.00	Pass
BLE	2Mbps	1	39	2480	12.88	30.00	1.57	14.45	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)		
BLE	2Mbps	1	0	2402	0.41	14.71		
BLE	2Mbps	1	19	2440	0.41	14.63		
BLE	2Mbps	1	38	2478	0.41	13.48		
BLE	2Mbps	1	39	2480	0.41	11.58		

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>									
Mo	d. Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BL	E 2Mbps	1	0	2402	13.86	-2.12	1.57	8.00	Pass	
BL	E 2Mbps	1	19	2440	14.60	-1.41	1.57	8.00	Pass	
BL	E 2Mbps	1	38	2478	14.09	-1.98	1.57	8.00	Pass	
BL	E 2Mbps	1	39	2480	11.21	-4.96	1.57	8.00	Pass	

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

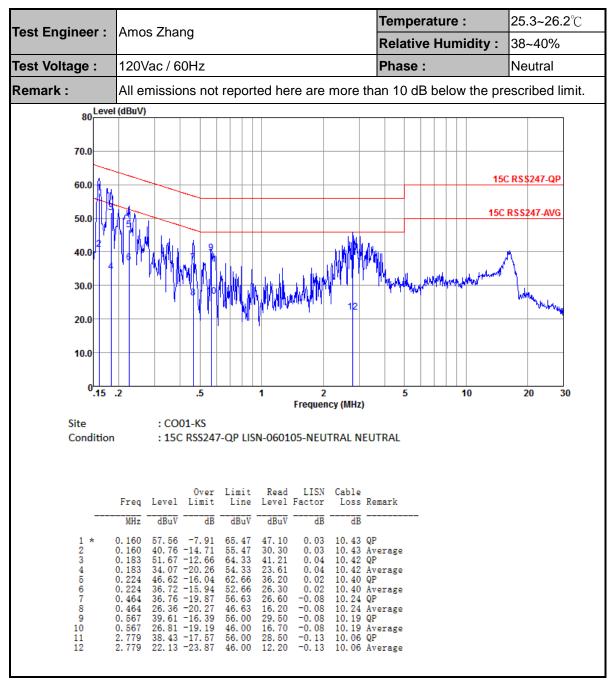
Report Number : FR310905A

							<u>TEST I</u>	E125k(S=8 RESULTS & Power Ta	DATA		
							<u>rear</u>	rower to			
r	/lod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
	BLE	125kbps	1	0	2402	15.47	30.00	1.57	17.04	36.00	Pass
	BLE	125kbps	1	19	2440	13.25	30.00	1.57	14.82	36.00	Pass
	BLE	125kbps	1	39	2480	13.54	30.00	1.57	15.11	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
BLE	125kbps	1	0	2402	0.03	14.58
BLE	125kbps	1	19	2440	0.03	12.52
BLE	125kbps	1	39	2480	0.03	12.71

						<u>TEST I</u>	E500k(S=2 RESULTS & Power Ta	DATA		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	500kbps	1	0	2402	15.47	30.00	1.57	17.04	36.00	Pass
BLE	500kbps	1	19	2440	13.26	30.00	1.57	14.83	36.00	Pass
BLE	500kbps	1	39	2480	13.64	30.00	1.57	15.21	36.00	Pass


	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)					
BLE	500kbps	1	0	2402	0.11	14.69					
BLE	500kbps	1	19	2440	0.11	12.44					
BLE	500kbps	1	39	2480	0.11	12.79					

Appendix B. AC Conducted Emission Test Results

	A second Theorem	Temperature :	25.3~26.2° ∁
Test Engineer :	Amos Zhang	Relative Humidity :	38~40%
Test Voltage :	120Vac / 60Hz	Phase :	Line
Remark :	All emissions not reported here are more that	an 10 dB below the pre	escribed limit.
80 Level	(dBuV)		
70.0			
70.0			
60.0		150	RS\$247-QP
50.0		15C	RSS247-AVG
24		+	
40.0		1	N
30.0	The Anthen and Anthen anthen anthen anthen anthen and Anthen and Anthen and Anthen and A	Mapalahurman	<u>\</u>
20.0	12		Mandandan
20.0			
10.0			
0.15	2 .5 1 2 Frequency (MHz)	5 10	20 30
Site	: CO01-KS		
Condition	: 15C RSS247-QP LISN-060105-LINE LINE		
	Over Limit Read LISN Cable Freq Level Limit Line Level Factor Loss Rem	mark	
	MHz dBuV dB dBuV dB dBu - dBu - dBu - dB		
2	0.163 57.28 -8.02 65.30 46.79 0.06 10.43 QP 0.163 44.08 -11.22 55.30 33.59 0.06 10.43 Ave	erage	
3 *	0.171 57.07 -7.83 64.90 46.59 0.05 10.43 QP 0.171 42.57 -12.33 54.90 32.09 0.05 10.43 Ave 0.194 53.75 -10.09 63.84 43.31 0.02 10.42 QP	erage	
6 7	0.194 40.75 -13.09 53.84 30.31 0.02 10.42 Ave 0.233 49.23 -13.12 62.35 38.80 0.04 10.39 QP	erage	
9	0.233 42.33 -10.02 52.35 31.90 0.04 10.39 Ave 0.535 39.06 -16.94 56.00 28.90 -0.04 10.20 QP	-	
11	0.535 26.46 -19.54 46.00 16.30 -0.04 10.20 Ave 2.779 36.55 -19.45 56.00 26.59 -0.10 10.06 QP 2.779 22.15 -23.85 46.00 12.19 -0.10 10.06 Ave		
		. .	

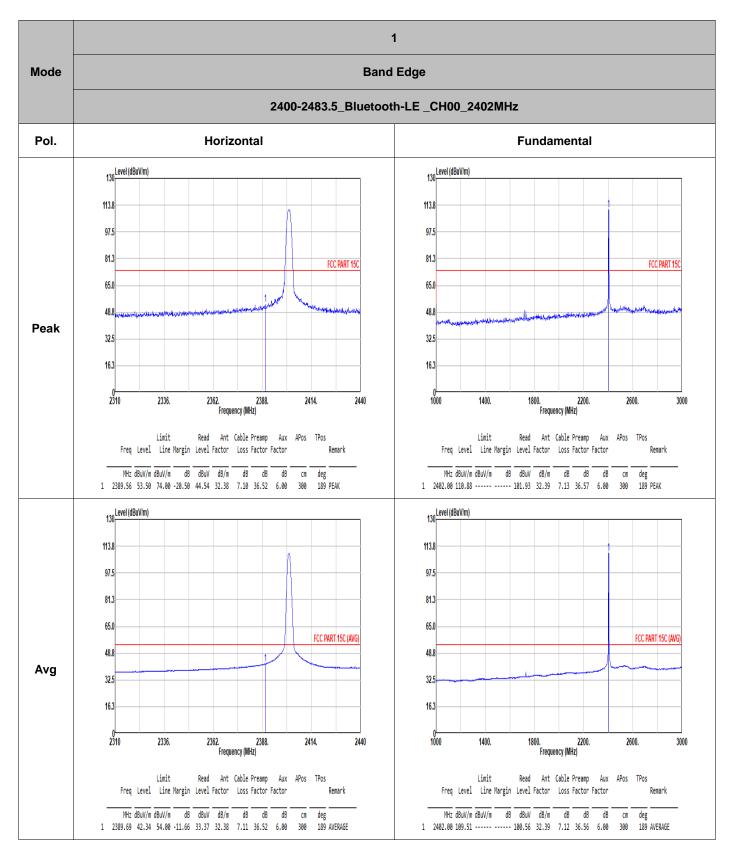
Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

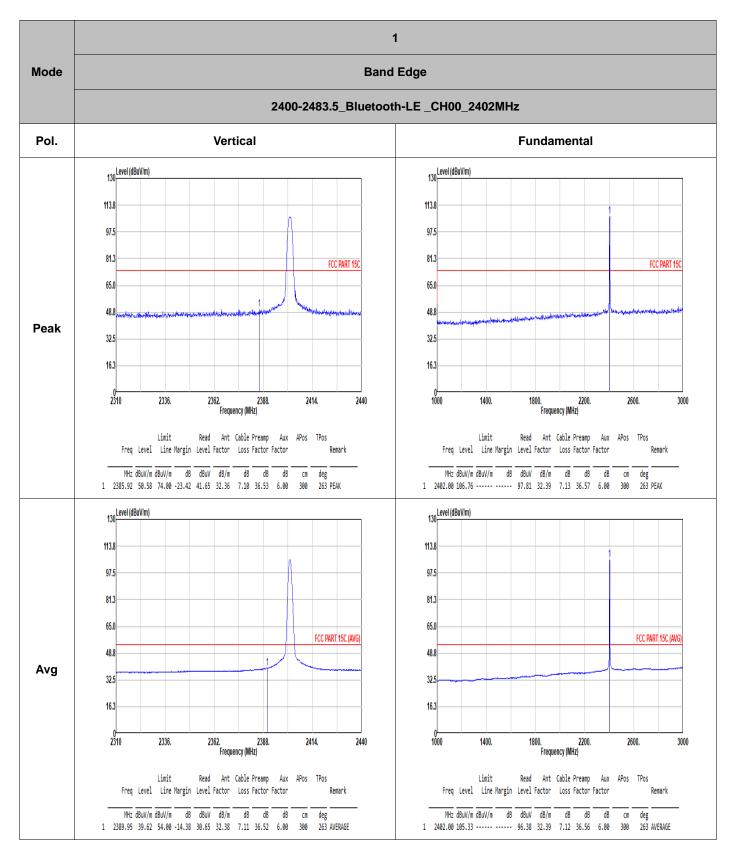
Appendix C. Radiated Spurious Emission

Test Engineer :	Carry Xu	Relative Humidity :	41~42%
Test Engineer .	Carry Xu	Temperature :	22~23 ℃

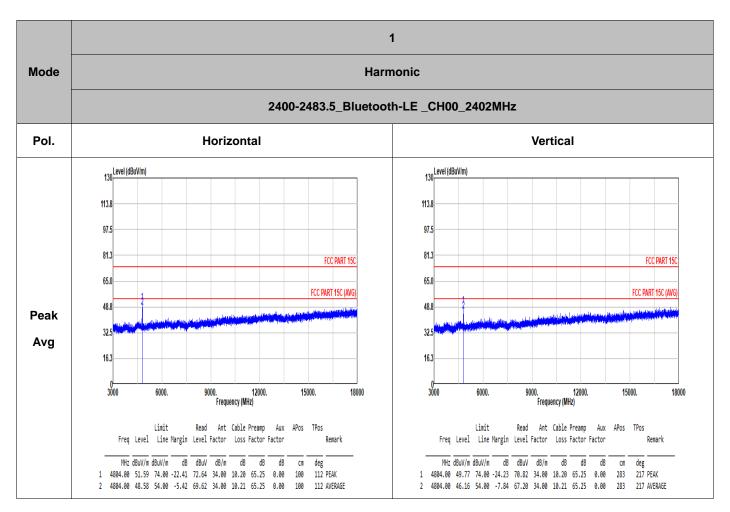
Power setting					
BLE 1Mbps CH00	13				
BLE 1Mbps CH19	13				
BLE 1Mbps CH39	13				
BLE 2Mbps CH00	13				
BLE 2Mbps CH19	13				
BLE 2Mbps CH38	13				
BLE 2Mbps CH39	12				

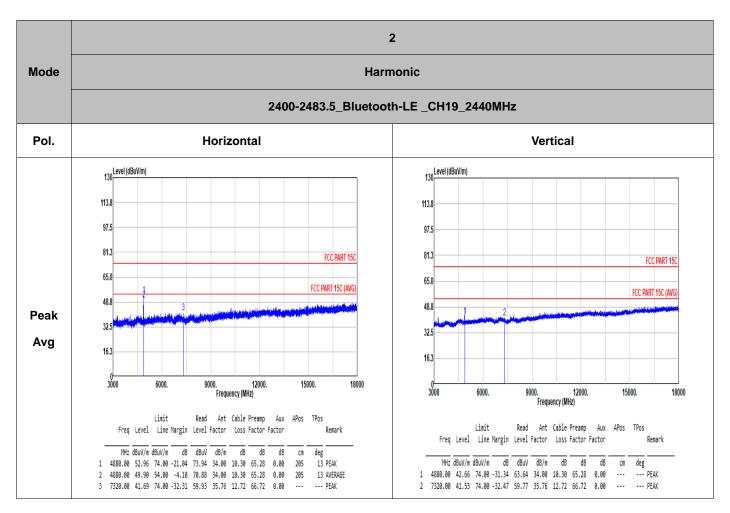

Radiated Spurious Emission Test Modes

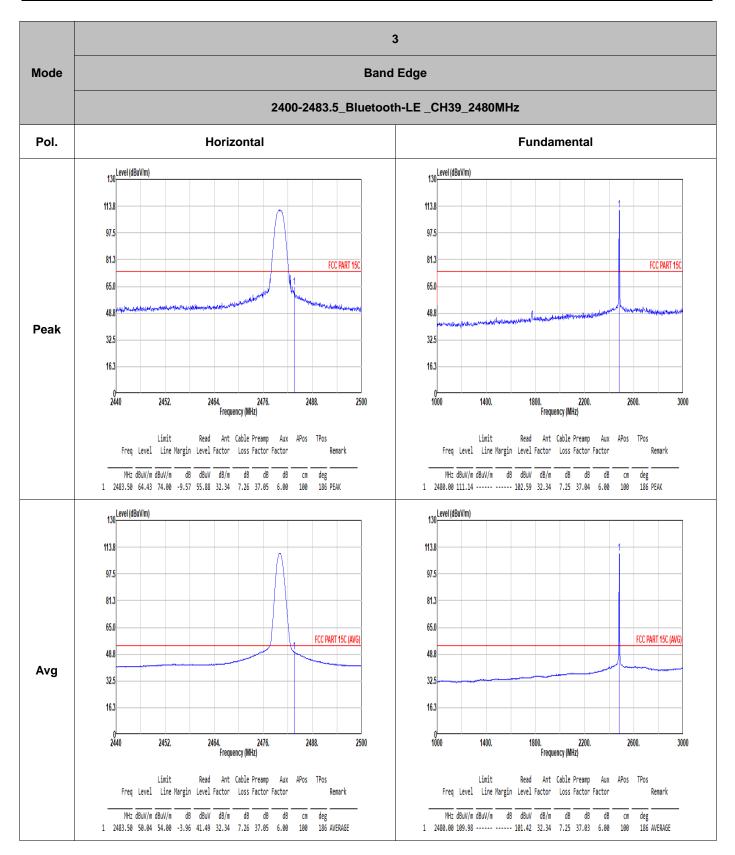
Mode	Band (MHz)	Modulation	Channel	Frequency	Data Rate	Remark
Mode 1	2400-2483.5	Bluetooth-LE	00	2402	1Mbps	-
Mode 2	2400-2483.5	Bluetooth-LE	19	2440	1Mbps	-
Mode 3	2400-2483.5	Bluetooth-LE	39	2480	1Mbps	-
Mode 4	2400-2483.5	Bluetooth-LE	00	2402	2Mbps	-
Mode 5	2400-2483.5	Bluetooth-LE	19	2440	2Mbps	-
Mode 6	2400-2483.5	Bluetooth-LE	38	2478	2Mbps	-
Mode 7	2400-2483.5	Bluetooth-LE	39	2480	2Mbps	-
Mode 8	2400-2483.5	Bluetooth-LE	38	2478	2Mbps	LF


Summary of each worse mode

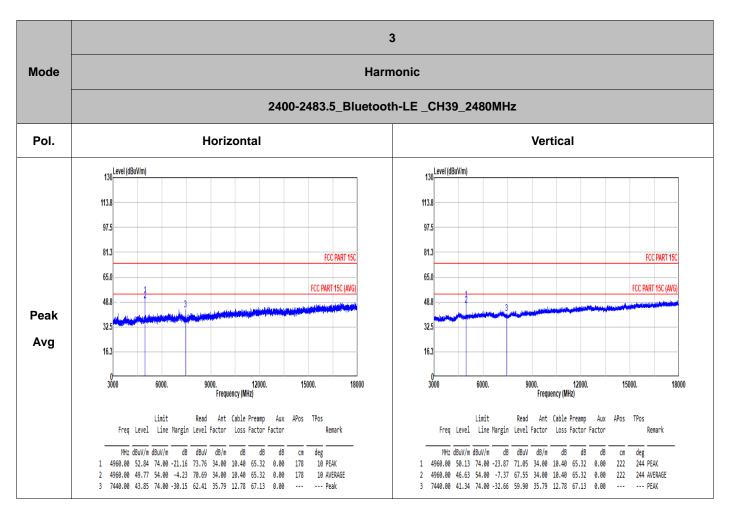
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Bluetooth-LE	00	2389.69	42.34	54.00	-11.66	Н	AVERAGE	Pass	Band Edge
	Bluetooth-LE	00	4804.00	48.58	54.00	-5.42	Н	AVERAGE	Pass	Harmonic
2	Bluetooth-LE	19	4880.00	49.90	54.00	-4.10	Н	AVERAGE	Pass	Harmonic
3	Bluetooth-LE	39	2483.50	50.04	54.00	-3.96	Н	AVERAGE	Pass	Band Edge
3	Bluetooth-LE	39	4960.00	49.77	54.00	-4.23	Н	AVERAGE	Pass	Harmonic
4	Bluetooth-LE	00	2389.95	42.64	54.00	-11.36	Н	AVERAGE	Pass	Band Edge
4	Bluetooth-LE	00	4804.00	48.07	54.00	-5.93	V	AVERAGE	Pass	Harmonic
5	Bluetooth-LE	19	4880.00	46.73	54.00	-7.27	Н	AVERAGE	Pass	Harmonic
6	Bluetooth-LE	38	2483.62	52.03	54.00	-1.97	Н	AVERAGE	Pass	Band Edge
0	Bluetooth-LE	38	3304.50	48.71	74.00	-25.29	Н	Peak	Pass	Harmonic
7	Bluetooth-LE	39	2483.50	50.57	54.00	-3.43	н	AVERAGE	Pass	Band Edge
	Bluetooth-LE	39	3307.50	48.22	74.00	-25.78	н	Peak	Pass	Harmonic
8	Bluetooth-LE	38	71.71	28.85	40	-11.15	Н	Peak	Pass	LF

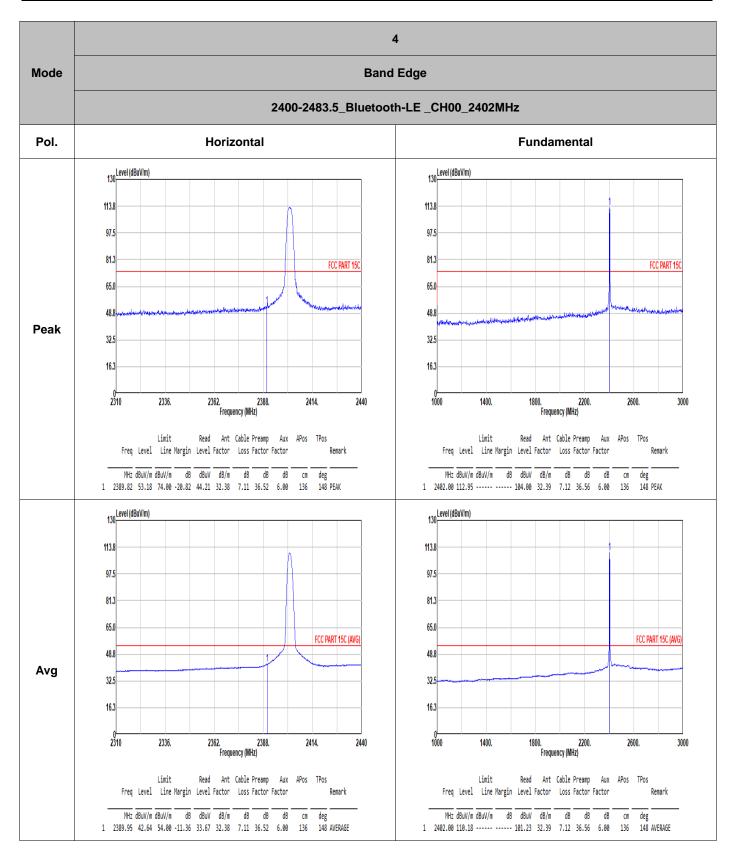


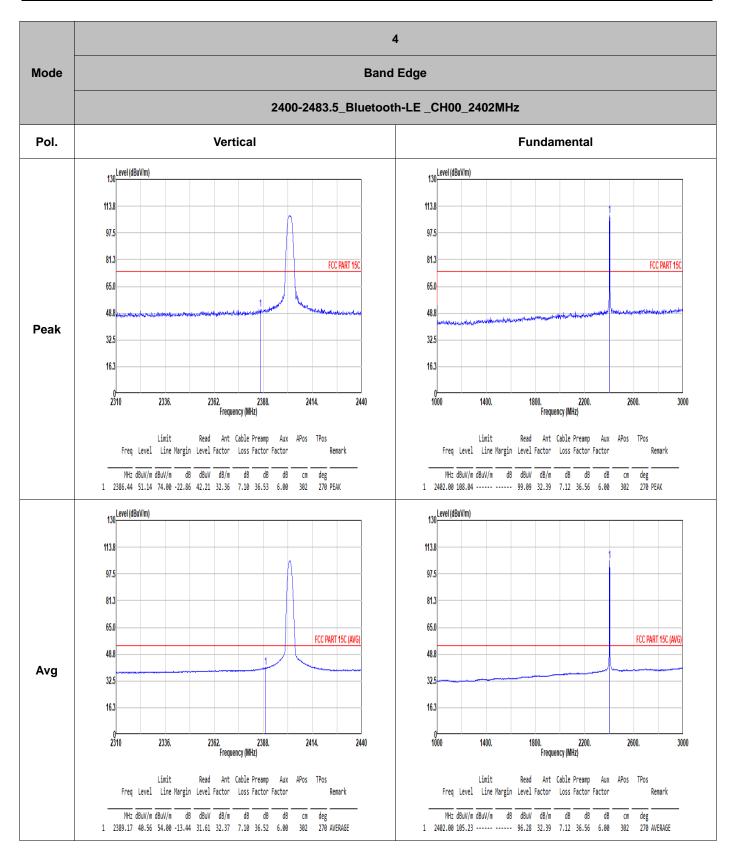


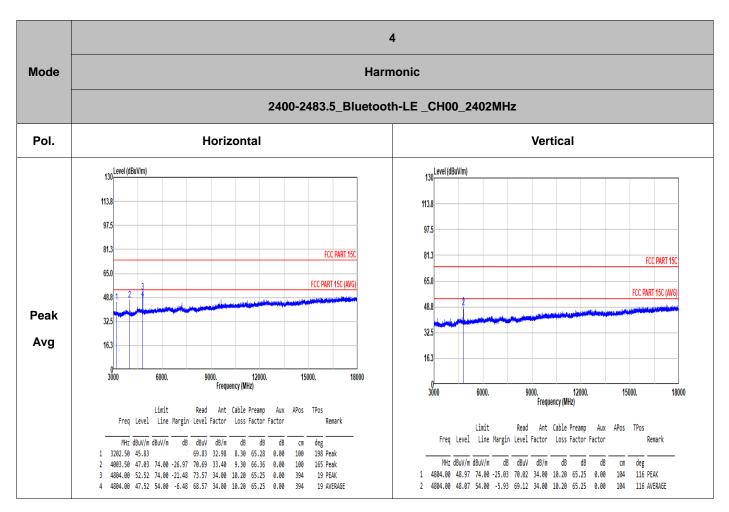


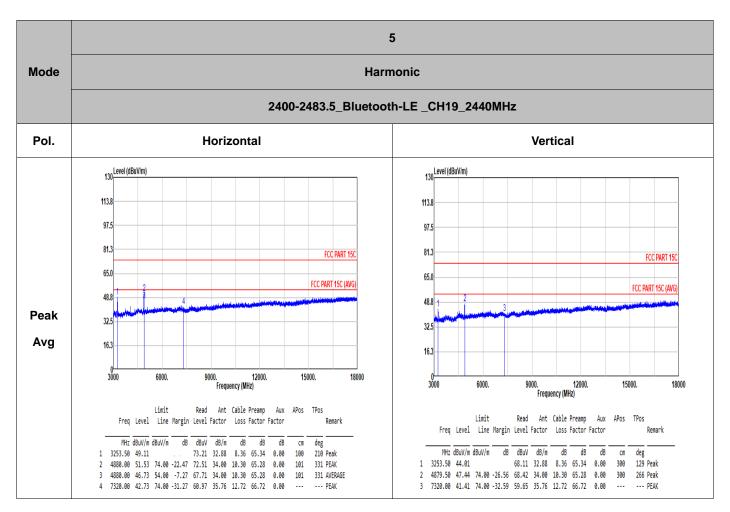


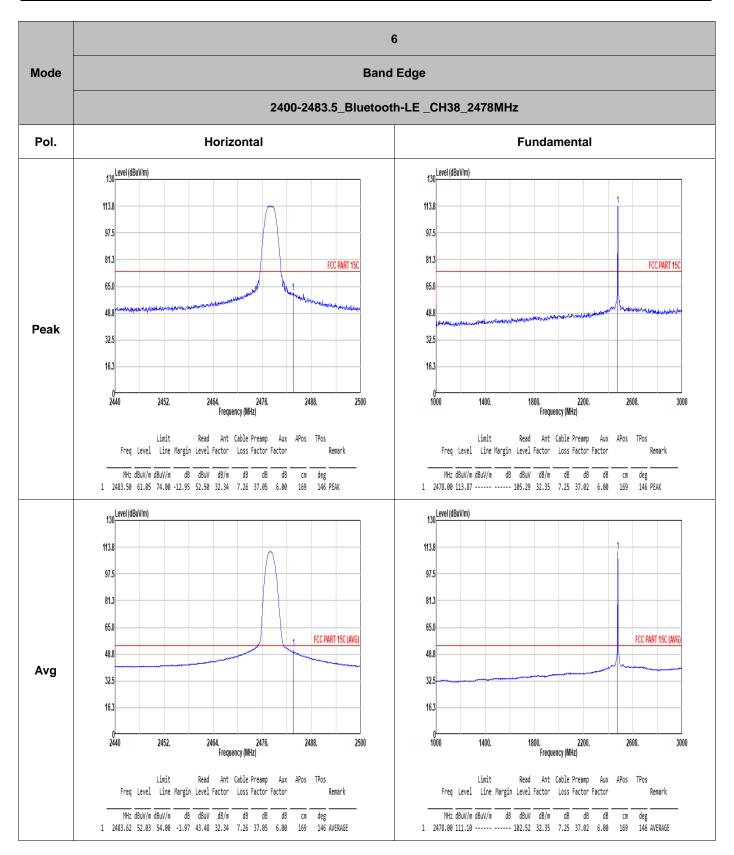


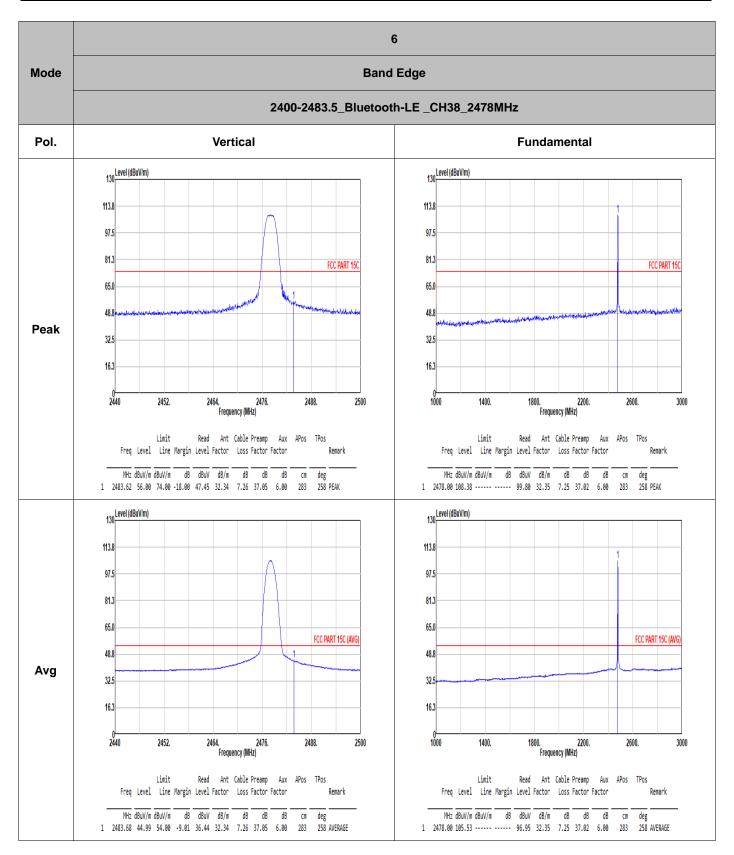


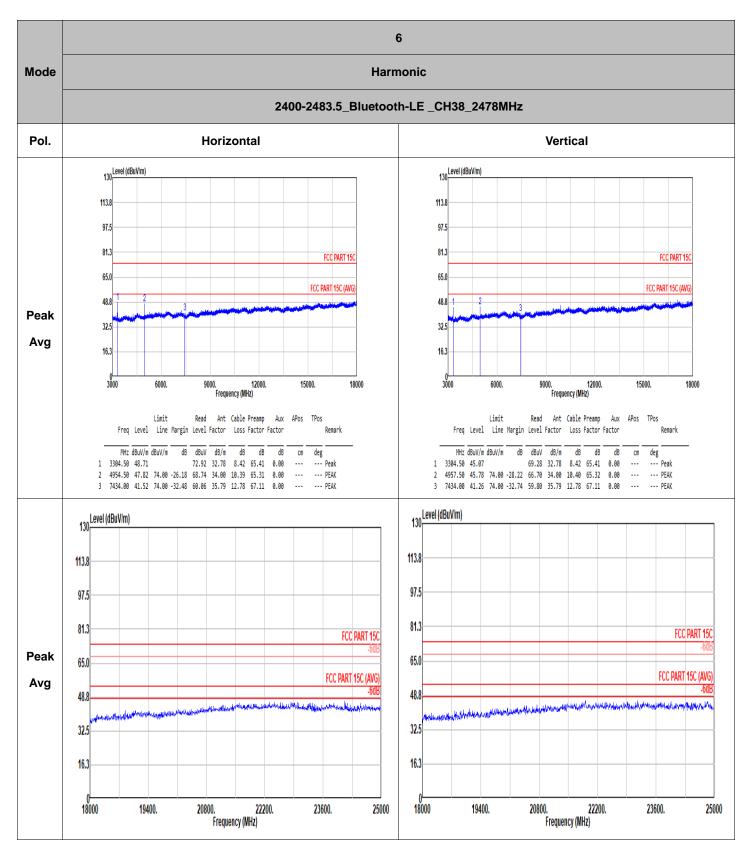


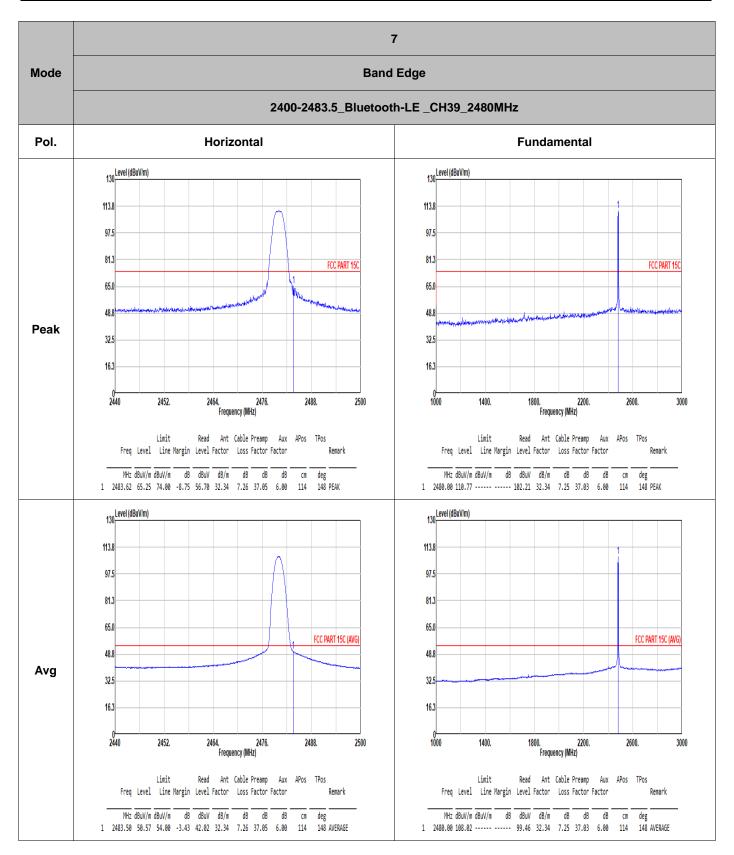


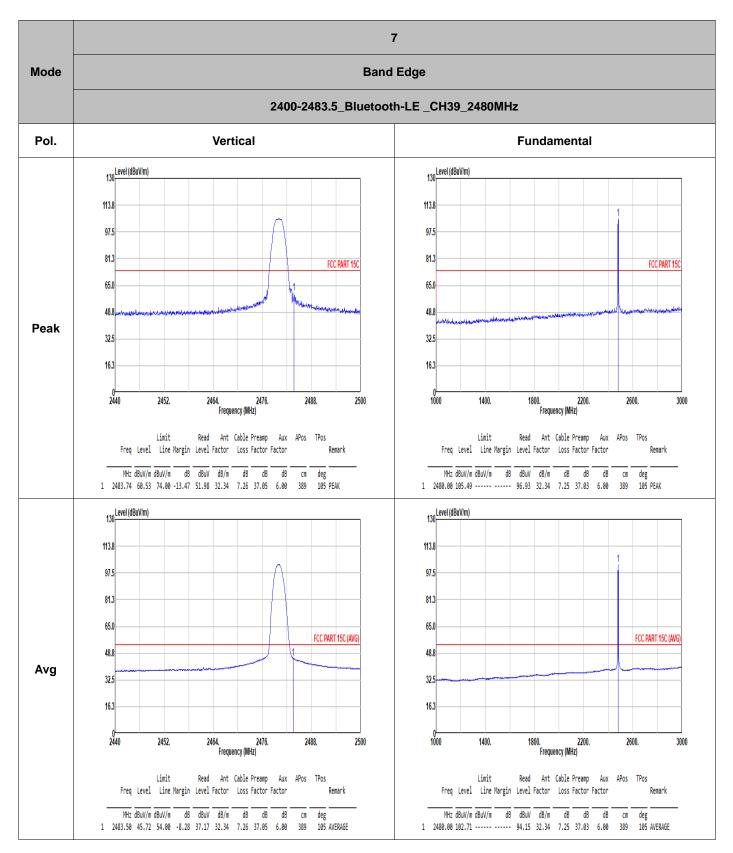


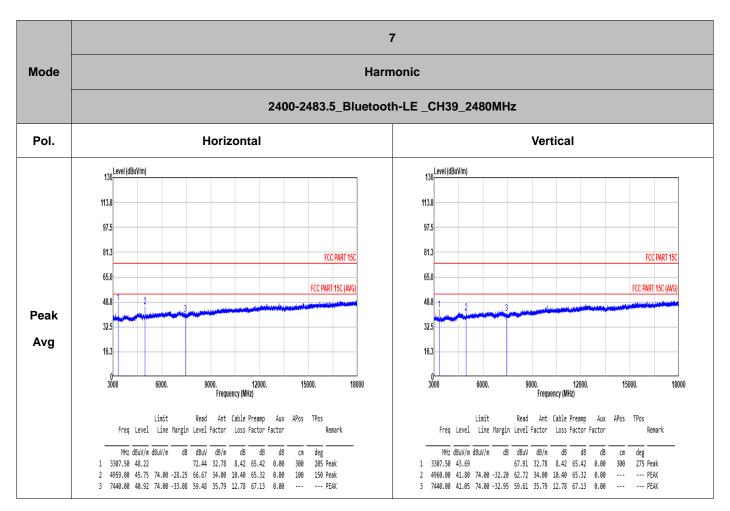


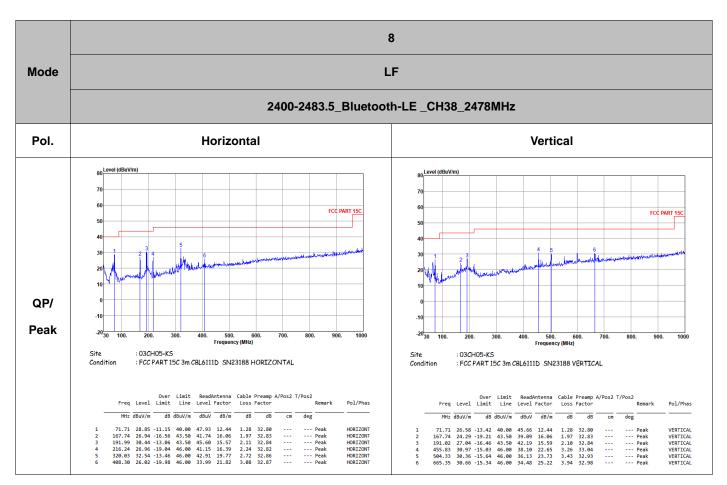




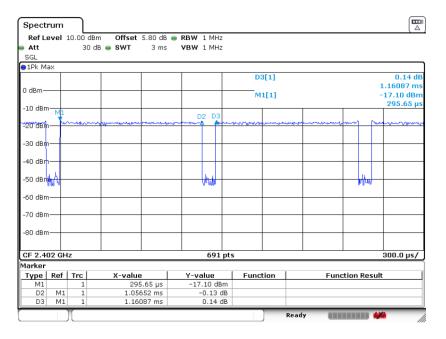




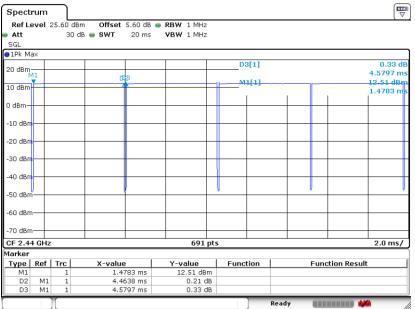




Appendix D. Duty Cycle Plots


Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth LE 1Mbps	95.25	2.093	0.478	1KHz
Bluetooth LE 2Mbps	91.01	1.057	0.947	1.1KHz
Bluetooth LE 500kbps	97.47	4.463	0.224	1KHz
Bluetooth LE 125kbps	99.31	-	-	10Hz

Spectrum Ref Level 35.80 dBm Offset 5.80 dB RBW 1 MHz Att 50 dB SWT 5 ms VBW 1 MHz SGL ●1Pk Max D3[1] -0.09 d 30 dBm 2.19710 m 13.13 dBr 389.86 μ M1[1] 20 dBm; 10 dBr 0 dBr -10 dB -20 dB -30 dB -40 dB -50 dBn -60 dBm 691 pts 500.0 μs/ CF 2.402 GHz Marker Type Ref Trc Y-value 13.13 dBm -0.17 dB -0.09 dB Function Function Result X-value 389.86 µs 2.09275 ms 2.1971 ms D2 D3 M1 M1 Ready


Bluetooth LE 1Mbps

Bluetooth LE 2Mbps

Bluetooth LE 500kbps

Bluetooth LE 125kbps

Ref L	evel :	25.60 dB	m Offset 5.60 dB (RBW 1 MHz			(.
Att		30 0	dB 😑 SWT 40 ms	VBW 1 MHz			
SGL							
1Pk M	ах						
20 dBm	41				D3[1]		-0.40 dE
	₹+				M1[1]		16.8696 m 15.90 dBn
10 dBm					milti		3.0725 m
					1	1 1	1
0 dBm—							
-10 dBrr							
-10 ubii							
-20 dBm						_	
-30 dBrr	⊢ +-						
-40 dBm	דדי						
-50 dBrr	<u> </u>						
-50 abii	'						
-60 dBm	<u> </u>						
-70 dBrr	∩+-						
CF 2.4	4 GHz			691 pts			4.0 ms/
1arker							
Туре	Ref		X-value	Y-value	Function	Funct	ion Result
M1		1	3.0725 ms	15.90 dBm			
D2 D3	M1 M1	1	16.7536 ms 16.8696 ms	-0.51 dB -0.40 dB			
03	TIM	1	10.8090 IIIS	-J.40 UB			