

# **RADIO TEST REPORT**

# Report No: STS1612214F01

S T S

A

Issued for

Interglobe Connection Corp

3785 NW 82nd Avenue, Suite 403, Miami, FL 33166 USA

| Product Name:  | mobile phone         |
|----------------|----------------------|
| Brand Name:    | SOLE                 |
| Model Name:    | SOLE B240 AK47       |
| Series Model:  | N/A                  |
| FCC ID:        | 2AC7ISOLEB240        |
| Test Standard: | FCC Part 22H and 24E |

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample. VAL





Report No.: STS1612214F01

# **TEST RESULT CERTIFICATION**

| Applicant's name:                         | Interglobe Connection Corp                                       |  |  |  |
|-------------------------------------------|------------------------------------------------------------------|--|--|--|
| Address:                                  | 3785 NW 82nd Avenue, Suite 403, Miami, FL 33166 USA              |  |  |  |
| Manufacture's Name EZA Electronic limited |                                                                  |  |  |  |
| Address:                                  | RM1902(A) 19/F 38 PLAZA 38 SHAN TUNG ST MONGKOK KLN<br>HONG KONG |  |  |  |
| Product name:                             | mobile phone                                                     |  |  |  |
| Brand name SOLE                           |                                                                  |  |  |  |
| Model and/or type reference :             | SOLE B240 AK47                                                   |  |  |  |
| Standards:                                | FCC Part 22H and 24E                                             |  |  |  |
| Test procedure                            | . ANSI/TIA 603-D (2010)                                          |  |  |  |

This device described above has been tested by STS and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date of performance of tests ....... 23 Dec. 2016~31 Dec. 2016

Date of Issue ..... 03 Jan. 2017

Test Result ..... Pass

Testing Engineer

2

(Leo li) Technical Manager • (Tony liu)

Authorized Signatory :

(Bovey Yang)

Shenzhen STS Test Services Co., Ltd.

| TABLE OF CONTENTS F                                          | age |
|--------------------------------------------------------------|-----|
| 1 INTRODUCTION                                               | 6   |
| 1.1 TEST FACTORY                                             | 6   |
| 1.2 MEASUREMENT UNCERTAINTY                                  | 6   |
| 2 PRODUCT INFORMATION                                        | 7   |
| 3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST                 | 8   |
| 4 MEASUREMENT INSTRUMENTS                                    | 9   |
| 5 TEST ITEMS                                                 | 10  |
| 5.1 CONDUCTED OUTPUT POWER                                   | 10  |
| 5.2 PEAK TO AVERAGE RATIO                                    | 11  |
| 5.3 TRANSMITTER RADIATED POWER (EIRP/ERP)                    | 12  |
| 5.4 OCCUPIED BANDWIDTH                                       | 13  |
| 5.5 FREQUENCY STABILITY                                      | 14  |
| 5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS                  | 15  |
| 5.7 BAND EDGE                                                | 16  |
| 5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT         | 17  |
| APPENDIX ATESTRESULT                                         | 19  |
| A1CONDUCTED OUTPUT POWER                                     | 19  |
| A2 PEAK-TO-AVERAGE RADIO                                     | 20  |
| A3 TRANSMITTER RADIATED POWER (EIRP/ERP)                     | 20  |
| A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH) | 22  |
| A5 FREQUENCY STABILITY                                       | 27  |
| A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS                   | 29  |
| A7 BAND EDGE                                                 | 33  |
| A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT          | 37  |
| APPENDIX BPHOTOS OF TEST SETUP                               | 41  |

Report No.: STS1612214F01

#



Report No.: STS1612214F01

## **Revision History**

| Rev. | Issue Date   | Report NO.    | Effect Page | Contents      |
|------|--------------|---------------|-------------|---------------|
| 00   | 03 Jan. 2017 | STS1612214F01 | ALL         | Initial Issue |
|      |              |               |             |               |



Shenzhen STS Test Services Co., Ltd.



## SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-D:

2010,KDB 971168 D01 v02r02 and KDB 648474 D03 v01r04

| FCC Rules                  | Test Description                                                     | Test Limit                                                       | Test Result | Reference |
|----------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|-------------|-----------|
| 2.1049                     | Conducted OutputPower                                                | Reporting Only                                                   | PASS        |           |
| 2.0146<br>24.232           | Peak-to-AverageRatio                                                 | < 13 dB                                                          | PASS        |           |
| 2.1046<br>22.913<br>24.232 | Effective Radiated Pow-<br>er/Equivalent Isotropic<br>Radiated Power | < 7 Watts max. ERP(Part 22)<br>< 2 Watts max. EIRP(Part 24)      | PASS        |           |
| 2.1049<br>22.917<br>24.238 | Occupied Bandwidth                                                   | Reporting Only                                                   | PASS        |           |
| 2.1055<br>22.355<br>24.235 | Frequency Stability                                                  | < 2.5 ppm (Part 22)<br>Emission must remain in band<br>(Part 24) | PASS        |           |
| 2.1051<br>22.917<br>24.238 | Spurious Emission at<br>Antenna Terminals                            | < 43+10log10(P[Watts])                                           | PASS        |           |
| 2.1053<br>22.917<br>24.238 | Field Strength of Spurious<br>Radiation                              | < 43+10log10(P[Watts])                                           | PASS        |           |
| 2.1051<br>22.917<br>24.238 | Band Edge                                                            | < 43+10log10(P[Watts])                                           | PASS        |           |



1 INTRODUCTION 1.1 TEST FACTORY Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China FCC Registration No.: 842334; IC Registration No.: 12108A-1

## **1.2 MEASUREMENT UNCERTAINTY**

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.  $\circ$ 

| No. | Item                                       | Uncertainty |
|-----|--------------------------------------------|-------------|
| 1   | RF power, conducted                        | ±0.70dB     |
| 2   | Spurious emissions, conducted              | ±1.19dB     |
| 5   | All emissions,radiated(<1G) 30MHz-200MHz   | ±2.83dB     |
| 6   | All emissions,radiated(<1G) 200MHz-1000MHz | ±2.94dB     |
| 7   | All emissions, radiated (>1G)              | ±3.03dB     |
| 8   | Temperature                                | ±0.5°C      |
| 9   | Humidity                                   | ±2%         |



Report No.: STS1612214F01

## **2 PRODUCT INFORMATION**

| Product Designation:                                                                                                                                   | mobile phone                                                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| Hardware version:                                                                                                                                      | S118-MB-V3.0                                                                                |  |  |
| Software version:                                                                                                                                      | S118_A282_INTEX_HINDBET<br>AM_LCD7789SC3029GIV09305LT_CAM3A01_V01                           |  |  |
| FCC ID:                                                                                                                                                | 2AC7ISOLEB240                                                                               |  |  |
| GSM/GPRS:                                                                                                                                              |                                                                                             |  |  |
| Tx Frequency:                                                                                                                                          | 850: 824.2 MHz ~ 848.8 MHz                                                                  |  |  |
|                                                                                                                                                        | 1900: 1850.2 MHz ~ 1909.8MHz                                                                |  |  |
|                                                                                                                                                        | GSM/GPRS:                                                                                   |  |  |
| Rx Frequency:                                                                                                                                          | 850: 869.2 MHz ~ 893.8 MHz                                                                  |  |  |
|                                                                                                                                                        | 1900: 1930.2 MHz ~ 1989.8 MHz                                                               |  |  |
| Max RF Output Power:                                                                                                                                   | GSM850:33.96dBm,PCS1900:28.82dBm<br>GPRS850:33.92dBm,GPRS1900:28.79dBm                      |  |  |
| Type of Emission:                                                                                                                                      | GSM(850):323KGXW: GSM(1900):317KGXW<br>GPRS(850):322KGXW: GPRS(1900):324KGXW                |  |  |
| SIM Card:                                                                                                                                              | SIM 1 and SIM 2 is a chipset unit and tested as single chip-<br>set,SIM 1 is used to tested |  |  |
| Antenna:                                                                                                                                               | PIFA Antenna                                                                                |  |  |
| Antenna gain:                                                                                                                                          | GSM 850: 0.5dBi ,PCS 1900: 0.5dBi                                                           |  |  |
| Power Supply:                                                                                                                                          | DC 3.7V by battery                                                                          |  |  |
| Battery parameter:                                                                                                                                     | Capacity: 600mAh, Rated Voltage: 3.7V                                                       |  |  |
| GPRS Class:                                                                                                                                            | Multi-Class12                                                                               |  |  |
| Extreme Vol. Limits:                                                                                                                                   | DC3.3 V to 4.2 V (Nominal DC3.7V)                                                           |  |  |
| Extreme Temp. Tolerance:                                                                                                                               | -20℃ to +45℃                                                                                |  |  |
| ** Note: The High Voltage 4.2 V and Low Voltage 3.3 V was declared by manufacturer, The EUT couldn't be operate normally with higher or lower voltage. |                                                                                             |  |  |



Report No.: STS1612214F01

## 3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

- 1. 30 MHz to 10th harmonic for GSM850
- 2. 30 MHz to 10th harmonic for GSM1900
- All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

|          | TEST MODES                     |                                |  |
|----------|--------------------------------|--------------------------------|--|
| BAND     | RADIATED TCS                   | CONDUCTED TCS                  |  |
| GSM 850  | GSM LINK<br>GPRS CLASS 12 LINK | GSM LINK<br>GPRS CLASS 12 LINK |  |
| GSM 1900 | GSM LINK<br>GPRS CLASS 12 LINK | GSM LINK<br>GPRS CLASS 12 LINK |  |



# Report No.: STS1612214F01

## **4 MEASUREMENT INSTRUMENTS**

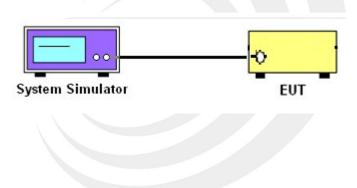
| Kind of Equipment                      | Manufacturer             | Type No.             | Serial No.     | Last Calibra-<br>tion | Calibrated Un-<br>til |
|----------------------------------------|--------------------------|----------------------|----------------|-----------------------|-----------------------|
| Spectrum Analyzer                      | Agilent                  | E4407B               | MY50140340     | 2016.10.23            | 2017.10.22            |
| Signal Analyzer                        | Agilent                  | N9020A               | MY49100060     | 2016.10.23            | 2017.10.22            |
| Test Receiver                          | R&S                      | ESCI                 | 101427         | 2016.10.23            | 2017.10.22            |
| Communication Tester                   | Agilent                  | 8960                 | MY48360751     | 2016.10.23            | 2017.10.22            |
| Communication Tester                   | R&S                      | CMU200               | 112012         | 2016.10.23            | 2017.10.22            |
| Test Receiver                          | R&S                      | ESCI                 | 102086         | 2016.10.23            | 2017.10.22            |
| Bilog Antenna                          | TESEQ                    | CBL6111D             | 34678          | 2014.11.24            | 2017.11.23            |
| Bilog Antenna<br>(Calibration antenna) | TESEQ                    | CBL6111D             | 34678          | 2014.11.24            | 2017.11.23            |
| Horn Antenna                           | Schwarzbeck              | BBHA 9120D           | 9120D-1343     | 2015.03.05            | 2018.03.04            |
| Horn Antenna<br>(Calibration antenna)  | Schwarzbeck              | BBHA 9120D           | 9120D-1343     | 2015.03.05            | 2018.03.04            |
| MXA SIGNAL Analyzer                    | Agilent                  | N9020A               | MY49100060     | 2016.10.23            | 2017.10.22            |
| Double Ridge Horn An-<br>tenna         | COM-POWER<br>CORPORATION | AH-840               | AHA-840        | 2016.03.06            | 2017.03.05            |
| Low frequency cable                    | N/A                      | R01                  | N/A            | NCR                   | NCR                   |
| High frequency cable                   | SCHWARZBECK              | AK9515H              | SN-96286/96287 | NCR                   | NCR                   |
| Vector signal generator                | Agilent                  | E8257D-521           | MY45141029     | 2016.10.23            | 2017.10.22            |
| Power amplifier                        | DESAY                    | ZHL-42W              | 9638           | 2016.10.23            | 2017.10.22            |
| Band Reject fil-<br>ter(1920-1980MHz)  | COM-MW                   | ZBSF-1920-1980       | 0092           | 2016.10.23            | 2017.10.22            |
| Band Reject fil-<br>ter(880-915MHz)    | COM-MW                   | ZBSF-C897.5-35       | 707            | 2016.10.23            | 2017.10.22            |
| Band Reject fil-<br>ter(1710-1785MHz)  | COM-MW                   | ZBSF-C1747.5-75      | 708            | 2016.10.23            | 2017.10.22            |
| Band Reject fil-<br>ter(1850-1910MHz)  | COM-MW                   | ZBSF-C1880-60        | 709            | 2016.10.23            | 2017.10.22            |
| Band Reject fil-<br>ter(2500-2570MHz)  | COM-MW                   | ZBSF-C2535-70        | 710            | 2016.10.23            | 2017.10.22            |
| Highpass Filter                        | WHKX7.0/18G-8SS          | Wainwright           | 18             | 2016.10.23            | 2017.10.22            |
|                                        | ion data of "NICD" ab    | own in this list was |                |                       |                       |

Equipment with a calibration date of "NCR" shown in this list was not used to make direct calibrated measurements.

Shenzhen STS Test Services Co., Ltd.



# 5 TEST ITEMS 5.1 CONDUCTED OUTPUT POWER


#### Test overview

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

#### Test procedures

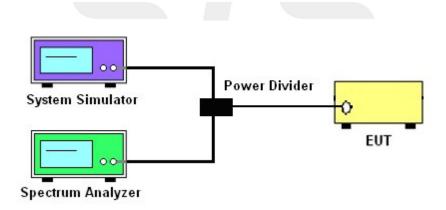
- 1. The transmitter output port was connected to the system simulator.
- 2. Set eut at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

#### Test setup





## 5.2 PEAK TO AVERAGE RATIO


## TEST OVERVIEW

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 db.

#### TEST PROCEDURES

- 1. The testing follows fcckdb 971168 v02r02 section
- 2. The eut was connected to the and peak and av system simulator& spectrum analysis reads
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Set the test probe and measure average power of the spectrum analysis

#### TEST SETUP



Shenzhen STS Test Services Co., Ltd.



## 5.3 TRANSMITTER RADIATED POWER (EIRP/ERP) TEST OVERVIEW

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

## TEST PROCEDURE

1. The testing follows FCC KDB 971168 D01

Section 5.2.2 (for GSM/GPRS) and ANSI / TIA-603-D-2010 Section 2.2.17.

2. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

3. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

4. The frequency range up to tenth harmonic of the fundamental frequency was investigated.

5. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution.

6. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain - Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor,

ERP/EIRP = P.SG + GT - LC

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMe as, typically dBW or dBm);

PMeas(PK) = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

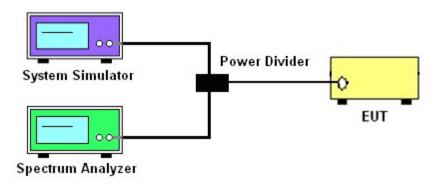


## 5.4 OCCUPIED BANDWIDTH

#### TEST OVERVIEW

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.


All modes of operation were investigated and the worst case configuration results are reported in this section.

## TEST PROCEDURE

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.

- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
- 1-5% of the 99% occupied bandwidth observed in Step 7

## TEST SETUP





## 5.5 FREQUENCY STABILITY Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-D-2010. The frequency stability of the transmitter is measured by:

14 of 41

a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within  $\pm 0.00025\%$  ( $\pm 2.5$  ppm) of the center frequency. For Part 24 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

## Test Procedure

**Temperature Variation** 

1. The testing follows fcckdb 971168 D01 section 9.0

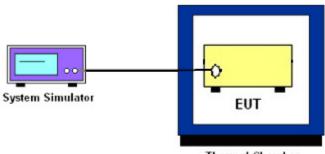
2. The EUT was set up in the thermal chamber and connected with the system simulator.

3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing.

Power was applied and the maximum change in frequency was recorded within one minute.

4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

Voltage Variation


1. The testing follows FCC KDB 971168 D01 Section 9.0.

2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.

3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.

4. The variation in frequency was measured for the worst case.

# TEST SETUP



Thermal Chamber





# 5.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS <u>Test Overview</u>

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

## Test procedure

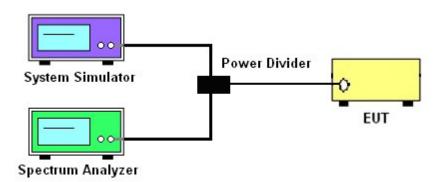
1. The testing FCC KDB 971168 D01 v02r02 Section 6.0. and ANSI/TIA-603-D-2010-Section 2.2.13.2(d)

2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and

attenuator. The path loss was compensated to the results for each measurement.

4. The middle channel for the highest RF power within the transmitting frequency was measured.


5. The conducted spurious emission for the whole frequency range was taken.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

- = P(W) [43 + 10log(P)] (dB)
- = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)
- = -13dBm.

## Test Setup





# 5.7 BAND EDGE

## **OVERVIEW**

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

## TEST PROCEDURE

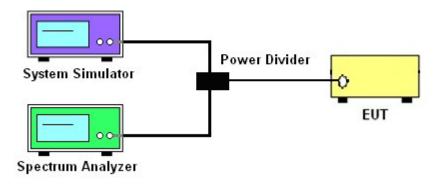
1. The testing FCC KDB 971168 D01 v02r02 Section 6.0. and ANSI/TIA-603-D-2010-Section 2.2.13.2(d)

- 2. Start and stop frequency were set such that the band edge would be placed in the center of then Plot.
- 3. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 4. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator.

The path loss was compensated to the results for each measurement.

5. The band edges of low and high channels for the highest RF powers were measured.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


7.The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P) ] (dB)

 $= [30 + 10\log(P)] (dBm) - [43 + 10\log(P)] (dB)$ 

= -13dBm.

## TEST SETUP







## 5.8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT Test overview

Radiated spurious emissions measurements are performed using the substitution method described inANSI/TIA-603-D with the EUT transmitting into an integral antenna. Measurements on signalsoperating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas.Measurements on signals operating above 1GHz are performed using vertically and horizontally polarizedhorn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

## Test procedure

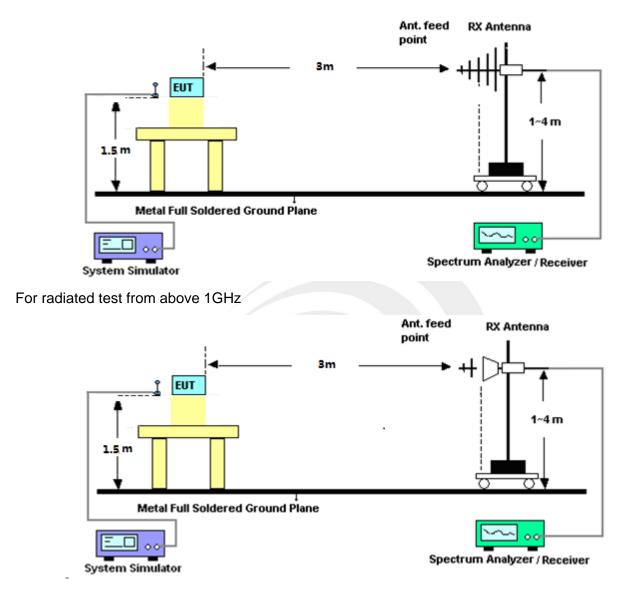
1. The testing FCC KDB 971168 D01 Section 5.8 and ANSI/TIA-603-D-2010-Section 2.2.12.2(b)

- 2. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 3. VBW ≥ 3 x RBW
- 4. Span = 1.5 times the OBW
- 5.No. of sweep points > 2 x span/RBW
- 6. Detector = Peak
- 7. Trace mode = max hold
- 8. The trace was allowed to stabilize

9. Effective Isotropic Spurious Radiation was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain - Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor,

## ERP/EIRP = P.SG + GT - LC

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as P Meas, typically dBW or dBm);


P.SG = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.



For radiated test from 30MHz to 1GHz



18 of 41

Report No.: STS1612214F01

Shenzhen STS Test Services Co., Ltd.



Report No.: STS1612214F01

## APPENDIX ATESTRESULT A1CONDUCTED OUTPUT POWER

GSM 850:

| Mode    | Frequency (MHz) | AVG Power |
|---------|-----------------|-----------|
| GSM850  | 824.2           | 33.38     |
|         | 836.6           | 33.96     |
|         | 848.8           | 32.62     |
| GPRS850 | 824.2           | 33.35     |
|         | 836.6           | 33.92     |
|         | 848.8           | 33.59     |

PCS 1900:

| Mode     | Frequency (MHz) | AVG Power |
|----------|-----------------|-----------|
|          | 1850.2          | 28.82     |
| GSM1900  | 1880            | 28.75     |
|          | 1909.8          | 28.72     |
|          | 1850.2          | 28.79     |
| GPRS1900 | 1880            | 28.73     |
|          | 1909.8          | 28.71     |

Shenzhen STS Test Services Co., Ltd.



Report No.: STS1612214F01

## A2 PEAK-TO-AVERAGE RADIO

PCS 1900:

| Mode     | Frequency (MHz) | PEAK Power | AVG Power | PAR  |
|----------|-----------------|------------|-----------|------|
|          | 1850.2          | 28.91      | 28.82     | 0.09 |
| PCS1900  | 1880            | 28.86      | 28.75     | 0.11 |
|          | 1909.8          | 28.83      | 28.72     | 0.11 |
|          | 1850.2          | 28.81      | 28.79     | 0.02 |
| GPRS1900 | 1880            | 28.84      | 28.73     | 0.11 |
|          | 1909.8          | 28.82      | 28.71     | 0.11 |

## A3 TRANSMITTER RADIATED POWER (EIRP/ERP)

|         |           | Radiate            | d Power       | (ERP) fo      | or GSM 850 MH       | Z                           |            |
|---------|-----------|--------------------|---------------|---------------|---------------------|-----------------------------|------------|
|         |           |                    |               |               |                     |                             |            |
| Mode    | Frequency | S G.Level<br>(dBm) | Cable<br>loss | Gain<br>(dBi) | PMeas<br>E.R.P(dBm) | Polarization<br>Of Max. ERP | Conclusion |
|         | 824.2     | 24.86              | 0.44          | 6.5           | 30.92               | Horizontal                  | Pass       |
|         | 824.2     | 26.81              | 0.44          | 6.5           | 32.87               | Vertical                    | Pass       |
| GSM850  | 836.6     | 24.61              | 0.45          | 6.5           | 30.66               | Horizontal                  | Pass       |
|         | 836.6     | 26.40              | 0.45          | 6.5           | 32.45               | Vertical                    | Pass       |
|         | 848.8     | 24.28              | 0.46          | 6.5           | 30.32               | Horizontal                  | Pass       |
|         | 848.8     | 26.07              | 0.46          | 6.5           | 32.11               | Vertical                    | Pass       |
|         | 824.2     | 24.88              | 0.44          | 6.5           | 30.94               | Horizontal                  | Pass       |
|         | 824.2     | 26.70              | 0.44          | 6.5           | 32.76               | Vertical                    | Pass       |
|         | 836.6     | 24.58              | 0.45          | 6.5           | 30.63               | Horizontal                  | Pass       |
| GPRS850 | 836.6     | 26.35              | 0.45          | 6.5           | 32.40               | Vertical                    | Pass       |
|         | 848.8     | 24.37              | 0.46          | 6.5           | 30.41               | Horizontal                  | Pass       |
|         | 848.8     | 26.05              | 0.46          | 6.5           | 32.09               | Vertical                    | Pass       |



## Report No.: STS1612214F01

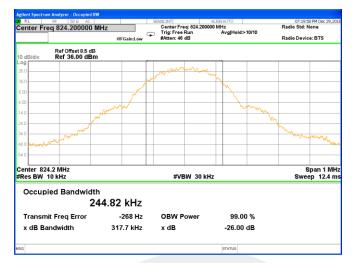
|                 |           | Radiated  | Power (B | EIRP) fo | r PCS 1900 MH | Z            |            |  |
|-----------------|-----------|-----------|----------|----------|---------------|--------------|------------|--|
|                 |           |           | Result   |          |               |              |            |  |
| Mode            | Frequency | S G.Level | Cable    | Gain     | PMeas         | Polarization | Conclusion |  |
|                 |           | (dBm)     | loss     | (dBi)    | E.I.R.P.(dBm) | Of Max.EIRP. |            |  |
|                 | 1850.2    | 18.48     | 2.41     | 10.35    | 26.42         | Horizontal   | Pass       |  |
| <b>DO01</b> 000 | 1850.2    | 20.37     | 2.41     | 10.35    | 28.31         | Vertical     | Pass       |  |
|                 | 1880.0    | 18.42     | 2.42     | 10.35    | 26.35         | Horizontal   | Pass       |  |
| PCS1900         | 1880.0    | 20.31     | 2.42     | 10.35    | 28.24         | Vertical     | Pass       |  |
|                 | 1909.8    | 18.57     | 2.43     | 10.35    | 26.49         | Horizontal   | Pass       |  |
|                 | 1909.8    | 20.29     | 2.43     | 10.35    | 28.21         | Vertical     | Pass       |  |
|                 | 1850.2    | 18.41     | 2.41     | 10.35    | 26.35         | Horizontal   | Pass       |  |
|                 | 1850.2    | 20.14     | 2.41     | 10.35    | 28.08         | Vertical     | Pass       |  |
|                 | 1880.0    | 18.41     | 2.42     | 10.35    | 26.34         | Horizontal   | Pass       |  |
| GPRS1900        | 1880.0    | 20.06     | 2.42     | 10.35    | 27.99         | Vertical     | Pass       |  |
|                 | 1909.8    | 18.44     | 2.43     | 10.35    | 26.36         | Horizontal   | Pass       |  |
|                 | 1909.8    | 20.05     | 2.43     | 10.35    | 27.97         | Vertical     | Pass       |  |

П



Report No.: STS1612214F01

## A4 OCCUPIED BANDWIDTH(99% OCCUPIED BANDWIDTH/26DB BANDWIDTH)


|                | Occupied Band  | lwidth for GSM 850 band |                    |  |
|----------------|----------------|-------------------------|--------------------|--|
| Mode           | Frequency(MHz) | Occupied Bandwidth      | Emission Bandwidth |  |
| wode           | Fiequency(MHz) | (99%)( kHz)             | (-26dBc)( kHz)     |  |
| Low Channel    | 824.2          | 244.82                  | 317.7              |  |
| Middle Channel | 836.6          | 247.43                  | 323.4              |  |
| High Channel   | 848.8          | 247.51                  | 322.9              |  |
|                | Occupied Band  | width for GPRS 850 band |                    |  |
| Mode           |                | Occupied Bandwidth      | Emission Bandwidth |  |
| wode           | Frequency(MHz) | (99%)( kHz)             | (-26dBc)( kHz)     |  |
| Low Channel    | 824.2          | 244.18                  | 311.2              |  |
| Middle Channel | 836.6          | 244.58                  | 321.8              |  |
| High Channel   | 848.8          | 244.30                  | 309.1              |  |

|                | Occupied Band  | lwidth for GSM1900 band           |                                      |
|----------------|----------------|-----------------------------------|--------------------------------------|
| Mode           | Frequency(MHz) | Occupied Bandwidth<br>(99%)( kHz) | Emission Bandwidth<br>(-26dBc)( kHz) |
| Low Channel    | 1850.2         | 248.23                            | 308.5                                |
| Middle Channel | 1880.0         | 246.96                            | 307.4                                |
| High Channel   | 1909.8         | 245.18                            | 316.8                                |
|                | Occupied Bandy | width for GPRS 1900 band          |                                      |
| Mode           |                | Occupied Bandwidth                | Emission Bandwidth                   |
| wode           | Frequency(MHz) | (99%)( kHz)                       | (-26dBc)( kHz)                       |
| Low Channel    | 1850.2         | 246.04                            | 318.8                                |
| Middle Channel | 1880.0         | 240.69                            | 316.7                                |
| High Channel   | 1909.8         | 248.82                            | 323.9                                |



#### Report No.: STS1612214F01

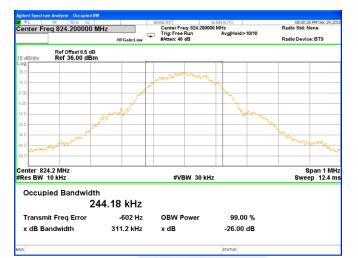
#### GSM 850 CH 128



GSM 850 CH 190






#### GSM 850 CH 251

## Shenzhen STS Test Services Co., Ltd.



#### Report No.: STS1612214F01

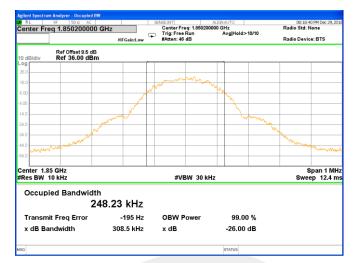
#### GPRS 850 CH 128



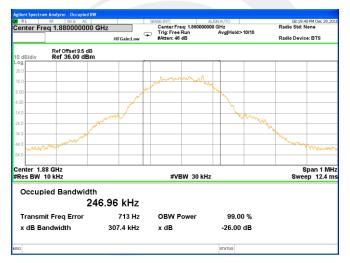
#### GPRS 850 CH 190



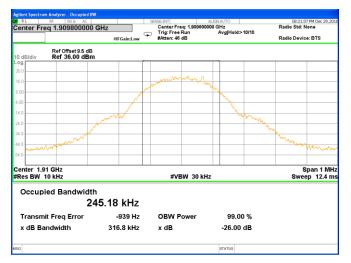



#### GPRS 850 CH 251

## Shenzhen STS Test Services Co., Ltd.




#### Report No.: STS1612214F01


#### PCS 1900 CH 512

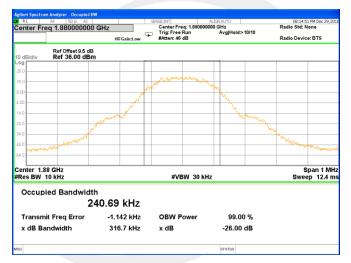


#### PCS 1900 CH 661



## PCS 1900 CH 810




Shenzhen STS Test Services Co., Ltd.



## GPRS 1900 CH 512



## GPRS 1900 CH 661



#### GPRS 1900 CH 810



Shenzhen STS Test Services Co., Ltd.



Report No.: STS1612214F01

# A5 FREQUENCY STABILITY

Normal Voltage = 3.7V. ; Battery End Point (BEP) = 3.3 V.; Maximum Voltage = 4.2 V

|                     | GSM 850 Middle Channel/836.6MHz |                    |                     |        |        |  |  |  |  |  |
|---------------------|---------------------------------|--------------------|---------------------|--------|--------|--|--|--|--|--|
| Temperature<br>(°C) | Voltage<br>(Volt)               | Freq. Dev.<br>(Hz) | Freq. Dev.<br>(ppm) | Limit  | Result |  |  |  |  |  |
| 50                  | -                               | 26.76              | 0.320               |        |        |  |  |  |  |  |
| 40                  |                                 | 20.33              | 0.243               |        |        |  |  |  |  |  |
| 30                  |                                 | 20.95              | 0.250               |        |        |  |  |  |  |  |
| 20                  |                                 | 17.06              | 0.204               |        |        |  |  |  |  |  |
| 10                  | Normal Voltage                  | 19.28              | 0.230               |        |        |  |  |  |  |  |
| 0                   |                                 | 28.48              | 0.340               | 2.5ppm | PASS   |  |  |  |  |  |
| -10                 |                                 | 16.21              | 0.194               |        |        |  |  |  |  |  |
| -20                 | /                               | 17.81              | 0.213               |        |        |  |  |  |  |  |
| -30                 |                                 | 20.97              | 0.251               |        |        |  |  |  |  |  |
| 25                  | Maximum Voltage                 | 27.23              | 0.325               |        |        |  |  |  |  |  |
| 25                  | BEP                             | 27.90              | 0.333               |        |        |  |  |  |  |  |

|                     | GPRS              | 850 Middle Cha     | nnel/836.6MHz       |        |        |
|---------------------|-------------------|--------------------|---------------------|--------|--------|
| Temperature<br>(°C) | Voltage<br>(Volt) | Freq. Dev.<br>(Hz) | Freq. Dev.<br>(ppm) | Limit  | Result |
| 50                  |                   | 30.01              | 0.359               |        |        |
| 40                  |                   | 21.06              | 0.252               |        |        |
| 30                  |                   | 36.04              | 0.431               |        |        |
| 20                  |                   | 34.78              | 0.416               |        |        |
| 10                  | Normal Voltage    | 33.19              | 0.397               |        |        |
| 0                   |                   | 20.82              | 0.249               | 2.5ppm | PASS   |
| -10                 |                   | 22.63              | 0.270               |        |        |
| -20                 |                   | 36.19              | 0.433               |        |        |
| -30                 |                   | 33.17              | 0.396               |        |        |
| 25                  | Maximum Voltage   | 24.50              | 0.024               |        |        |
| 25                  | BEP               | 21.40              | 0.014               | ]      |        |

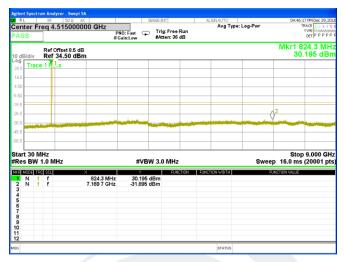


Report No.: STS1612214F01

|                     | GSM <sup>2</sup>  | 1900 Middle Cha    | nnel/1880MHz        |                                |        |
|---------------------|-------------------|--------------------|---------------------|--------------------------------|--------|
| Temperature<br>(°C) | Voltage<br>(Volt) | Freq. Dev.<br>(Hz) | Freq. Dev.<br>(ppm) | Limit                          | Result |
| 50                  |                   | 15.72              | 0.008               |                                |        |
| 40                  |                   | 24.45              | 0.013               |                                |        |
| 30                  |                   | 12.43              | 0.007               |                                |        |
| 20                  |                   | 36.42              | 0.019               | Within Au-<br>thorized<br>Band |        |
| 10                  | Normal Voltage    | 18.63              | 0.010               |                                |        |
| 0                   |                   | 22.82              | 0.012               |                                | PASS   |
| -10                 |                   | 23.24              | 0.012               |                                |        |
| -20                 |                   | 21.90              | 0.012               |                                |        |
| -30                 |                   | 14.56              | 0.008               |                                |        |
| 25                  | Maximum Voltage   | 33.04              | 0.018               |                                |        |
| 25                  | BEP               | 34.44              | 0.018               |                                |        |

|                     | GPRS 1900 Middle Channel/1880MHz |                    |                     |                                |        |  |  |  |  |
|---------------------|----------------------------------|--------------------|---------------------|--------------------------------|--------|--|--|--|--|
| Temperature<br>(°C) | Voltage<br>(Volt)                | Freq. Dev.<br>(Hz) | Freq. Dev.<br>(ppm) | Limit                          | Result |  |  |  |  |
| 50                  |                                  | 27.81              | 0.015               |                                |        |  |  |  |  |
| 40                  |                                  | 20.66              | 0.011               |                                |        |  |  |  |  |
| 30                  |                                  | 13.18              | 0.007               |                                | PASS   |  |  |  |  |
| 20                  |                                  | 19.39              | 0.010               | Within Au-<br>thorized<br>Band |        |  |  |  |  |
| 10                  | Normal Voltage                   | 19.66              | 0.010               |                                |        |  |  |  |  |
| 0                   |                                  | 28.49              | 0.015               |                                |        |  |  |  |  |
| -10                 |                                  | 22.82              | 0.012               |                                |        |  |  |  |  |
| -20                 |                                  | 21.16              | 0.011               |                                |        |  |  |  |  |
| -30                 |                                  | 12.84              | 0.007               |                                |        |  |  |  |  |
| 25                  | Maximum Voltage                  | 19.11              | 0.010               |                                |        |  |  |  |  |
| 25                  | BEP                              | 31.64              | 0.017               |                                |        |  |  |  |  |

╡




# Report No.: STS1612214F01

# A6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

GSM 850 BAND

## Lowest Channel



## Middle Channel

|         |                                      | AC                                                   | SENSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       | ALIGNAUTO                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 PM Dec 29,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|--------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| er Frec |                                      | DOOOD GHz                                            | 0: Fast 😱 Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rig: Free Run                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    | pe:Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TYPE MWWW<br>DET P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.9 M<br>085 dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Trace 1 | 11s                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       | /                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       | and the second                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      | #VBW 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0 MHz                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                    | Sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.000 C<br>(20001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                                      | ×                                                    | Y an and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FUNCTION                                                                                                                                                              | FUNCTION WIDTH                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      | 6.028 7 GHz                                          | -31.785 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | aiv R<br>Frace 1<br>30 MHz<br>BW 1.0 | 30 MHz<br>BW 1.0 MHz<br>30 MHz<br>BW 1.0 MHz<br>31 f | IFG<br>Ref Office 18.5 dB<br>If Ref 34.50 dBm<br>Trace 1 P 1.5<br>If a constraint of the second of the secon | PR0:Fast     I       I// Ref 33.50 dBm     I// Ref 33.50 dBm       30 MHz     I// Ref 34.50 dBm       30 MHz     I// Ref 34.50 dBm       30 MHz     I// Ref 34.50 dBm | PHO: Fast<br>BCellucian     Trig: Free Run<br>BCellucian       In Ref Offset 8.5 dB<br>Ref 04:50 dBm       Trace 1 F     5       30 MHz     4/WW 3.0 MHz       30 MHz     #VBW 3.0 MHz       SI EXERCISE     30.0 MHz       SI EXERCISE     30.0 MHz       SI EXERCISE     30.0 MHz       SI EXERCISE     30.0 MHz | Trige Tries State | Internet     Proc. Fail     Trig: Free Run       Ref Offset 8.5 dB     Ref Offset 8.5 dB     Ref Offset 8.5 dB       Image: State 1.5 dB     Image: State 1.5 dB     Image: State 1.5 dB       Image: State 1.5 dB     Image: State 1.5 dB     Image: State 1.5 dB       Image: State 1.5 dB     Image: State 1.5 dB     Image: State 1.5 dB       Image: State 1.5 dB     Image: State 1.5 dB     Image: State 1.5 dB       Image: State 1.5 dB     Image: State 1.5 dB     Image: State 1.5 dB       Image: State 1.5 dB     Image: State 1.5 dB     Image: State 1.5 dB       Image: State 1.5 dB     Image: State 1.5 dB     Image: State 1.5 dB       Image: State 1.5 dB     Image: State 1.5 dB     Image: State 1.5 dB | Internation PHOLF Aut<br>If Galactow Trig: Free Run<br>Atten: 36 dB Mkr1 8:<br>30.   Ref Offset 8.5 dB Mkr1 8:<br>30.   If action 2000 Image: State 2000   Joint Action 2000 Image: State 2000 |

## **Highest Channel**

| RL             | RF 50 Ω AC                       |                         | SENSE:INT                      | ALIGNAUTO         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04:44:55 PM Dec 29, 20      |
|----------------|----------------------------------|-------------------------|--------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| enter Freq     | 4.515000000 0                    | PNO: Fast<br>IFGain:Low | Trig: Free Ru<br>#Atten: 36 dE | in C              | e: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TYPE MIMOUND<br>DET P P P P |
| 0 dB/div R     | ef Offset 8.5 dB<br>ef 34.50 dBm |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr1 849.0 MH<br>30.102 dB  |
| og<br>Trace 1  | 1.s                              |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 14.5           |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 150            |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 50             |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 5.5            |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 5.5            |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                           |
| 5.5            |                                  | and the second second   |                                |                   | a service and the service of the ser | Y                           |
| 5.5            |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 6.5            |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| tart 30 MHz    |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 9.000 GI               |
| Res BW 1.0     | MHz                              |                         | #VBW 3.0 MHz                   |                   | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.0 ms (20001 p            |
| Ke mode tric s |                                  | 19.0 MHz 30             | Y FUNCTI<br>102 dBm            | DN FUNCTION WIDTH | FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TION VALUE                  |
| 2 N 1 1        | 7.51                             | 46 GHz -31              | .986 dBm                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 3<br>4         |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 5              |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 7              |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 9              |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 0              |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 1              |                                  |                         |                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |

Shenzhen STS Test Services Co., Ltd.



## GPRS 850 BAND

#### Lowest Channel

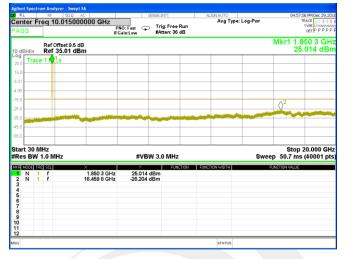
|                                    | um Analyzer - Swept !  |             |          |                       |                                                                                                                 |                  |         |                       |                          |
|------------------------------------|------------------------|-------------|----------|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------|---------|-----------------------|--------------------------|
| LXI RL                             | RF 50 Ω /              |             |          | SENSE:INT             | AL                                                                                                              | IGNAUTO          |         |                       | 2 PM Dec 29, 2016        |
|                                    | eq 4.5150000           | 000 GHz     | NO: Fast | Trig: Free            | Run                                                                                                             | Avg Type:        | Log-Pwr |                       | TYPE MULLIAMA            |
| PASS                               |                        |             | Gain:Low | #Atten: 36            | dB                                                                                                              |                  |         |                       | DETPPPPP                 |
|                                    | Ref Offset 8.5 dl      |             |          |                       |                                                                                                                 |                  |         | Mkr1 8                | 24.3 MHz                 |
| 10 dB/div                          | Ref 34.50 dB           |             |          |                       |                                                                                                                 |                  |         | 30.                   | 028 dBm                  |
| Log<br>24.5 Trace                  | e 1 <mark>61</mark> .s |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| 24.0                               |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| 14.5                               |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| 4.50                               |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| -5.50                              |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| -15.5                              |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| -25.5                              |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| -35.5 Lutterson                    |                        |             |          | and the second second | and the second secon | وبالمجادي الشرار |         | and the second second | the state of the state   |
| -45.5                              |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| -55.5                              |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
|                                    |                        |             |          |                       |                                                                                                                 |                  |         | -                     |                          |
| Start 30 N<br>#Res BW              |                        |             | #VB      | W 3.0 MHz             |                                                                                                                 |                  | Sweet   | Stop<br>16.0 ms       | 9.000 GHz<br>(20001 pts) |
| MKR MODE TH                        |                        | x           |          |                       | TION FUNCT                                                                                                      | TION WIDTH       |         | INCTION VALUE         | (2000) (200)             |
| 1 N 1                              | f                      | 824.3 MHz   | 30.028   |                       | TION FUNC                                                                                                       | ION WIDTH        | FL.     | INCTION VALUE         |                          |
| 2 N 1                              | f                      | 7.877 0 GHz | -31.490  | dBm                   |                                                                                                                 |                  |         |                       |                          |
| 4                                  |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| 5                                  |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| 2 N 1<br>3 4<br>5 6<br>7 8<br>9 10 |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| 8                                  |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| 10                                 |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| 11 12                              |                        |             |          |                       |                                                                                                                 |                  |         |                       |                          |
| MSG                                |                        |             |          |                       |                                                                                                                 | STATUS           |         |                       |                          |
| mou                                |                        |             |          |                       |                                                                                                                 | oraros           |         |                       |                          |

#### Middle Channel

| enter Freq 4.5150            | Ω AC 00000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SENSE:IM                                                                                                        | Free Run | ALIGNAUTO<br>Avg Type | : Log-Pwr                       | 05:08:56 PM Dec 29,<br>TRACE 1 2 3 4<br>TVPE MWWW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|-----------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASS                          | IFG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | n: 36 dB |                       |                                 | Mkr1 836.9 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| dB/div Ref 34.50             | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |          |                       |                                 | 29.955 dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| g<br>1.6 Trace 1 F 1.s       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .6                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .6                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          | -                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .5                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 mail current status        | Construction of the local division of the lo | and the state of the |          |                       | مەلەلى <sub>ي</sub> ىرىداناتىرى | and the second division of the second divisio |
| .5                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .5                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| art 30 MHz<br>tes BW 1.0 MHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VBW 3.0                                                                                                        | MHz      |                       | Swee                            | Stop 9.000 G<br>p 16.0 ms (20001 j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| R MODE TRC SCL               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y                                                                                                               | FUNCTION | FUNCTION WIDTH        | ÷                               | UNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N 1 f<br>N 1 f               | 836.9 MHz<br>5.525 9 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.955 dBm<br>-31.745 dBm                                                                                       |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |          |                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### **Highest Channel**

|                              | Swept SA<br>0 Ω AC | SENSE: INT                                  |                 | ALIGNAUTO     |         | 05:09             | :30 PM Dec 2        |
|------------------------------|--------------------|---------------------------------------------|-----------------|---------------|---------|-------------------|---------------------|
| ter Freq 4.515<br>S          | PN                 | 0: Fast Trig: Fi<br>ain:Low #Atten:         | ee Run<br>36 dB | Avg Type:     | Log-Pwr |                   | TYPE MHA            |
| Ref Offset<br>B/div Ref 34.5 |                    |                                             |                 |               |         | Mkr1 8<br>29      | 349.0 M<br>9.825 d  |
| Trace 1 Ft.1s                |                    |                                             |                 |               |         |                   |                     |
|                              |                    |                                             |                 |               |         |                   |                     |
|                              |                    |                                             |                 |               |         |                   |                     |
|                              |                    |                                             |                 |               |         | 2                 | -                   |
|                              |                    | a sa da |                 |               |         | <sup>2</sup>      |                     |
|                              |                    |                                             |                 |               |         |                   |                     |
|                              |                    |                                             |                 |               |         |                   | -                   |
| t 30 MHz<br>s BW 1.0 MHz     |                    | #VBW 3.0 M                                  | Hz              |               | Swe     | Sto<br>ep 16.0 ms | p 9.000<br>s (20001 |
| MODE TRC SCL                 | ×<br>849.0 MHz     | 29.825 dBm                                  | FUNCTION        | INCTION WIDTH |         | FUNCTION VALUE    |                     |
| N 1 f                        | 7.417 2 GHz        | -31.927 dBm                                 |                 |               |         |                   |                     |
|                              |                    |                                             |                 |               |         |                   |                     |
|                              |                    |                                             |                 |               |         |                   |                     |
|                              |                    |                                             |                 |               |         |                   |                     |
|                              |                    |                                             |                 |               |         |                   |                     |
|                              |                    |                                             |                 | STATUS        |         |                   |                     |


Shenzhen STS Test Services Co., Ltd.



# Report No.: STS1612214F01

## GSM1900 BAND(30M-20G)

#### Lowest Channel

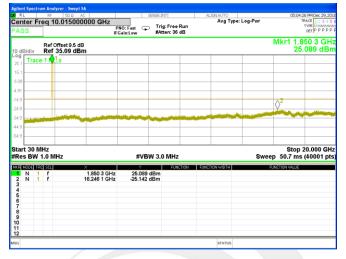


## Middle Channel

| ASS FGaincian Anter: 36 dB Conference of the second anter and the second anter                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R AC        | SENSE: J                                                                                                         | NT Th                     | ALIGNAUTO             |           | 04:57          | :44 PM Dec 29,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| END     END     25.944 d       56     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | enter F                                            | Freq 10.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PN          |                                                                                                                  | g: Free Run<br>ten: 36 dB | Ауд Туре              | : Log-Pwr |                | TYPE MWWW<br>DET P P P F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Trace 11 2 15<br>Trace | 0 dB/div                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                  |                           |                       |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30     30<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | og<br>Trac                                         | ce 1 Rels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                                                                                  |                           |                       |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50     7       45     7       46     7       46     7       46     7       47     7       48     7       48     7       48     7       48     7       49     7       49     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     7       40     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.6                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                  |                           |                       |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .50                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                  |                           |                       |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Image: State of the s                                                                                                                                                                                                                                                                                                       | 50                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                  |                           |                       |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Image: State of the s                                                                                                                                                                                                                                                                                                       | 1.5                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                  |                           |                       |           | ^2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15     Stop 20.000       atri 30 MHz     #VBW 3.0 MHz     Stop 20.000       VEX.001     #VBW 3.0 MHz     Stop 20.000       VEX.001     #VDW 3.0 MHz     #VDW 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                  |                           |                       |           | V-             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Image: State in the s                                                                                                                                                                                                                                                                                                       | 1.5                                                | and the second sec |             | and the second | and the second            | and the second second |           |                | and the second division of the second divisio |
| Arr 30 MHz     Stop 20.000       Res BW 1.0 MHz     #VBW 3.0 MHz     Sweep 50.7 ms (40001       Ret BW 1.0 MHz     #VBW 3.0 MHz     Sweep 50.7 ms (40001       Ret BW 1.0 MHz     2 State 1     1 8.80 2 GHz     2 State 1       2 N 1     1     1 8.80 2 GHz     24.399 dBm     10.40001     10.4000100       5     5     5     5     5     10.1000     10.10000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.5                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                  |                           |                       |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ress BW 1.0 MHz     #VBW 3.0 MHz     Sweep 50.7 ms (40001       74 model lieg fact     V     1     100/21001     100/21001     100/21001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                  |                           |                       |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ress BW 1.0 MHz     #VBW 3.0 MHz     Sweep 50.7 ms (40001       74 model lieg fact     V     1     100/21001     100/21001     100/21001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001     100/21004/0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | Milla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                  |                           |                       |           | Oten           | 20.000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| II     I     f     1.890.2 GHz     25.944 dBm     24.399 dBm     24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | art 30 i                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | #VBW 3.0                                                                                                         | MHz                       |                       | Swe       | ep 50.7 ms     | 20.000 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2 N 1 f 16.190 2 GHz -24.399 dBm<br>5 6<br>7 8<br>9 8<br>9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Res BW                                             | 1.0 MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                  |                           |                       |           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4<br>6<br>7<br>8<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KR MODE 1                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                  | FUNCTION                  | FUNCTION WIDTH        |           | FUNCTION VALUE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 MODE 1<br>1 N<br>2 N                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.880 2 GHz | 25.944 dBm                                                                                                       | FUNCTION                  | FUNCTION WIDTH        |           | FUNCTION VALUE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OR MODE 1<br>1 N<br>2 N<br>3                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.880 2 GHz | 25.944 dBm                                                                                                       | FUNCTION                  | FUNCTION WIDTH        |           | FUNCTION VALUE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TE MODE 1<br>1 N<br>2 N<br>3<br>4<br>5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.880 2 GHz | 25.944 dBm                                                                                                       | FUNCTION                  | FUNCTION WIDTH        |           | FUNCTION VALUE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72 170009 1<br>1 N<br>2 N<br>3<br>4<br>5<br>6<br>7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.880 2 GHz | 25.944 dBm                                                                                                       | FUNCTION                  | FUNCTION WIDTH        |           | FUNCTION VALUE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 N<br>2 N<br>3<br>4<br>5<br>6<br>7<br>8<br>9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.880 2 GHz | 25.944 dBm                                                                                                       | FUNCTION                  | FUNCTION WIDTH        |           | FUNCTION VALUE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 N<br>2 N<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.880 2 GHz | 25.944 dBm                                                                                                       | FUNCTION                  | FUNCTION WIDTH        |           | FUNCTION VALUE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## **Highest Channel**

| RL RF                      | er - Swept SA<br>  S0 Ω AC | SENSE                        | INT                         | ALIGNAUTO             | 05:00:59 PM Dec 29                          |
|----------------------------|----------------------------|------------------------------|-----------------------------|-----------------------|---------------------------------------------|
| nter Freq 10.              | 015000000 GHz              | PNO: Fast Tr<br>FGain:Low #A | ig: Free Run<br>tten: 36 dB | Avg Type: Log         | J-Pwr TRACE 1 2 3<br>TYPE MINN<br>DET P P P |
| dB/div Ref 3               | set 9.5 dB<br>5.50 dBm     |                              |                             |                       | Mkr1 1.910 2 G<br>26.506 d                  |
| g Trace 1 F                |                            |                              |                             |                       |                                             |
|                            |                            |                              |                             |                       |                                             |
| 50                         |                            |                              |                             |                       |                                             |
| 50                         |                            |                              |                             |                       |                                             |
| 5                          |                            |                              |                             |                       | $\Diamond^2$                                |
| 5                          |                            |                              | and the second              | and the second second | والمتحاصي المراحمة فتعطيهم                  |
| .5                         |                            |                              |                             |                       |                                             |
| .5                         |                            |                              |                             |                       |                                             |
| art 30 MHz<br>es BW 1.0 MH | z                          | #VBW 3.                      | 0 MHz                       |                       | Stop 20.000 C<br>Sweep 50.7 ms (40001       |
| N 1 f                      | ×<br>1.910 2 GHz           | 26,506 dBm                   | FUNCTION                    | FUNCTION WIDTH        | FUNCTION VALUE                              |
| N 1 f                      | 16.517 7 GHz               | -25.760 dBm                  |                             |                       |                                             |
|                            |                            |                              |                             |                       |                                             |
|                            |                            |                              |                             |                       |                                             |
|                            |                            |                              |                             |                       |                                             |
|                            |                            |                              |                             |                       |                                             |
| 2                          |                            |                              |                             |                       |                                             |
|                            |                            |                              |                             | STATUS                |                                             |


Shenzhen STS Test Services Co., Ltd.



# Report No.: STS1612214F01

## GPRS1900 BAND(30M-20G)

#### Lowest Channel



## Middle Channel

| enter                                                                      | RF             |                           |                                  | 58                    | NSE:INT                      | A         | LIGNAUTO   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | :05 PM Dec 29,7           |
|----------------------------------------------------------------------------|----------------|---------------------------|----------------------------------|-----------------------|------------------------------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|
| ASS                                                                        | Freq           | 10.0150                   |                                  | i0: Fast 😱            | Trig: Free F<br>#Atten: 36 ( | Run<br>18 | Avg Type:  | : Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    | TYPE MUMAU<br>DET P P P P |
| 0 dB/di                                                                    | Ref            | f Offset 9.5<br>f 35.50 d | dB<br>Bm                         |                       |                              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr1 1.8<br>25                     | 380 2 G<br>984 dE         |
| 5.6 Tr                                                                     | ace 1 🖡        | 1 <u>s</u>                |                                  |                       |                              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                           |
| 5.6                                                                        |                | <u> </u>                  |                                  |                       |                              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                           |
| .50                                                                        |                | <u> </u>                  |                                  |                       |                              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                           |
| 50                                                                         |                |                           |                                  |                       |                              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                  |                           |
| .5                                                                         |                |                           |                                  |                       |                              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                |                           |
| .5                                                                         |                |                           |                                  |                       |                              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                  |                           |
| 5                                                                          |                | -                         |                                  | and the second second | And the owned                |           |            | Concession of the local division of the loca |                                    |                           |
| 1.5                                                                        |                |                           |                                  |                       |                              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                           |
| 1.5                                                                        |                |                           |                                  |                       |                              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                           |
|                                                                            |                |                           |                                  |                       |                              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                           |
| art 3                                                                      | 0 MHz          |                           |                                  |                       |                              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop                               | 20.000 G                  |
| tart 3                                                                     | 0 MHz<br>W 1.0 | MHz                       |                                  | #VBW                  | 3.0 MHz                      |           |            | Swee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stop<br>ep 50.7 ms                 | 20.000 G<br>(40001 )      |
| art 3<br>Res B                                                             |                |                           | X<br>1 990 2 CH7                 | Y                     | FUNC                         | TION FUNC | TION WIDTH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop<br>ep 50.7 ms<br>eunenon vaue | 20.000 G<br>(40001        |
| art 30<br>Res B                                                            | W 1.0          |                           | 8<br>1.880 2 GHz<br>16.527 7 GHz |                       | EUNC                         | TION FUNC | TION WIDTH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ep 50.7 ms                         | 20.000 G<br>(40001        |
| art 30<br>Res B<br>N<br>N<br>2 N                                           | W 1.0          |                           | 1.880 2 GHz                      | 25,984 di             | EUNC                         | TION FUNC | TION WIDTH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ep 50.7 ms                         | 20.000 G<br>(40001        |
| art 3<br>Res B<br>N<br>N<br>2 N<br>3                                       | W 1.0          |                           | 1.880 2 GHz                      | 25,984 di             | EUNC                         | TION FUNC | TION WIDTH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ep 50.7 ms                         | 20.000 G<br>; (40001 j    |
| tart 34<br>Res B<br>10 N<br>2 N<br>3<br>4<br>5<br>6<br>7                   | W 1.0          |                           | 1.880 2 GHz                      | 25,984 di             | EUNC                         | TION FUNC | TIONWIDTH  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ep 50.7 ms                         | 20.000 G<br>(40001 )      |
| tart 3<br>Res B<br>1 N<br>2 N<br>3<br>4<br>5<br>5<br>6<br>7<br>7<br>8<br>9 | W 1.0          |                           | 1.880 2 GHz                      | 25,984 di             | EUNC                         | TION FUNC | TION WIDTH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ep 50.7 ms                         | 20.000 G                  |
| tart 3<br>Res B<br>1 N<br>2 N<br>3<br>4<br>5<br>6<br>7<br>8                | W 1.0          |                           | 1.880 2 GHz                      | 25,984 di             | EUNC                         | TION FUNC | TIONWIDTH  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ep 50.7 ms                         | 20.000 G                  |

## **Highest Channel**

| RL                     |                               | AC               | SENS       | E:INT                           | ALIGNAUTO      |         |                   | 20 PM Dec 29, 20          |
|------------------------|-------------------------------|------------------|------------|---------------------------------|----------------|---------|-------------------|---------------------------|
| enter Fre              | q 10.0150                     | 000000 GHz       | NO: Fast   | Trig: Free Run<br>#Atten: 36 dB | Avg Type:      | Log-Pwr |                   | TYPE MWWWW<br>DET P P P P |
|                        | Ref Offset 9.6<br>Ref 35.50 ( | 5 dB             |            |                                 |                |         | Mkr1 1.9<br>26    | 910 2 GH<br>.404 dB       |
| g Trace                |                               |                  |            |                                 |                |         |                   |                           |
| 5.6                    |                               |                  |            |                                 |                |         |                   |                           |
| 50                     |                               |                  |            |                                 |                |         |                   |                           |
| 50                     | _                             |                  |            |                                 |                |         |                   |                           |
| .5                     |                               | _                |            |                                 |                |         | 2                 | -                         |
| 1.5                    |                               |                  |            |                                 |                |         | LV.               |                           |
| 1.5                    |                               |                  |            |                                 |                |         |                   |                           |
| 1.5                    |                               |                  |            |                                 |                |         |                   |                           |
|                        |                               |                  |            |                                 |                |         |                   |                           |
| art 30 MH<br>≹es BW 1. |                               |                  | #VBW       | 3.0 MHz                         |                | Swee    | Stop<br>p 50.7 ms | 20.000 GH<br>(40001 pt    |
| R MODE TRC             | SCL<br>f                      | ×<br>1.910 2 GHz | 26.404 dB  | FUNCTION                        | FUNCTION WIDTH |         | FUNCTION VALUE    |                           |
| 2 N 1                  | f                             | 16.509 2 GHz     | -25.340 dB | m                               |                |         |                   |                           |
| 4                      |                               |                  |            |                                 |                |         |                   |                           |
| 5                      |                               |                  |            |                                 |                |         |                   |                           |
| 3                      |                               |                  |            |                                 |                |         |                   |                           |
| )                      |                               |                  |            |                                 |                |         |                   |                           |
| 1                      |                               |                  |            |                                 |                |         |                   |                           |
| 1                      |                               |                  |            |                                 | STATUS         |         |                   |                           |

Shenzhen STS Test Services Co., Ltd.



## A7 BAND EDGE

## GSM 850

#### Lowest Band Edge



Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB



Highest Band Edge

Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB




## **GPRS 850**

#### Lowest Band Edge



Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

## Highest Band Edge



Note:Offset=Cable loss(8.5)+10log(3.2/3)=8.5+0.3=8.8 dB

Shenzhen STS Test Services Co., Ltd.



## GSM 1900

## Lowest Band Edge



Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

#### **Highest Band Edge**



Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Shenzhen STS Test Services Co., Ltd.



**GPRS 1900** 

#### Lowest Band Edge



Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

#### Highest Band Edge



Note:Offset=Cable loss(9.5)+10log(3.2/3)=9.5+0.3=9.8 dB

Shenzhen STS Test Services Co., Ltd.



# A8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

#### GSM 850: (30-9000)MHz

| GSM 850: (30-9000)MHz |         |            |            |             |           |        |          |  |  |  |  |
|-----------------------|---------|------------|------------|-------------|-----------|--------|----------|--|--|--|--|
|                       | The     | Worst Test | Results Ch | annel 128/8 | 824.2 MHz |        |          |  |  |  |  |
|                       | S G.Lev |            |            | PMea        | Limit     | Margin | Delerity |  |  |  |  |
| Frequency(MHz)        | (dBm)   | Ant(dBi)   | Loss       | (dBm)       | (dBm)     | (dBm)  | Polarity |  |  |  |  |
| 1648.19               | -40.60  | 9.40       | 4.75       | -35.95      | -13.00    | -22.95 | Н        |  |  |  |  |
| 2472.60               | -39.84  | 10.60      | 8.39       | -37.63      | -13.00    | -24.63 | Н        |  |  |  |  |
| 3296.43               | -32.28  | 12.00      | 11.79      | -32.07      | -13.00    | -19.07 | Н        |  |  |  |  |
| 1648.12               | -44.10  | 9.40       | 4.75       | -39.45      | -13.00    | -26.45 | V        |  |  |  |  |
| 2472.64               | -44.64  | 10.60      | 8.39       | -42.43      | -13.00    | -29.43 | V        |  |  |  |  |
| 3296.89               | -43.73  | 12.00      | 11.79      | -43.52      | -13.00    | -30.52 | V        |  |  |  |  |
|                       | The     | Worst Test | Results Ch | annel 190/8 | 36.6 MHz  |        |          |  |  |  |  |
|                       | S G.Lev |            |            | PMea        | Limit     | Margin | Delerity |  |  |  |  |
| Frequency(MHz)        | (dBm)   | Ant(dBi)   | Loss       | (dBm)       | (dBm)     | (dBm)  | Polarity |  |  |  |  |
| 1673.14               | -41.00  | 9.50       | 4.76       | -36.26      | -13.00    | -23.26 | Н        |  |  |  |  |
| 2509.62               | -40.05  | 10.70      | 8.40       | -37.75      | -13.00    | -24.75 | Н        |  |  |  |  |
| 3346.30               | -32.10  | 12.20      | 11.80      | -31.70      | -13.00    | -18.70 | Н        |  |  |  |  |
| 1673.27               | -43.60  | 9.40       | 4.75       | -38.95      | -13.00    | -25.95 | V        |  |  |  |  |
| 2509.52               | -44.64  | 10.60      | 8.39       | -42.43      | -13.00    | -29.43 | V        |  |  |  |  |
| 3346.19               | -43.01  | 12.20      | 11.82      | -42.63      | -13.00    | -29.63 | V        |  |  |  |  |
|                       | The     | Worst Test | Results Ch | annel 251/8 | 848.8 MHz |        |          |  |  |  |  |
| Frequency(MHz)        | S G.Lev | Apt(dDi)   | 1.000      | PMea        | Limit     | Margin | Delority |  |  |  |  |
| Frequency(MHZ)        | (dBm)   | Ant(dBi)   | Loss       | (dBm)       | (dBm)     | (dBm)  | Polarity |  |  |  |  |
| 1697.33               | -40.58  | 9.60       | 4.77       | -35.75      | -13.00    | -22.75 | Н        |  |  |  |  |
| 2546.41               | -40.08  | 10.80      | 8.50       | -37.78      | -13.00    | -24.78 | Н        |  |  |  |  |
| 3395.31               | -32.20  | 12.50      | 11.90      | -31.60      | -13.00    | -18.60 | Н        |  |  |  |  |
| 1697.33               | -43.35  | 9.60       | 4.77       | -38.52      | -13.00    | -25.52 | V        |  |  |  |  |
| 2546.17               | -44.24  | 10.80      | 8.50       | -41.94      | -13.00    | -28.94 | V        |  |  |  |  |
| 3394.95               | -43.13  | 12.50      | 11.90      | -42.53      | -13.00    | -29.53 | V        |  |  |  |  |

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.



Report No.: STS1612214F01

#### GPRS 850: (30-9000)MHz

| GPRS 850: (30-9000)MHz |         |            |            |             |           |        |          |  |  |  |  |
|------------------------|---------|------------|------------|-------------|-----------|--------|----------|--|--|--|--|
|                        | The     | Worst Test | Results Ch | annel 128/8 | 24.2 MHz  |        |          |  |  |  |  |
|                        | S G.Lev | Apt(dDi)   |            | PMea        | Limit     | Margin | Delarity |  |  |  |  |
| Frequency(MHz)         | (dBm)   | Ant(dBi)   | Loss       | (dBm)       | (dBm)     | (dBm)  | Polarity |  |  |  |  |
| 1648.41                | -41.24  | 9.40       | 4.75       | -36.59      | -13.00    | -23.59 | Н        |  |  |  |  |
| 2472.33                | -40.48  | 10.60      | 8.39       | -38.27      | -13.00    | -25.27 | Н        |  |  |  |  |
| 3296.82                | -31.57  | 12.00      | 11.79      | -31.36      | -13.00    | -18.36 | Н        |  |  |  |  |
| 1648.27                | -43.40  | 9.40       | 4.75       | -38.75      | -13.00    | -25.75 | V        |  |  |  |  |
| 2472.66                | -44.62  | 10.60      | 8.39       | -42.41      | -13.00    | -29.41 | V        |  |  |  |  |
| 3296.51                | -42.53  | 12.00      | 11.79      | -42.32      | -13.00    | -29.32 | V        |  |  |  |  |
|                        | The     | Worst Test | Results Ch | annel 190/8 | 36.6 MHz  |        |          |  |  |  |  |
|                        | S G.Lev |            |            | PMea        | Limit     | Margin | Delerity |  |  |  |  |
| Frequency(MHz)         | (dBm)   | Ant(dBi)   | Loss       | (dBm)       | (dBm)     | (dBm)  | Polarity |  |  |  |  |
| 1673.16                | -41.12  | 9.50       | 4.76       | -36.38      | -13.00    | -23.38 | Н        |  |  |  |  |
| 2509.80                | -40.64  | 10.70      | 8.40       | -38.34      | -13.00    | -25.34 | Н        |  |  |  |  |
| 3346.06                | -31.80  | 12.20      | 11.80      | -31.40      | -13.00    | -18.40 | Н        |  |  |  |  |
| 1673.18                | -43.16  | 9.40       | 4.75       | -38.51      | -13.00    | -25.51 | V        |  |  |  |  |
| 2509.74                | -44.45  | 10.60      | 8.39       | -42.24      | -13.00    | -29.24 | V        |  |  |  |  |
| 3346.10                | -43.70  | 12.20      | 11.82      | -43.32      | -13.00    | -30.32 | V        |  |  |  |  |
|                        | The     | Worst Test | Results Ch | annel 251/8 | 848.8 MHz |        |          |  |  |  |  |
|                        | S G.Lev | Apt(dDi)   | 1.000      | PMea        | Limit     | Margin | Delarity |  |  |  |  |
| Frequency(MHz)         | (dBm)   | Ant(dBi)   | Loss       | (dBm)       | (dBm)     | (dBm)  | Polarity |  |  |  |  |
| 1697.37                | -40.91  | 9.60       | 4.77       | -36.08      | -13.00    | -23.08 | Н        |  |  |  |  |
| 2546.48                | -40.30  | 10.80      | 8.50       | -38.00      | -13.00    | -25.00 | Н        |  |  |  |  |
| 3394.92                | -31.64  | 12.50      | 11.90      | -31.04      | -13.00    | -18.04 | Н        |  |  |  |  |
| 1697.34                | -43.96  | 9.60       | 4.77       | -39.13      | -13.00    | -26.13 | V        |  |  |  |  |
| 2546.38                | -44.17  | 10.80      | 8.50       | -41.87      | -13.00    | -28.87 | V        |  |  |  |  |
| 3395.31                | -43.71  | 12.50      | 11.90      | -43.11      | -13.00    | -30.11 | V        |  |  |  |  |

**Note:** (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.



Report No.: STS1612214F01

#### PCS 1900: (30-20000)MHz

|                |         | DCS          | 1900: (30-2  | 20000)MHz   |                        |        |          |
|----------------|---------|--------------|--------------|-------------|------------------------|--------|----------|
|                | The V   | /orst Test R | esults for C | hannel 512/ | /1850.2MHz             |        |          |
|                | S G.Lev | Ant(dDi)     |              | PMea        | Limit                  | Margin | Delarity |
| Frequency(MHz) | (dBm)   | Ant(dBi)     | Loss         | (dBm)       | (dBm)                  | (dBm)  | Polarity |
| 3700.07        | -34.90  | 12.60        | 12.93        | -35.23      | -13.00                 | -22.23 | Н        |
| 5550.25        | -34.02  | 13.10        | 17.11        | -38.03      | -13.00                 | -25.03 | Н        |
| 7400.81        | -32.60  | 11.50        | 22.20        | -43.30      | -13.00                 | -30.30 | Н        |
| 3700.51        | -35.89  | 12.60        | 12.93        | -36.22      | -13.00                 | -23.22 | V        |
| 5550.21        | -34.13  | 13.10        | 17.11        | -38.14      | -13.00                 | -25.14 | V        |
| 7400.56        | -32.86  | 11.50        | 22.20        | -43.56      | -13.00                 | -30.56 | V        |
|                | The V   | /orst Test R | esults for C | hannel 661/ | <sup>/</sup> 1880.0MHz |        |          |
|                | S G.Lev | Anot(dDi)    |              | PMea        | Limit                  | Margin | Delerity |
| Frequency(MHz) | (dBm)   | Ant(dBi)     | Loss         | (dBm)       | (dBm)                  | (dBm)  | Polarity |
| 3759.82        | -34.18  | 12.60        | 12.93        | -34.51      | -13.00                 | -21.51 | Н        |
| 5639.81        | -34.59  | 13.10        | 17.11        | -38.60      | -13.00                 | -25.60 | Н        |
| 7520.14        | -32.33  | 11.50        | 22.20        | -43.03      | -13.00                 | -30.03 | Н        |
| 3760.02        | -35.20  | 12.60        | 12.93        | -35.53      | -13.00                 | -22.53 | V        |
| 5640.04        | -34.31  | 13.10        | 17.11        | -38.32      | -13.00                 | -25.32 | V        |
| 7519.91        | -32.30  | 11.50        | 22.20        | -43.00      | -13.00                 | -30.00 | V        |
|                | The V   | Vorst Test R | esults for C | hannel 810/ | /1909.8MHz             | -      |          |
|                | S G.Lev | Anot(dDi)    |              | PMea        | Limit                  | Margin | Delerity |
| Frequency(MHz) | (dBm)   | Ant(dBi)     | Loss         | (dBm)       | (dBm)                  | (dBm)  | Polarity |
| 3819.55        | -33.68  | 12.60        | 12.93        | -34.01      | -13.00                 | -21.01 | Н        |
| 5729.42        | -34.26  | 13.10        | 17.11        | -38.27      | -13.00                 | -25.27 | Н        |
| 7639.16        | -32.78  | 11.50        | 22.20        | -43.48      | -13.00                 | -30.48 | Н        |
| 3819.43        | -35.89  | 12.60        | 12.93        | -36.22      | -13.00                 | -23.22 | V        |
| 5729.24        | -34.44  | 13.10        | 17.11        | -38.45      | -13.00                 | -25.45 | V        |
| 7639.00        | -32.15  | 11.50        | 22.20        | -42.85      | -13.00                 | -29.85 | V        |

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.



Report No.: STS1612214F01

#### GPRS 1900: (30-20000)MHz

| GPRS1900: (30-20000)MHz |         |              |              |             |            |        |          |  |  |
|-------------------------|---------|--------------|--------------|-------------|------------|--------|----------|--|--|
|                         | The V   | /orst Test R | esults for C | hannel 512  | /1850.2MHz |        |          |  |  |
|                         | S G.Lev | A mt(dDi)    | Loss         | PMea        | Limit      | Margin | Delerity |  |  |
| Frequency(MHz)          | (dBm)   | Ant(dBi)     | LUSS         | (dBm)       | (dBm)      | (dBm)  | Polarity |  |  |
| 3700.26                 | -34.43  | 12.60        | 12.93        | -34.76      | -13.00     | -21.76 | Н        |  |  |
| 5550.21                 | -35.40  | 13.10        | 17.11        | -39.41      | -13.00     | -26.41 | Н        |  |  |
| 7400.69                 | -33.24  | 11.50        | 22.20        | -43.94      | -13.00     | -30.94 | Н        |  |  |
| 3700.51                 | -35.76  | 12.60        | 12.93        | -36.09      | -13.00     | -23.09 | V        |  |  |
| 5550.38                 | -34.66  | 13.10        | 17.11        | -38.67      | -13.00     | -25.67 | V        |  |  |
| 7400.63                 | -32.38  | 11.50        | 22.20        | -43.08      | -13.00     | -30.08 | V        |  |  |
|                         | The V   | /orst Test R | esults for C | hannel 661/ | /1880.0MHz |        |          |  |  |
|                         | S G.Lev | Apt(dDi)     | 1.000        | PMea        | Limit      | Margin | Delority |  |  |
| Frequency(MHz)          | (dBm)   | Ant(dBi)     | Loss         | (dBm)       | (dBm)      | (dBm)  | Polarity |  |  |
| 3759.96                 | -34.87  | 12.60        | 12.93        | -35.20      | -13.00     | -22.20 | Н        |  |  |
| 5639.85                 | -33.99  | 13.10        | 17.11        | -38.00      | -13.00     | -25.00 | Н        |  |  |
| 7520.03                 | -32.96  | 11.50        | 22.20        | -43.66      | -13.00     | -30.66 | Н        |  |  |
| 3759.95                 | -35.77  | 12.60        | 12.93        | -36.10      | -13.00     | -23.10 | V        |  |  |
| 5640.28                 | -34.99  | 13.10        | 17.11        | -39.00      | -13.00     | -26.00 | V        |  |  |
| 7519.87                 | -32.37  | 11.50        | 22.20        | -43.07      | -13.00     | -30.07 | V        |  |  |
|                         | The V   | orst Test R  | esults for C | hannel 810/ | /1909.8MHz |        |          |  |  |
| Frequency(MHz)          | S G.Lev | Apt(dDi)     | 1.000        | PMea        | Limit      | Margin | Delarity |  |  |
| Frequency(MHZ)          | (dBm)   | Ant(dBi)     | Loss         | (dBm)       | (dBm)      | (dBm)  | Polarity |  |  |
| 3819.61                 | -34.05  | 12.60        | 12.93        | -34.38      | -13.00     | -21.38 | Н        |  |  |
| 5729.08                 | -34.32  | 13.10        | 17.11        | -38.33      | -13.00     | -25.33 | Н        |  |  |
| 7639.24                 | -33.30  | 11.50        | 22.20        | -44.00      | -13.00     | -31.00 | Н        |  |  |
| 3819.47                 | -35.58  | 12.60        | 12.93        | -35.91      | -13.00     | -22.91 | V        |  |  |
| 5729.35                 | -35.03  | 13.10        | 17.11        | -39.04      | -13.00     | -26.04 | V        |  |  |
| 7639.26                 | -33.03  | 11.50        | 22.20        | -43.73      | -13.00     | -30.73 | V        |  |  |

**Note:** (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.



## APPENDIX BPHOTOS OF TEST SETUP



Shenzhen STS Test Services Co., Ltd.