

RADIO TEST REPORT

Report No: STS1608029F01

Issued for

Interglobe Connection Corp

7500 NW 25th Street 112 Miami, Florida 33122 USA

Product Name:	MOBILE PHONE
Brand Name:	SOLE
Model Name:	SOLE F250
Series Model:	N/A
FCC ID:	2AC7ISOLE-F250
Test Standard:	FCC Part 22H and 24E

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample. VAL

Report No.: STS1608029F01

TEST RESULT CERTIFICATION

Applicant's name:	Interglobe Connection Corp
Address	7500 NW 25 th Street 112 Miami, Florida 33122 USA
Manufacture's Name	EZA Electronic limited
Address	RM1902(A) 19/F 38 PLAZA 38 SHAN TUNG ST MONGKOK KLN HONG KONG
Product name:	MOBILE PHONE
Brand name:	SOLE
Model and/or type reference :	SOLE F250
Standards:	FCC Part 22H and 24E
Test procedure	. ANSI/TIA 603-D (2010)

This device described above has been tested by STS and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date of performance of tests 02 Aug. 2016 ~15 Aug. 2016

Date of Issue 16 Aug. 2016

Test Result Pass

Testing Engineer :	Junter	
	(Tony Liu)	ESTING · CONSUL
Technical Manager :	Meati	
	(Vita Li)	APPROVAL 0
Authorized Signatory :	Troney Yoney	
	(Bovey Yang)	

	3 of 19 F	Report No.: STS1608029F01
TABLE OF C	ONTENTS	Page
1 INTRODUCTION		6
1.1 TEST FACTORY		6
1.2 MEASUREMENT UNCERTAIN	TY	6
2 PRODUCT INFORMATION		7
3 TEST CONFIGURATION OF EQUIP	MENT UNDER TEST	8
4 MEASUREMENT INSTRUMENTS		9
5 TEST ITEM		10
5.1 TRANSMITTER RADIATED PC	WER (EIRP/ERP)	10
5.2 FIELD STRENGTH OF SPURI	OUS RADIATION MEASUREME	ENT 11
APPENDIX ATESTRESULT		13
A1 TRANSMITTER RADIATED PO	WER (EIRP/ERP)	13
A2 FIELD STRENGTH OF SPURIO	OUS RADIATION MEASUREME	NT 14
APPENDIX BPHOTOS OF TEST SET	UP	19

Report No.: STS1608029F01

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	16 Aug. 2016	STS1608029F01	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-D:

2010,KDB 971168 D01 v02r02 and KDB 648474 D03 v01r04

FCC Rules	Test Description	Test Limit	Test Result	Reference
2.1049	Conducted OutputPower	Reporting Only	N/A	
2.0146 24.232	Peak-to-AverageRatio	< 13 dB	N/A	
2.1046 22.913 24.232	Effective Radiated Pow- er/Equivalent Isotropic Radiated Power	< 7 Watts max. ERP(Part 22) < 2 Watts max. EIRP(Part 24)	PASS	
2.1049 22.917 24.238	Occupied Bandwidth	Reporting Only	N/A	
2.1055 22.355 24.235	Frequency Stability	< 2.5 ppm (Part 22) Emission must remain in band (Part 24)	N/A	
2.1051 22.917 24.238	Spurious Emission at Antenna Terminals	< 43+10log10(P[Watts])	N/A	
2.1053 22.917 24.238	Field Strength of Spurious Radiation	< 43+10log10(P[Watts])	PASS	
2.1051 22.917 24.238	Band Edge	< 43+10log10(P[Watts])	N/A	

Report No.: STS1608029F01

1 INTRODUCTION

1.1 TEST FACTORY Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China CNAS Registration No.: L7649; FCC Registration No.: 842334; IC Registration No.: 12108A-1

1.2 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

No.	Item	Uncertainty
1	RF power, conducted	±0.70dB
2	Spurious emissions,conducted	±1.19dB
5	All emissions,radiated(<1G) 30MHz-200MHz	±2.83dB
6	All emissions,radiated(<1G) 200MHz-1000MHz	±2.94dB
7	All emissions,radiated(>1G)	±3.03dB
8	Temperature	±0.5°C
9	Humidity	±2%

Report No.: STS1608029F01

2 PRODUCT INFORMATION

Product Designation:	MOBILE PHONE			
Hardware version number	N/A			
Software version number	N/A			
FCC ID:	2AC7ISOLE-F250			
	GSM/GPRS:			
Tx Frequency:	850: 824.2 MHz ~ 848.8 MHz			
	1900: 1850.2 MHz ~ 1909.8MHz			
	GSM/GPRS:			
Rx Frequency	850: 869.2 MHz ~ 893.8 MHz			
	1900: 1930.2 MHz ~ 1989.8 MHz			
SIM Card	SIM 1 and SIM 2 is a chipset unit and tested as single chipset,SIM 1 is used to tested			
Antenna:	PIFA Antenna			
Antenna gain:	GSM 850:1.6dBi ,PCS 1900:1.4dBi			
Power Supply:	DC 3.7V by battery			
Battery parameter:	Capacity:800mAh, Rated Voltage: 3.7V			
GPRS/EDGE Class	Multi-Class12			
Extreme Vol. Limits:	DC3.6 V to 4.2 V (Nominal DC3.7V)			
Extreme Temp. Tolerance	-20℃ to +45℃			
** Note: The High Voltage	4.2 V and Low Voltage 3.6 V was declared by manufacturer, The EUT			
couldn't be operate normall	y with higher or lower voltage.			

3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

- 1. 30 MHz to 10th harmonic for GSM850
- 2. 30 MHz to 10th harmonic for GSM1900
- All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

	TEST MODES				
BAND	RADIATED TCS CONDUCTED TO				
GSM 850	GSM LINK GPRS CLASS 12 LINK	GSM LINK GPRS CLASS 12 LINK			
GSM 1900	GSM LINK GPRS CLASS 12 LINK	GSM LINK GPRS CLASS 12 LINK			

Report No.: STS1608029F01

4 MEASUREMENT INSTRUMENTS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Spectrum Analyzer	Agilent	E4407B	MY50140340	2015.10.25	2016.10.24
Signal Analyzer	Agilent	N9020A	MY49100060	2015.11.18	2016.11.17
Test Receiver	R&S	ESCI	101427	2015.10.25	2016.10.24
Communication Tester	Agilent	8960	MY48360751	2015.11.20	2016.11.19
Communication Tester	R&S	CMU200	112012	2015.10.25	2016.10.24
Test Receiver	R&S	ESCI	102086	2015.10.25	2016.10.24
Bilog Antenna	TESEQ	CBL6111D	34678	2015.11.25	2016.11.24
Bilog Antenna (Calibration antenna)	TESEQ	CBL6111D	34678	2015.11.25	2016.11.24
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1343	2016.03.06	2017.03.05
Horn Antenna (Calibration antenna)	Schwarzbeck	BBHA 9170D	9120D-1344	2016.03.06	2017.03.05
MXA SIGNAL Analyzer	Agilent	N9020A	MY49100060	2015.10.25	2016.10.24
Double Ridge Horn An- tenna	COM-POWER CORPORATION	AH-840	AHA-840	2016.03.06	2017.03.05
Low frequency cable	N/A	R01	N/A	N/A	N/A
High frequency cable	SCHWARZBECK	AK9515H	SN-96286/96287	N/A	N/A
Vector signal generator	Agilent	E8257D-521	MY45141029	2015.10.16	2016.10.14
Power amplifier	DESAY	ZHL-42W	9638	2015.10.24	2016.10.23

Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

5.1 TRANSMITTER RADIATED POWER (EIRP/ERP)

TEST OVERVIEW

Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

TEST PROCEDURE

1. The testing follows FCC KDB 971168 D01

Section 5.2.2 (for GSM/GPRS/EDGE) and ANSI / TIA-603-D-2010 Section 2.2.17.

2. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

3. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

4. The frequency range up to tenth harmonic of the fundamental frequency was investigated.

5. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution.

6. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-D. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain - Analyzer reading. Then the EUT's EIRP/ERP was calculated with the correction factor, ERP/EIRP = P.SG + GT – LC

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMe as, typically dBW or dBm);

PMeas(PK) = measured transmitter output power or PSD, in dBm or dBW;

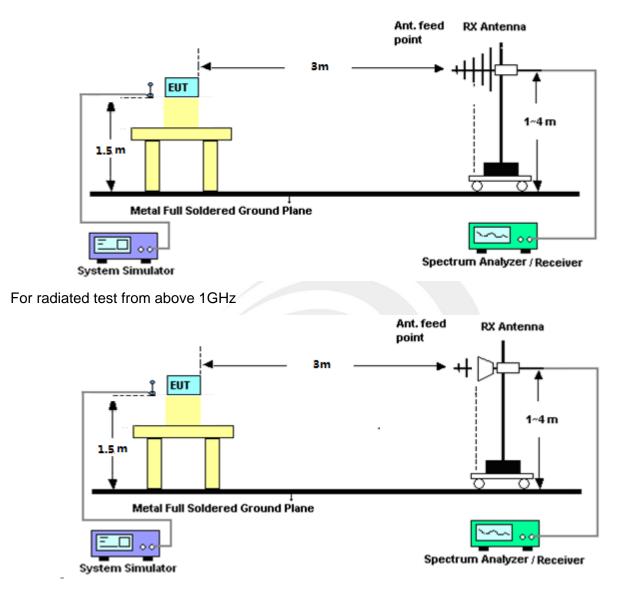
GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

5.2 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT Test overview

Radiated spurious emissions measurements are performed using the substitution method described inANSI/TIA-603-D-2010 with the EUT transmitting into an integral antenna. Measurements on signalsoperating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized horn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.


Test procedure

1. The testing follows FCC KDB 971168 D01 Section 5.8 and ANSI/TIA-603-D-2010 – Section 2.2.12

- 2. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5.No. of sweep points > 2 x span/RBW
- 6. Detector = Peak
- 7. Trace mode = max hold
- 8. The trace was allowed to stabilize

For radiated test from 30MHz to 1GHz

12 of 19

Report No.: STS1608029F01

APPENDIX ATESTRESULT

A1 TRANSMITTER RADIATED POWER (EIRP/ERP)

Radiated Power (ERP) for GSM 850 MHZ							
				Result			Conclusion
Mode	Frequency	S G.Level Ca	Cable	abla	PMeas	Polarization	
mode	requerey	(dBm)	loss	Gain(dBi)	E.R.P(dBm)	Of Max.	Consideration
		(abiii)	1000			ERP	
	824.2	17.64	0.44	6.5	23.70	Horizontal	Pass
	824.2	17.31	0.44	6.5	23.37	Vertical	Pass
GSM850	836.6	17.28	0.45	6.5	23.33	Horizontal	Pass
0310000	836.6	17.11	0.45	6.5	23.16	Vertical	Pass
	848.8	17.26	0.46	6.5	23.30	Horizontal	Pass
	848.8	17.42	0.46	6.5	23.46	Vertical	Pass
	824.2	17.31	0.44	6.5	23.37	Horizontal	Pass
	824.2	17.25	0.44	6.5	23.31	Vertical	Pass
GPRS850	836.6	17.19	0.45	6.5	23.24	Horizontal	Pass
GPR5850	836.6	17.08	0.45	6.5	23.13	Vertical	Pass
	848.8	17.45	0.46	6.5	23.49	Horizontal	Pass
	848.8	17.41	0.46	6.5	23.45	Vertical	Pass

Report No.: STS1608029F01

Radiated Power (EIRP) for PCS 1900 MHZ								
			Result					
Mode	Frequency	S	Cable	Gain	PMeas	Polarization	Conclusion	
mode	i ioquonoy	G.Level	loss	(dBi)	E.I.R.P.(dBm)	Of Max.	Consideration	
		(dBm)				ERP		
	1850.2	7.63	2.41	10.06	15.28	Horizontal	Pass	
	1850.2	12.51	2.41	10.06	20.16	Vertical	Pass	
PCS1900	1880	7.79	2.42	10.06	15.43	Horizontal	Pass	
FC31900	1880	12.62	2.42	10.06	20.26	Vertical	Pass	
	1909.8	7.87	2.43	10.06	15.50	Horizontal	Pass	
	1909.8	12.42	2.43	10.06	20.05	Vertical	Pass	
	1850.2	7.64	2.41	10.06	15.29	Horizontal	Pass	
	1850.2	12.46	2.41	10.06	20.11	Vertical	Pass	
GPRS1900	1880	7.62	2.42	10.06	15.26	Horizontal	Pass	
GPR51900	1880	12.54	2.42	10.06	20.18	Vertical	Pass	
	1909.8	7.34	2.43	10.06	14.97	Horizontal	Pass	
	1909.8	12.58	2.43	10.06	20.21	Vertical	Pass	

A2 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT GSM 850: (30-9000)MHz

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1608029F01

Frequency(MHz)	S G.Lev	A pt(dDi)		PMea	Limit	Margin	Polarity	
	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)		
-1648.10	-40.74	9.40	4.75	-36.09	-13.00	-23.09	Н	
2472.23	-39.78	10.60	8.39	-37.57	-13.00	-24.57	Н	
3296.44	-31.38	12.00	11.79	-31.17	-13.00	-18.17	Н	
1648.34	-44.59	9.40	4.75	-39.94	-13.00	-26.94	V	
2472.66	-44.09	10.60	8.39	-41.88	-13.00	-28.88	V	
3296.90	-43.34	12.00	11.79	-43.13	-13.00	-30.13	V	
The Worst Test Results Channel 190/836.6 MHz								
	S G.Lev		Loss	PMea	Limit	Margin	Polarity	
Frequency(MHz)	(dBm)	Ant(dBi)		(dBm)	(dBm)	(dBm)		
1673.12	-40.15	9.50	4.76	-35.41	-13.00	-22.41	Н	
2509.66	-39.35	10.70	8.40	-37.05	-13.00	-24.05	Н	
3346.18	-30.86	12.20	11.80	-30.46	-13.00	-17.46	Н	
1672.83	-43.29	9.40	4.75	-38.64	-13.00	-25.64	V	
2509.81	-44.38	10.60	8.39	-42.17	-13.00	-29.17	V	
3346.45	-43.75	12.20	11.82	-43.37	-13.00	-30.37	V	
The Worst Test Results Channel 251/848.8 MHz								
	S G.Lev		Loss	PMea	Limit	Margin	Polarity	
Frequency(MHz)	(dBm)	Ant(dBi)	LUSS	(dBm)	(dBm)	(dBm)	Polarity	
1697.66	-40.04	9.60	4.77	-35.21	-13.00	-22.21	Н	
2546.44	-39.94	10.80	8.50	-37.64	-13.00	-24.64	Н	
3395.30	-32.19	12.50	11.90	-31.59	-13.00	-18.59	Н	
1697.46	-43.84	9.60	4.77	-39.01	-13.00	-26.01	V	
2546.26	-44.12	10.80	8.50	-41.82	-13.00	-28.82	V	
3394.96	-42.97	12.50	11.90	-42.37	-13.00	-29.37	V	
000-1.00	72.01	12.00	11.00	72.01	10.00	20.01	v	

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

GPRS 850: (30-9000)MHz

The Worst Test Results Channel 128/824.2 MHz

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1608029F01

Frequency(MHz)	S G.Lev	G.Lev Ant(dBi)	Loss	PMea	Limit	Margin	Polarity	
	(dBm)	Ani(ubi)		(dBm)	(dBm)	(dBm)		
1648.47	-40.45	9.40	4.75	-35.80	-13.00	-22.80	Н	
2472.31	-39.30	10.60	8.39	-37.09	-13.00	-24.09	Н	
3296.63	-32.07	12.00	11.79	-31.86	-13.00	-18.86	н	
1648.06	-43.94	9.40	4.75	-39.29	-13.00	-26.29	V	
2472.56	-44.32	10.60	8.39	-42.11	-13.00	-29.11	V	
3296.63	-43.94	12.00	11.79	-43.73	-13.00	-30.73	V	
The Worst Test Results Channel 190/836.6 MHz								
	S G.Lev		Loss	PMea	Limit	Margin	Polarity	
Frequency(MHz)	(dBm)	Ant(dBi)		(dBm)	(dBm)	(dBm)		
1673.28	-40.41	9.50	4.76	-35.67	-13.00	-22.67	Н	
2509.46	-40.50	10.70	8.40	-38.20	-13.00	-25.20	Н	
3346.11	-31.45	12.20	11.80	-31.05	-13.00	-18.05	Н	
1673.13	-44.25	9.40	4.75	-39.60	-13.00	-26.60	V	
2509.75	-44.83	10.60	8.39	-42.62	-13.00	-29.62	V	
3346.22	-42.58	12.20	11.82	-42.20	-13.00	-29.20	V	
The Worst Test Results Channel 251/848.8 MHz								
	S G.Lev		1	PMea	Limit	Margin	Delerit	
Frequency(MHz)	(dBm)	Ant(dBi)	LOSS	Loss (dBm) (dBm) (d	(dBm)	Polarity		
1697.25	-41.27	9.60	4.77	-36.44	-13.00	-23.44	Н	
2546.36	-40.48	10.80	8.50	-38.18	-13.00	-25.18	Н	
3395.28	-31.63	12.50	11.90	-31.03	-13.00	-18.03	Н	
1697.42	-44.64	9.60	4.77	-39.81	-13.00	-26.81	V	
2546.40	-45.05	10.80	8.50	-42.75	-13.00	-29.75	V	
3395.00	-43.07	12.50	11.90	-42.47	-13.00	-29.47	V	

Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

Report No.: STS1608029F01

PCS 1900: (30-20000)MHz

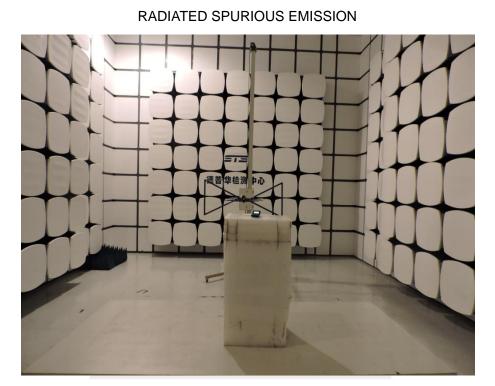
The Worst Test Results for Channel 512/1850.2MHz							
Frequency(MHz)	S G.Lev	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
	(dBm)			(dBm)	(dBm)	(dBm)	
3700.26	-34.37	12.60	12.93	-34.70	-13.00	-21.70	Н
5550.53	-35.42	13.10	17.11	-39.43	-13.00	-26.43	Н
7400.75	-32.24	11.50	22.20	-42.94	-13.00	-29.94	Н
3700.51	-35.44	12.60	12.93	-35.77	-13.00	-22.77	V
5550.25	-34.27	13.10	17.11	-38.28	-13.00	-25.28	V
7400.86	-32.09	11.50	22.20	-42.79	-13.00	-29.79	V
	The Wor	st Test Res	sults for C	hannel 661	/1880.0MH	Z	
	S G.Lev	Ant(dDi)		PMea	Limit	Margin	Polarity
Frequency(MHz)	(dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	
3760.17	-34.71	12.60	12.93	-35.04	-13.00	-22.04	Н
5640.05	-35.11	13.10	17.11	-39.12	-13.00	-26.12	Н
7519.88	-32.81	11.50	22.20	-43.51	-13.00	-30.51	Н
3760.10	-35.14	12.60	12.93	-35.47	-13.00	-22.47	V
5640.06	-34.73	13.10	17.11	-38.74	-13.00	-25.74	V
7519.84	-32.58	11.50	22.20	-43.28	-13.00	-30.28	V
	The Wor	st Test Res	sults for C	hannel 810)/1909.8MH	z	
Frequency(MHz)	S G.Lev	Apt(dDi)	1	PMea	Limit	Margin	Polority
Frequency(MHZ)	(dBm)	Ant(dBi)	LUSS	Loss (dBm) (dBm)	(dBm)	Polarity	
3819.44	-33.76	12.60	12.93	-34.09	-13.00	-21.09	Н
5729.11	-34.30	13.10	17.11	-38.31	-13.00	-25.31	Н
7638.96	-33.03	11.50	22.20	-43.73	-13.00	-30.73	Н
3819.66	-35.42	12.60	12.93	-35.75	-13.00	-22.75	V
5729.08	-34.47	13.10	17.11	-38.48	-13.00	-25.48	V
7639.38	-32.30	11.50	22.20	-43.00	-13.00	-30.00	V

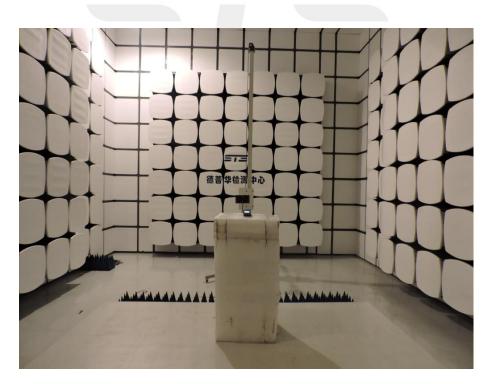
Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

Report No.: STS1608029F01

GPRS 1900: (30-20000)MHz


The Worst Test Results for Channel 512/1850.2MHz							
Frequency(MHz)	S	Ant(dBi)	Loss	PMea	Limit	Margin	Polarity
	G.Lev (dBm)			(dBm)	(dBm)	(dBm)	
3700.33	-33.60	12.60	12.93	-33.93	-13.00	-20.93	Н
5550.28	-35.32	13.10	17.11	-39.33	-13.00	-26.33	Н
7400.71	-33.41	11.50	22.20	-44.11	-13.00	-31.11	Н
3700.51	-34.86	12.60	12.93	-35.19	-13.00	-22.19	V
5550.63	-34.84	13.10	17.11	-38.85	-13.00	-25.85	V
7400.98	-32.88	11.50	22.20	-43.58	-13.00	-30.58	V
	The Wors	t Test Res	ults for C	hannel 66	1/1880.0MI	Ηz	
	S			PMea	Limit	Margin	Polarity
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	
3760.10	-33.99	12.60	12.93	-34.32	-13.00	-21.32	Н
5640.00	-34.52	13.10	17.11	-38.53	-13.00	-25.53	Н
7519.83	-33.16	11.50	22.20	-43.86	-13.00	-30.86	Н
3760.22	-34.59	12.60	12.93	-34.92	-13.00	-21.92	V
5640.11	-34.13	13.10	17.11	-38.14	-13.00	-25.14	V
7519.98	-32.56	11.50	22.20	-43.26	-13.00	-30.26	V
	The Wors	t Test Res	ults for C	hannel 81	0/1909.8MH	Ηz	
	S			PMea	Limit	Margin	Polarity
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	
3819.42	-33.68	12.60	12.93	-34.01	-13.00	-21.01	Н
5729.32	-34.97	13.10	17.11	-38.98	-13.00	-25.98	Н
7639.17	-32.84	11.50	22.20	-43.54	-13.00	-30.54	Н
3819.77	-34.77	12.60	12.93	-35.10	-13.00	-22.10	V
5729.53	-33.75	13.10	17.11	-37.76	-13.00	-24.76	V
7639.38	-31.96	11.50	22.20	-42.66	-13.00	-29.66	V


Note: (1)Below 30MHz no Spurious found is the worst condition.

(2)Above 8GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has.

APPENDIX BPHOTOS OF TEST SETUP

