

SAR TEST REPORT

Test report No: EMC-FCC-A0022
Type of Equipment: REMOVU RUN
Model Name: P1
Applicant: ESSEL-T CO., LTD.
FCC ID: 2AC73-RMVP1
FCC Rule Part: CFR §2.1093
Test standards: IEEE 1528, 2003
ANSI/IEEE C95.1
KDB Publication
Max. SAR(10 g): 0.354 W/kg
Test result: Complied

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of EMC compliance Ltd. or testing done by EMC compliance Ltd. in connection with distribution or use of the product described in this report must be approved by EMC compliance Ltd. in writing.

Date of receipt: 2015.05.18

Date of testing: 2015.06.03

Issued date: 2015.07.06

Tested by:

Hwang Yong-ho

Approved by:

Choi Cheon-sig

Contents

1. Applicant information	3
2. Laboratory information	4
3. Identification of Sample.....	5
4. Test Result Summary	6
5. Report Overview	6
6. Test Lab Declaration or Comments.....	6
7. Applicant Declaration or Comments.....	6
8. Measurement Uncertainty	7
9. The SAR Measurement System	8
10. System Verification	12
10.1 Tissue Verification	12
10.2 Test System Verification	13
11. Operation Configurations	14
12. SAR Measurement Procedures	15
13. Test Equipment Information.....	17
14. RF Average Conducted Output Power	18
15. SAR Test Results	18
16. Test System Verification Results.....	19
17. Test Results.....	20
Annex A. Photographs.....	21
Annex B. Calibration certificate	27

1. Applicant information

Applicant: ESSEL-T CO., LTD.

Address: 1113, 550 DUNCHONDAERO, JUNGWON-GU, SEONGNAM-SI, GYEONGGI-DO, KOREA

Telephone: +82-2-864-8983

Fax: +82-2-864-8987

E-mail: jkpkong@gmail.com

Contact name: Kong Jeong-pyo

Manufacturer: ESSEL-T CO., LTD.

Address: 1113, 550 DUNCHONDAERO, JUNGWON-GU, SEONGNAM-SI, GYEONGGI-DO, KOREA

2. Laboratory information

Address

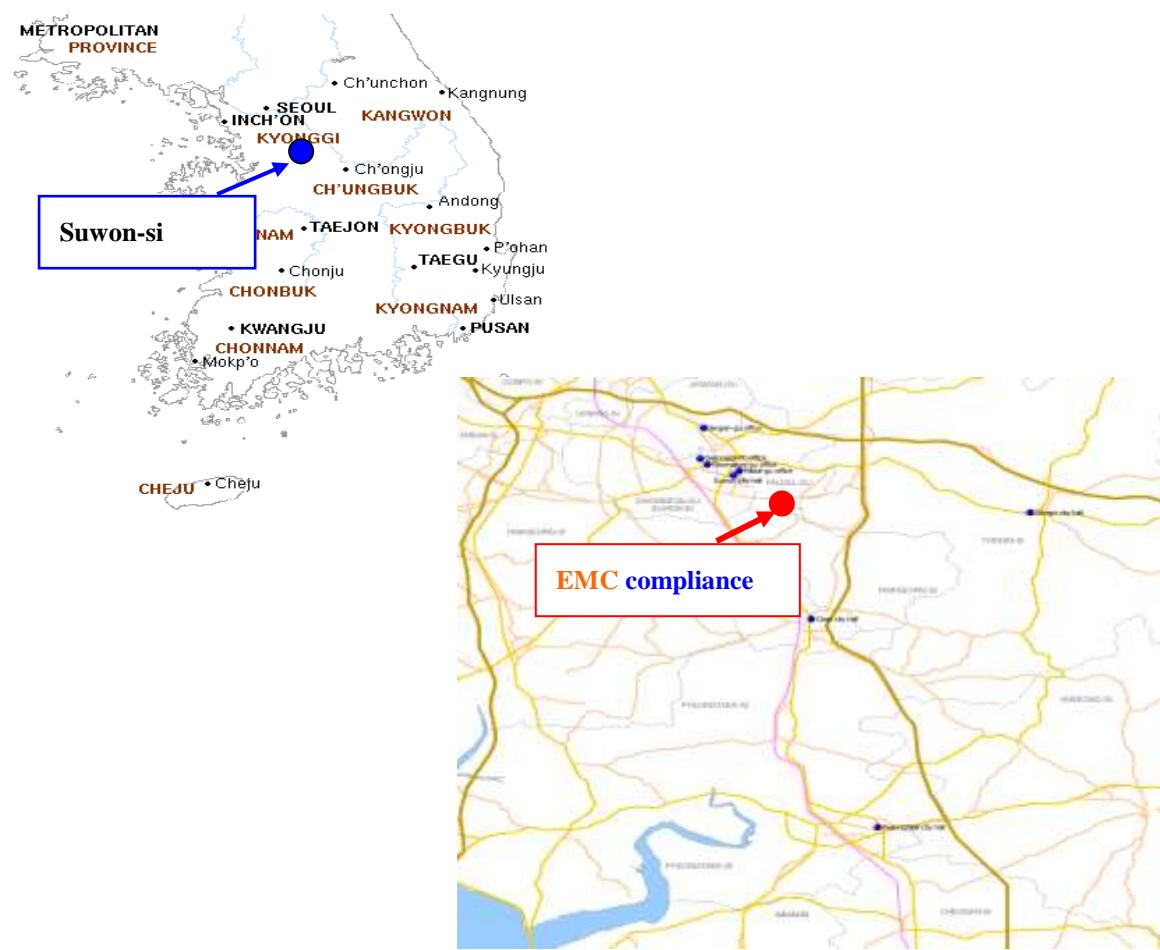
EMC compliance Ltd.

480-5, Sindong, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea

TEL: 82 31 336 9919 FAX: 82 505 299 8311

Certificate

KOLAS No.: 231


FCC Site Designation No.: KR0040

FCC Site Registration No.: 687132

VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849

IC Site Registration No.: 8035A-2

SITE MAP

3. Identification of Sample

EUT Type	REMOVU RUN
Brand Name	ESSEL-T CO., LTD.
Mode of Operation	IEEE 802.11b/g/n
Model Number	P1
Serial Number	N/A
Max. Power	16.44 dBm
Tx Freq.Range	2 412 MHz ~ 2 462 MHz
Rx Freq.Range	2 412 MHz ~ 2 462 MHz
Antenna Type	PIFA Type Internal Antenna
Normal Voltage	DC 5 V, 1 A
H/W Version	V 1.0
S/W Version	V 1.0

4. Test Result Summary

Frequency		Average Power (dBm)	Max. tune up power (dBm)	Scaling Factor	EUT Position	Measured 10 g SAR (W/kg)	Scaled 10 g SAR (W/kg)	10 g SAR Limit (W/kg)
MHz	Channel							
2.437	6	16.22	18	1.5066	Back	0.235	0.354	4.0

* Contain the results of the worst test SAR including battery.

5. Report Overview

This report details the results of testing carried out on the samples listed in section 3, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

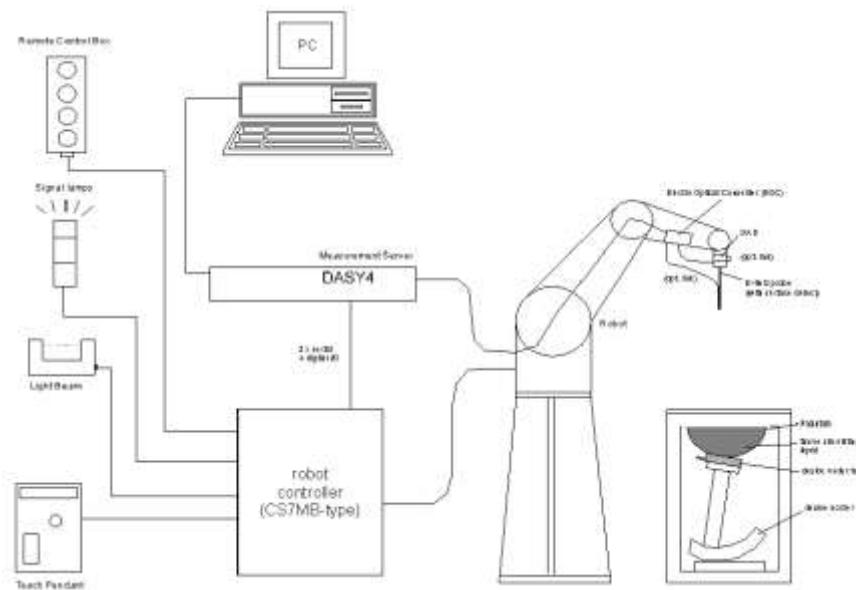
This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of EMC compliance Ltd Wireless lab or testing done by EMC compliance Ltd Wireless lab made in connection with the distribution or use of the tested product must be approved in writing by EMC compliance Ltd Wireless lab.

6. Test Lab Declaration or Comments

None

7. Applicant Declaration or Comments

None


8. Measurement Uncertainty

All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/ fail criteria.

Uncertainty of SAR equipments for measurement 300 MHz to 3GHz

<i>A</i>	<i>b</i>	<i>c</i>	<i>D</i>	$\epsilon = f(d, k)$	<i>g</i>	$i = c \times g / \epsilon$	<i>k</i>
Source of Uncertainty	Description IEEE P1528	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff
	(0.3 ~ 3 GHz)	$\pm \%$					
Measurement System							
Probe calibration(<i>k</i> =1)	E.2.1	6.30	N	1	1	6.30	∞
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	∞
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	∞
Linearity	E.2.4	0.60	R	1.73	1	0.35	∞
Boundary effect	E.2.3	1.00	R	1.73	1	0.58	∞
System detection limits	E.2.5	1.00	R	1.73	1	0.58	∞
Readout electronics	E.2.6	0.30	N	1	1	0.30	∞
Response time	E.2.7	0.80	R	1.73	1	0.46	∞
Integration time	E.2.8	2.60	R	1.73	1	1.50	∞
RF ambient conditions—noise	E.6.1	3.00	R	1.73	1	1.73	∞
RF ambient conditions—reflections	E.6.1	3.00	R	1.73	1	1.73	∞
Probe positioner mechanical tolerance	E.6.2	0.40	R	1.73	1	0.23	∞
Probe positioning with respect to phantom shell	E.6.3	2.90	R	1.73	1	1.67	∞
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	2.00	R	1.73	1	1.15	∞
Test Sample Related							
Test sample positioning	E.4.2	4.71	N	1	1	4.71	9
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	5
Output power variation—SAR drift measurement	E.6.2	5.00	R	1.73	1	2.89	∞
Phantom and Tissue Parameters							
Phantom uncertainty (shape and thickness tolerances)	E.3.1	7.50	R	1.73	1	4.33	∞
Liquid conductivity-measurement uncertainty	E.3.3	1.53	N	1	0.64	0.98	5
Liquid permittivity-measurement uncertainty	E.3.3	3.07	N	1	0.6	1.84	5
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1.73	0.64	1.85	∞
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	∞
Combined standard uncertainty				RSS		11.29	183
Expanded uncertainty				K=2		22.57	
(95% CONFIDENCE INTERVAL)							

9. The SAR Measurement System

<SAR System Configuration>

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

9.1 Isotropic E-field Probe

EX3DV4

Smallest Isotropic E-Field Probe for Dosimetric Measurements (Preliminary Specifications)

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

ES3DV3

Isotropic E-Field Probe for Dosimetric Measurements

	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in TSL (rotation around probe axis) ± 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

9.2 Phantom

Twin SAM

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet
Filling Volume	approx. 25 liters
Wooden Support	SPEAG standard phantom table
Accessories	Mounting Device and Adaptors

ELI

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure. ELI V6.0, released in August 2014, has the same shell geometry as ELI4 but offers increased longterm stability.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table
Accessories	Mounting Device and Adaptors

9.3 Device Holder for Transmitters

Mounting Devices and Adaptors

Mounting Device for Hand-Held Transmitters

MD4HHTV5 - Mounting Device for Hand-Held Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Material: Polyoxymethylene (POM)

Mounting Device for Laptops

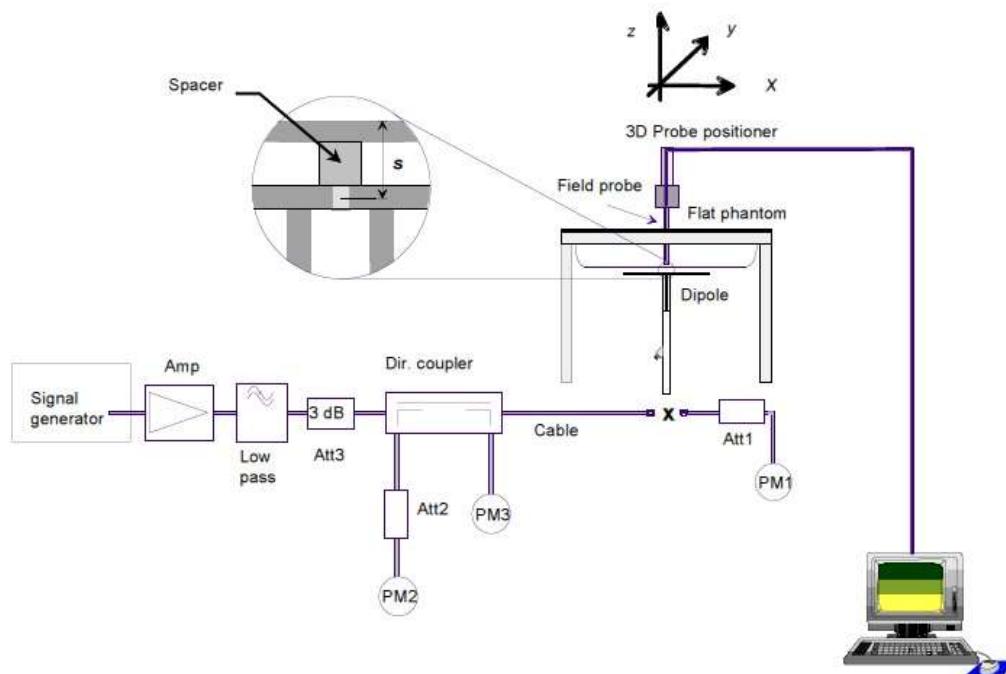
MD4LAPV5 - Mounting Device for Laptops and other Body-Worn Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device (Body-Worn) enables testing of transmitter devices according to IEC 62209-2 specifications. The device holder can be locked for positioning at flat phantom section.

Material: Polyoxymethylene (POM), PET-G, Foam

10. System Verification

10.1 Tissue Verification


The dielectric properties for this Tissue Simulant Liquids were measured by using the SPEAG Model DAK3.5 Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent E5071B Network Analyzer (300 kHz – 8 500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1. For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was $(22 \pm 2)^\circ\text{C}$.

Freq. (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Temp ($^\circ\text{C}$)
2 412	MSL2450	Recommended Limit	$52.75 \pm 5\%$ (50.1125 ~ 55.3875)	$1.91 \pm 5\%$ (1.8145 ~ 2.0055)	22 ± 2
		Measured, 2015-06-03	53.53	1.88	21.83
2 437	MSL2450	Recommended Limit	$52.72 \pm 5\%$ (50.0840 ~ 55.3560)	$1.94 \pm 5\%$ (1.8430 ~ 2.0370)	22 ± 2
		Measured, 2015-06-03	53.23	1.96	21.83
2 450	MSL2450	Recommended Limit	$52.70 \pm 5\%$ (50.0650 ~ 55.3350)	$1.95 \pm 5\%$ (1.8525 ~ 2.0475)	22 ± 2
		Measured, 2015-06-03	53.12	1.97	21.83
2 462	MSL2450	Recommended Limit	$52.69 \pm 5\%$ (50.0555 ~ 55.3245)	$1.98 \pm 5\%$ (1.8810 ~ 2.0790)	22 ± 2
		Measured, 2015-06-03	53.09	1.96	21.83

<Table 1.Measurement result of Tissue electric parameters>

10.2 Test System Verification

The microwave circuit arrangement for system verification is sketched below picture. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within $\pm 10\%$ from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table Table 2 (A power level of 250 mW was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range $(22 \pm 2)^\circ\text{C}$, the relative humidity was in the range $(50 \pm 20)\%$ and the liquid depth above the ear/grid reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Validation Kit	Dipole Ant. S/N	Frequency (MHz)	Tissue Type	Limit/Measurement (Normalized to 1 W)		
					1 g	10 g
D2450V2	895	2 450	MSL2450	Recommended Limit (Normalized)	$50.9 \pm 10\%$ (45.81 ~ 55.99)	$23.6 \pm 10\%$ (21.24 ~ 25.96)
				Measured, 2015-06-03	50.40	23.24

<Table 2. Test System Verification Result>

11. Operation Configurations

Measurements were performed at the lowest, middle and highest channels of the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

12. SAR Measurement Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
	≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures 5x5x7 points within a cube whose base faces are centered on the maxima found in a preceding area scanjob within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03.

		≤ 3 GHz	> 3 GHz	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$		$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm	
	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	
Minimum zoom scan volume	x, y, z	$\Delta z_{Zoom}(n > 1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
			$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm	
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.				
* When zoom scan is required and the <u>reported</u> SAR from the <i>area scan based 1-g SAR estimation</i> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.				

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent powerreference measurement within the same procedure, and with the same settings. The Power DriftMeasurement gives the field difference in dB from the reading conducted within the last PowerReference Measurement. This allows a user to monitor the power drift of the device under test within abatch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensionalgrid. In order to get a reasonable extrapolation, the extrapolated distance should not belarger than the step size in Z-direction.

* Z Scan Report on Liquid Measure the height Annex A.4 Liquid Depth photo to replace

13. Test Equipment Information

Test Platform	SPEAG DASY4 System			
Version	DASY4 : Version 4.7, Build 80 SEMCAD : Version 1.8, Build 186			
Location	EMC compliance Lab.			
Manufacture	SPEAG			
Hardware Reference				
Equipment	Model	Serial Number	Date of Calibration	Due date of next Calibration
Shield Room	Shield Room	None	N/A	N/A
DASY4 Robot	RX90BL Speag	F05/51E0A1/A01	N/A	N/A
DASY4 Controller	RX90BL Speag	F05/51E0A1/C/01	N/A	N/A
Phantom	SAM Twin Phantom	1363	N/A	N/A
Mounting Device	Mounting Device	None	N/A	N/A
DAE	DAE4	666	2015-04-28	2016-04-28
Probe	EX3DV4	3865	2014-08-25	2015-08-25
Dipole Validation Kits	D2450V2	895	2014-07-24	2016-07-24
Network Analyzer	E5071B	MY42403524	2014-07-15	2015-07-15
Dual Directional Coupler	772D	2839A00719	2014-08-29	2015-08-29
Signal Generator	E4438C	MY42080486	2015-01-19	2016-01-19
Power Amplifier	2055 BBS3Q7E9I	1005D/C0521	2015-05-22	2016-05-22
LP Filter	LA-30N	40058	2014-08-29	2015-08-29
Dual Power Meter	E4419B	GB43312301	2014-07-17	2015-07-17
Power Sensor	8481H	3318A19377	2014-08-30	2015-08-30
Power Sensor	8481H	3318A19379	2014-08-30	2015-08-30
Dielectric Assessment Kit	DAK-3.5	1078	2014-08-19	2015-08-19
Humidity/Baro/Temp. Data Recorder	MHB-382SD	14036	2015-05-22	2016-05-22

14. RF Average Conducted Output Power

14.1 Average Conducted Output Power

Mode	Frequency (MHz)	Channel	Average Conducted Power(dBm)							
			Data Rate(Mbps)							
			1	2	5.5	11	-	-	-	-
802.11b	2 412	1	16.29	16.28	16.44	16.41	-	-	-	-
	2 437	6	16.15	16.18	16.22	16.09	-	-	-	-
	2 462	11	16.39	16.40	16.43	16.15	-	-	-	-
Mode	Frequency (MHz)	Channel	Average Conducted Power(dBm)							
			Data Rate(Mbps)							
			6	9	12	18	24	36	48	54
802.11g	2 412	1	15.05	15.08	15.25	14.75	15.10	15.00	13.52	12.65
	2 437	6	15.65	15.73	15.65	15.11	15.08	14.11	12.85	11.85
	2 462	11	15.06	15.01	15.22	14.82	14.98	14.71	13.90	12.69
Mode	Frequency (MHz)	Channel	Average Conducted Power(dBm)							
			Data Rate							
			MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
802.11n (HT-20)	2 412	1	14.07	14.29	14.21	14.30	14.80	12.90	11.92	11.11
	2 437	6	14.24	14.54	13.81	13.77	12.79	11.50	11.13	11.21
	2 462	11	14.28	14.23	14.20	14.15	14.14	12.84	11.95	11.04

14.2 Max. tune up power

Mode	Target Power	Tolerance	Max. Allowed Power
IEEE 802.11b	16 dBm	± 2 dB	18 dBm
IEEE 802.11g	15 dBm	± 2 dB	17 dBm
IEEE 802.11n	14 dBm	± 2 dB	16 dBm

15. SAR Test Results

15.1 Limb SAR

Frequency		Average Power (dBm)	Max. tune up power (dBm)	Scaling Factor	EUT Position	Measured 10 g SAR (W/kg)	Scaled 10 g SAR (W/kg)	10 g SAR Limit (W/kg)
MHz	Channel							
2 412	1	16.44	18	1.4322	Back	0.216	0.309	4.0
2 437	6	16.22	18	1.5066	Back	0.235	0.354	
2 462	11	16.43	18	1.4355	Back	0.221	0.317	

<Note> SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498D01v05r02.

For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is ≤ 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is ≤ 1.2 W/kg.

16. Test System Verification Results

System check for 2450 MHz(2015-06-03)

Procedure Name: **d=10mm, Pin=250mW**

Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.97$ mho/m; $\epsilon_r = 53.1$; $\rho = 1000$ kg/m³

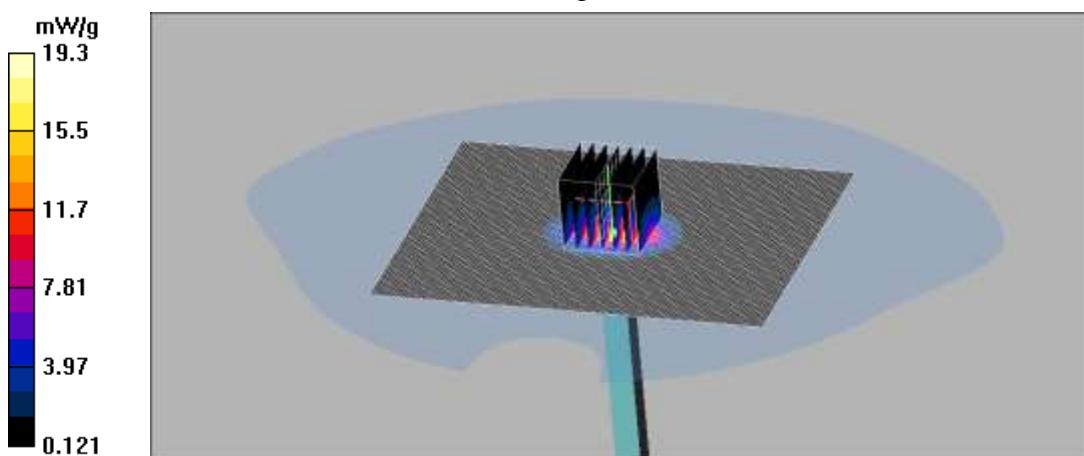
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3865; ConvF(7.56, 7.56, 7.56); Calibrated: 2014-08-25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn666; Calibrated: 2015-04-28
- Phantom: SAM B; Type: SAM; Serial: 1363
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (101x131x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 19.1 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.8 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.81 mW/g

Maximum value of SAR (measured) = 19.3 mW/g

17. Test Results

#1

Procedure Name: 802.11b_c.6_f.2 437_Back_Gap 0 mm

Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2437$ MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 53.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3865; ConvF(7.56, 7.56, 7.56); Calibrated: 2014-08-25
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn666; Calibrated: 2015-04-28
- Phantom: SAM B; Type: SAM; Serial: 1363
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b_c.6_f.2 437_Body_Back_Gap 0 mm/Area Scan (81x81x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.758 mW/g

802.11b_c.6_f.2 437_Body_Back_Gap 0 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.8 V/m; Power Drift = -0.137 dB

Peak SAR (extrapolated) = 0.908 W/kg

SAR(1 g) = 0.457 mW/g; SAR(10 g) = 0.235 mW/g

Maximum value of SAR (measured) = 0.666 mW/g

Annex A. Photographs

Annex A.1 EUT

Front View

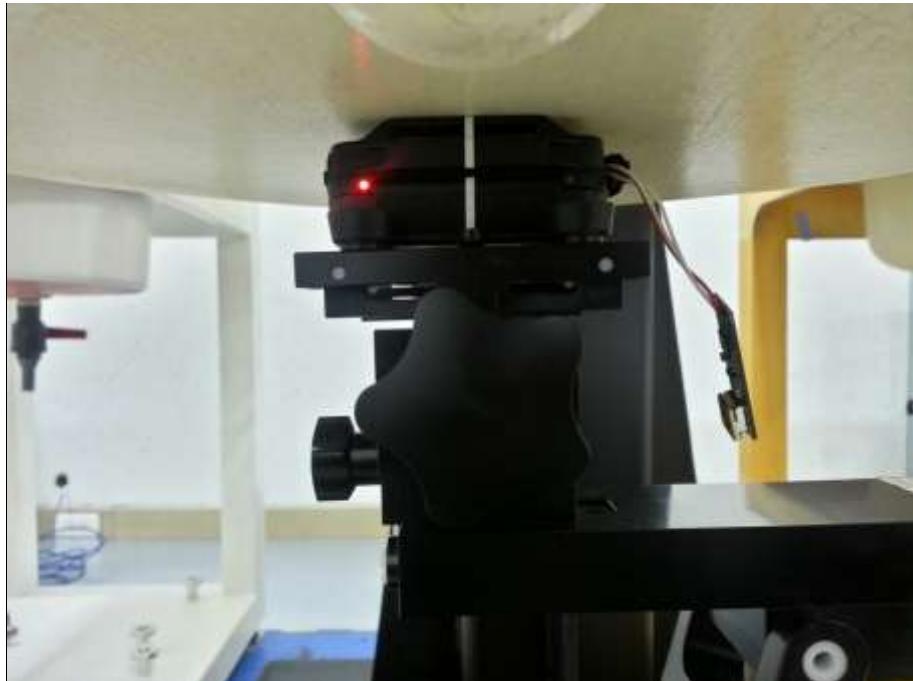
Back View

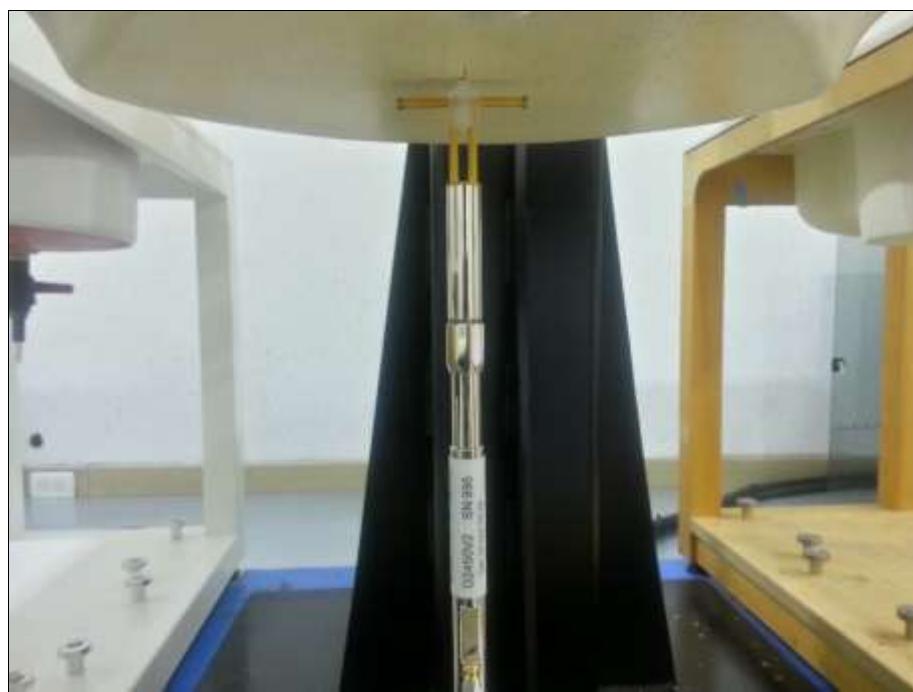
Right side View

Left side View

Top side View

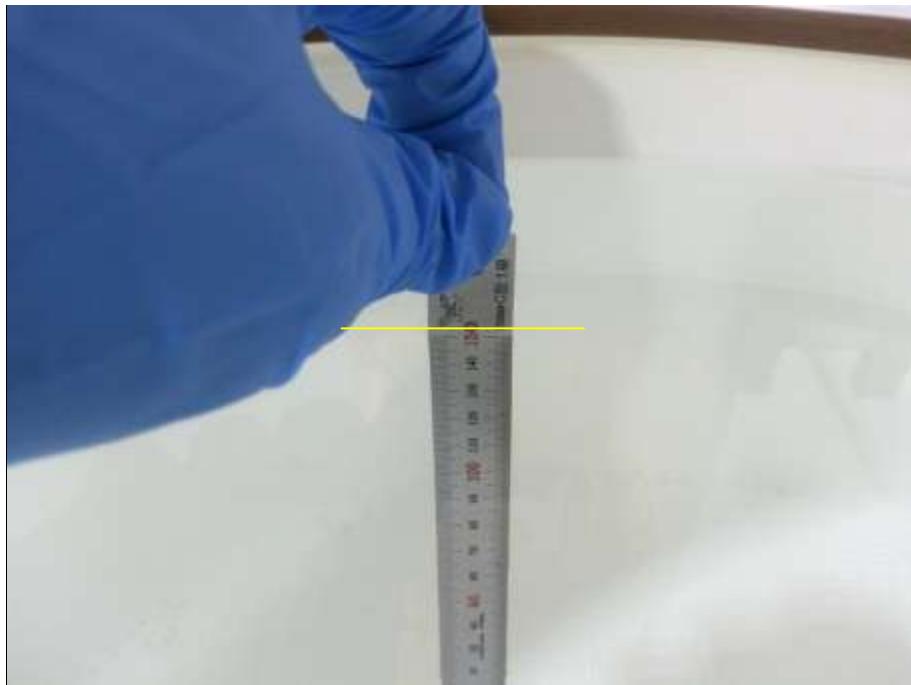
Bottom side View


Annex A.2 Photographs of Test Setup


Photograph of the SAR measurement System

Annex A.3 Test Position

(a) Back_0 mm



(b) System Check 2 450 MHz

Annex A.4 Liquid Depth

MSL2450

Annex B. Calibration certificate

Annex B.1 Probe Calibration certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client: EMC Compliance (Dymstec)

Certificate No: EX3-3865_Aug14

CALIBRATION CERTIFICATE

Object: EX3DV4 - SN:3865

Calibration procedure(s): QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,
QA CAL-25.v6
Calibration procedure for dosimetric E-field probes

Calibration date: August 25, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20a)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-98 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390685	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:	Name: Claudio Leuter	Function: Laboratory Technician	Signature:
Approved by:	Name: Katja Pokovic	Function: Technical Manager	Signature:

Issued: August 25, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3865_Aug14

Page 1 of 11

검	작성	감	토	승	인
자	X	W		S	

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}*: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). *NORM_{x,y,z}* are only intermediate values, i.e., the uncertainties of *NORM_{x,y,z}* does not affect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- NORM(f)_{x,y,z} = NORM_{x,y,z} * frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCP_{x,y,z}*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z} B_{x,y,z} C_{x,y,z} D_{x,y,z}*: *A_{x,y,z} B_{x,y,z} C_{x,y,z} D_{x,y,z}* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORM_{x,y,z} * ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the *NORMx* (no uncertainty required).

EX3DV4 – SN:3865

August 25, 2014

Probe EX3DV4

SN:3865

Manufactured: February 2, 2012
Calibrated: August 25, 2014

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3865

August 26, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3865

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.42	0.37	0.41	$\pm 10.1\%$
DCP (mV) ^B	97.7	100.9	98.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB/ μV	C	D dB	VR mV	Unc ^C (k=2)
0	CW	X	0.0	0.0	1.0	0.00	129.5	$\pm 3.0\%$
		Y	0.0	0.0	1.0		133.2	
		Z	0.0	0.0	1.0		144.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter; uncertainty not required.

^C Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3865

August 25, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3865

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^H (mm)	Unct. (k=2)
300	45.3	0.87	11.94	11.94	11.94	0.11	1.20	± 13.3 %
450	43.5	0.87	10.96	10.96	10.96	0.14	1.80	± 13.3 %
850	41.5	0.92	10.03	10.03	10.03	0.30	1.20	± 12.0 %
900	41.5	0.97	10.03	10.03	10.03	0.28	1.04	± 12.0 %
1750	40.1	1.37	8.62	8.62	8.62	0.32	0.83	± 12.0 %
1900	40.0	1.40	8.32	8.32	8.32	0.46	0.70	± 12.0 %
2450	39.2	1.80	7.63	7.63	7.63	0.50	0.68	± 12.0 %
2600	39.0	1.96	7.44	7.44	7.44	0.35	0.83	± 12.0 %
5200	36.0	4.66	4.78	4.78	4.78	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.58	4.58	4.58	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.50	4.50	4.50	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.31	4.31	4.31	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.48	4.48	4.48	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 6 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3865

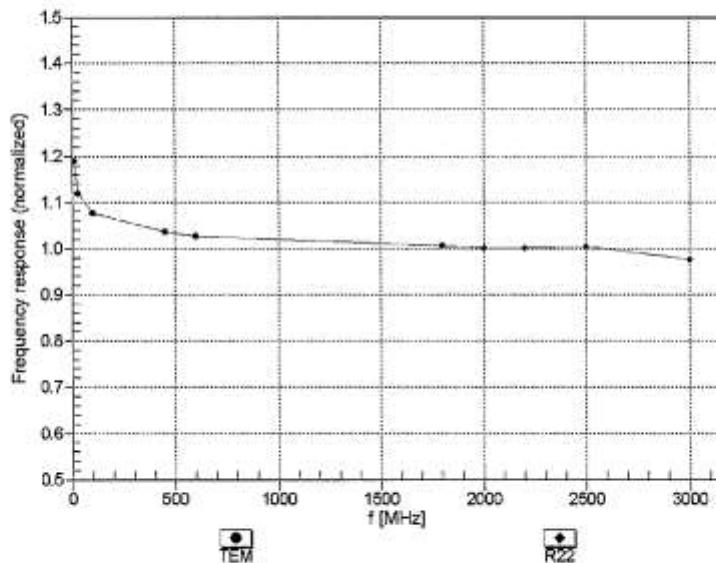
August 25, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3865

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^H (mm)	Unct. (k=2)
300	58.2	0.92	11.61	11.61	11.61	0.02	1.20	± 13.3 %
450	56.7	0.94	11.49	11.49	11.49	0.07	1.20	± 13.3 %
650	55.2	0.99	9.87	9.87	9.87	0.30	1.35	± 12.0 %
900	55.0	1.05	9.91	9.91	9.91	0.75	0.62	± 12.0 %
1750	53.4	1.49	8.39	8.39	8.39	0.34	0.89	± 12.0 %
1900	53.3	1.52	7.96	7.96	7.96	0.41	0.81	± 12.0 %
2450	52.7	1.95	7.56	7.56	7.56	0.78	0.55	± 12.0 %
2600	52.5	2.16	7.42	7.42	7.42	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.74	4.74	4.74	0.35	1.90	± 13.1 %
5300	48.9	5.42	4.52	4.52	4.52	0.35	1.90	± 13.1 %
5500	48.6	5.65	4.15	4.15	4.15	0.40	1.90	± 13.1 %
5600	48.5	5.77	3.96	3.96	3.96	0.40	1.90	± 13.1 %
5800	48.2	6.00	4.29	4.29	4.29	0.45	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

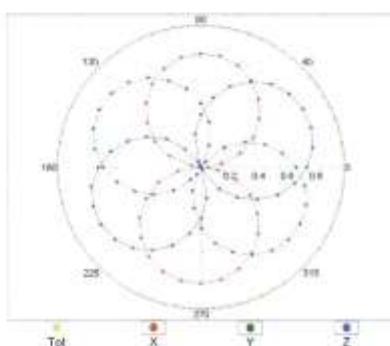

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

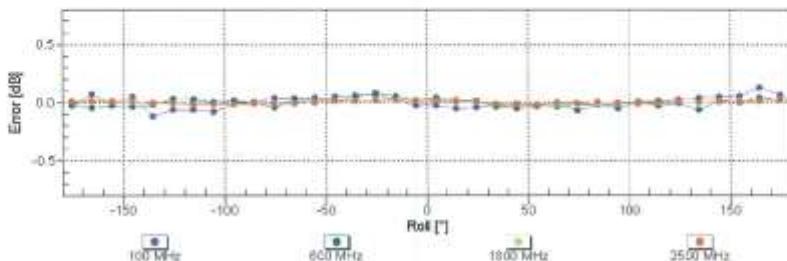
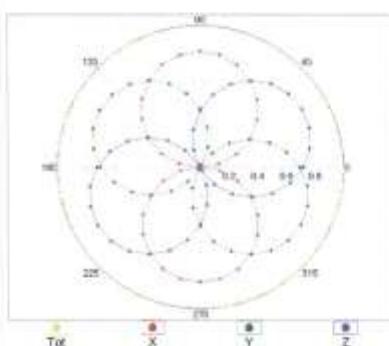
EX3DV4- SN:3865

August 25, 2014

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

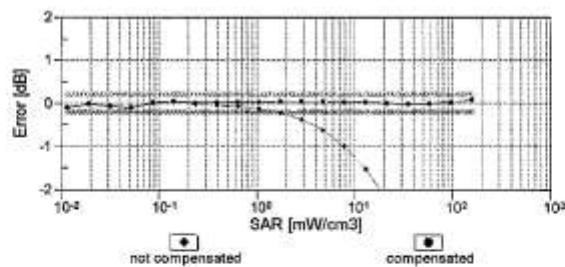
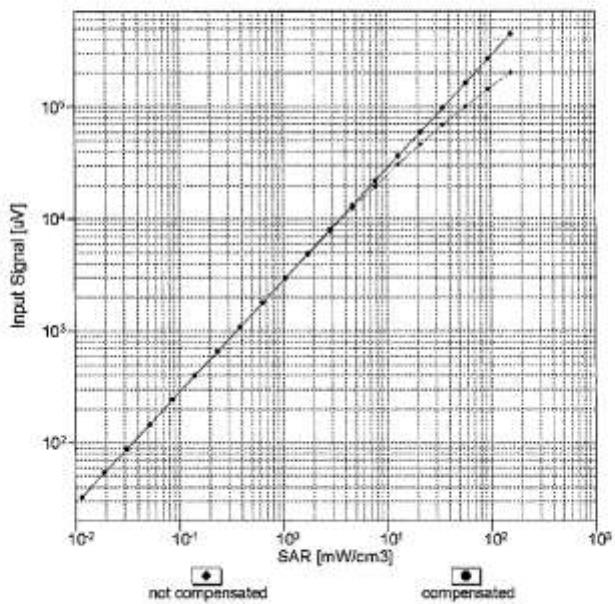
EX3DV4~ SN.3865



August 25, 2014

Receiving Pattern (ϕ), $\theta = 0^\circ$

$f=600$ MHz, TEM

$f=1800$ MHz, R22

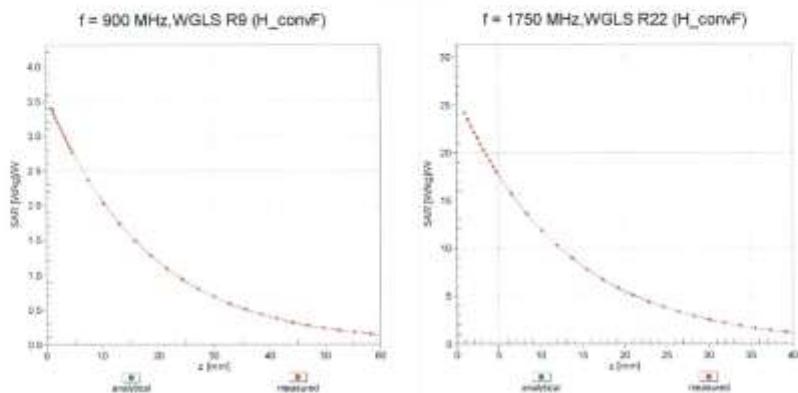



Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

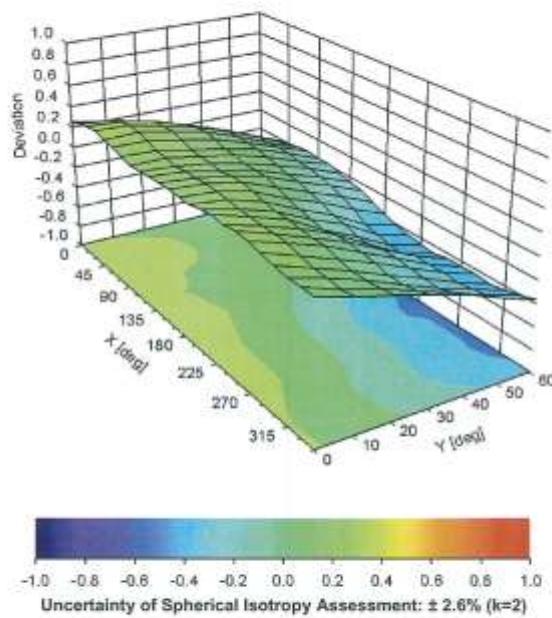
EX3DV4- SN:3865

August 25, 2014

Dynamic Range f(SAR_{head})
(TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)


EX3DV4—SN:3865

August 25, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ), $f = 900 \text{ MHz}$

EX3DV4- SN:3865

August 25, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3865

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	24.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Annex B.2 DAE Calibration certification

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di Isotruca
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client: EMC Compliance (Dymstec)

Certificate No.: DAE4-666_Apr15

CALIBRATION CERTIFICATE

Object: DAE4 - SD 000 D04 BM - SN: 666

Calibration procedure(s): QA CAL-06.v29
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: April 28, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-14 (No:15573)	Oct-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	06-Jan-15 (in house check)	In house check: Jan-16
Calibrator Box V2.1	SE UMS 006 AA 1002	06-Jan-15 (in house check)	In house check: Jan-16

Calibrated by:	Name:	Function:	Signature:
	R.Mayoraz	Technician	
Approved by:	F. Bomholt	Deputy Technical Manager	

Issued: April 28, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-666_Apr15

Page 1 of 5

검	자	성	점	도	승	인
계	X		25		SB	

Calibration Laboratory of
Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S
C
S

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage.
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1 μ V, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$405.462 \pm 0.02\% (k=2)$	$404.589 \pm 0.02\% (k=2)$	$403.650 \pm 0.02\% (k=2)$
Low Range	$3.99203 \pm 1.50\% (k=2)$	$3.99088 \pm 1.50\% (k=2)$	$3.97425 \pm 1.50\% (k=2)$

Connector Angle

Connector Angle to be used in DASY system	$305.5^\circ \pm 1^\circ$
---	---------------------------

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	200031.22	-5.58	-0.00
Channel X	+ Input	20006.34	1.22	0.01
Channel X	- Input	-20005.04	-0.18	0.00
Channel Y	+ Input	200034.80	-3.07	-0.00
Channel Y	+ Input	20003.79	-1.23	-0.01
Channel Y	- Input	-20004.86	0.08	-0.00
Channel Z	+ Input	200036.49	0.19	0.00
Channel Z	+ Input	20004.62	-0.35	-0.00
Channel Z	- Input	-20005.82	-0.89	0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2002.02	0.39	0.02
Channel X	+ Input	201.46	-0.29	-0.15
Channel X	- Input	-198.59	-0.19	0.10
Channel Y	+ Input	2002.01	0.39	0.02
Channel Y	+ Input	200.09	-1.48	-0.73
Channel Y	- Input	-199.19	-0.59	0.30
Channel Z	+ Input	2002.13	0.61	0.03
Channel Z	+ Input	200.80	-0.60	-0.30
Channel Z	- Input	-199.66	-1.07	0.54

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-0.34	-1.42
	-200	-0.90	-2.87
Channel Y	200	1.54	1.70
	-200	-2.78	-3.17
Channel Z	200	-4.80	-4.52
	-200	2.57	2.23

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	-2.81	-3.03
Channel Y	200	8.41	-	-0.75
Channel Z	200	6.86	6.00	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16487	16407
Channel Y	16036	16604
Channel Z	16133	16162

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	1.50	0.43	3.90	0.57
Channel Y	-0.13	-1.44	1.86	0.62
Channel Z	0.62	-0.59	1.74	0.46

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <256A

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Annex B.3 Dipole Calibration certification

D2450V2

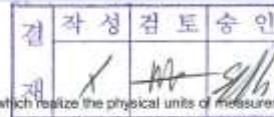
Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SCS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **EMC Compliance (Dymstec)**


Certificate No: **D2450V2-895_Jul14**

CALIBRATION CERTIFICATE

Object **D2450V2 - SN: 895**

Calibration procedure(s) **QA CAL-05.v9**
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **July 24, 2014**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	30-Apr-14 (No. DAE4-601_Apr14)	Apr-15

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-89 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390565 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:	Name	Function	Signature
	Claudio Leubler	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: July 24, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D2450V2-895_Jul14**

Page 1 of 8

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.5 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 1.6 $j\Omega$
Return Loss	-29.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.8 Ω + 3.7 $j\Omega$
Return Loss	-28.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 19, 2012

DASY5 Validation Report for Head TSL

Date: 24.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 895

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³

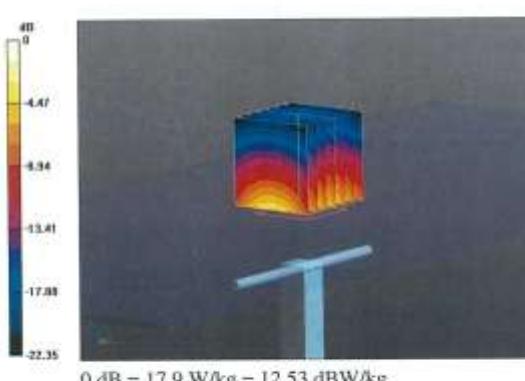
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

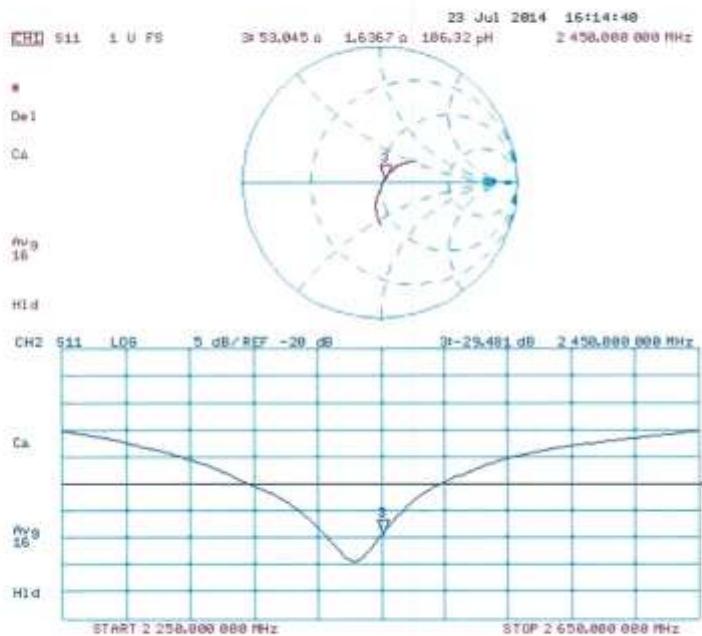
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.2 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 895

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $\epsilon_r = 2.03$ S/m; $\epsilon_r = 50.6$; $\rho = 1000$ kg/m³

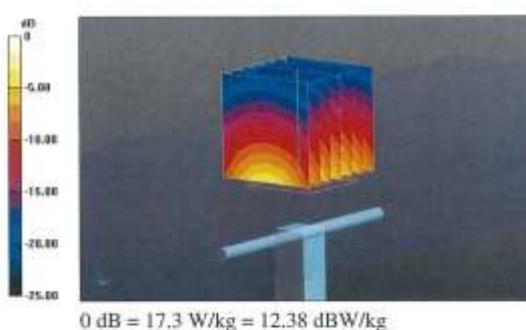
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

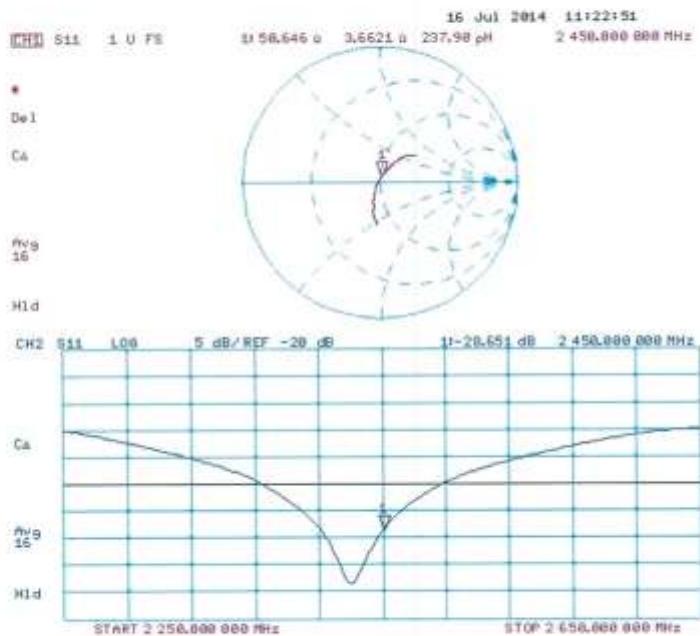
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.39 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Impedance Measurement Plot for Body TSL

-END OF REPORT -