

SAR TEST REPORT

APPLICANT	:	Shenzhen	Chainwa	/Information	Technolog	iv (CoLtd	١.
	-		0.10.11.00.00.00.00.00.00.00.00.00.00.00		1001110109		00.,=.0	•

- PRODUCT NAME : Mobile Data Terminal
- **MODEL NAME** : C72
- **BRAND NAME** : CHAINWAY
- FCC ID : 2AC6AC72
- STANDARD(S) : 47CFR 2.1093 IEEE 1528-2013
- **TEST DATE** : 2018-02-08 to 2018-04-14
- **ISSUE DATE** : 2018-04-28

Tested by:

Approved by:

Gan Yueming Gan Yueming(Test engineer)

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn

DIRECTORY

1. Technical Information	5
1.1. Applicant and Manufacturer Information	5
1.2. Equipment Under Test (EUT) Description	5
1.3. Summary of Maximum SAR Value	7
1.4. Photographs of the EUT	8
1.5. Applied Reference Documents	8
2. Device Category and SAR Limits	Э
3. Specific Absorption Rate (SAR)	D
3.1. Introduction	D
3.2. SAR Definition	D
4. SAR Measurement Setup 12	1
4.1. The Measurement System	1
4.2. Probe 12	1
4.3. Probe Calibration Process1	3
4.4. Phantom	4
4.5. Device Holder ····································	4
5. Tissue Simulating Liquids	5
6. Uncertainty Assessment 12	8
6.1. Uncertainty Evaluation For EUT SAR Test	8
6.2. Uncertainty For System Performance Check	Э
7. SAR Measurement Evaluation 22	1
7.1. System Setup 22	1
7.2. Validation Results 22	2
8. Operational Conditions During Test 24	4
8.1. Information on the testing 24	4
8.2. Body-worn Configurations	5

8.3.	Measurement procedure 25	;
8.4.	Description of interpolation/extrapolation scheme	;
9. B	ody SAR Evaluation Procedure 27	,
10. In	oformation Related to LTE Test parameter (Per 941225 D05v02r05) ······· 28	3
11. S	AR Evaluation Procedures for LTE 32	2
12. M	leasurement of Conducted output power ······ 34	ł
13. Te	est Results List ······ 50)
14. R	epeated SAR Measurement ······ 59)
15. M	lultiple Transmitters Evaluation 60)
Anne	ex A Photographs of Test Setup	
Anne	ex B System Check Data	
Anne	ex C Plots of SAR Test Results	
Anne	ex D General Information	
Anne	ex E SATIMO Calibration Certificate	

Change History				
Issue	Date	Reason for change		
1.0	2018-04-28	First edition		

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

1. Technical Information

Note: Provide by manufacturer.

1.1. Applicant and Manufacturer Information

Applicant:	Shenzhen Chainway Information Technology Co.,Ltd.		
Applicant Address:9/F, Building 2, Daqian Industrial Park, Longchang Rd., 67, Bao'an, Shenzhen			
Manufacturer: Shenzhen Chainway Information Technology Co.,Ltd.			
Manufacturer Address:	9/F, Building 2, Daqian Industrial Park, Longchang Rd., District 67, Bao'an, Shenzhen		

1.2. Equipment Under Test (EUT) Description

Model Name:	C72	
Brand Name:	CHAINWAY	
Hardware Version:	C70SE_MB_V11	
Software Version:	C72A_MT6735_V1.1_AM_GIT938ee72_20171205	
Software Version: C72A_MT6735_V1.1_AM_GIT938ee72_20171205 GSM850: 824.2 MHz ~ 848.8MHz GSM1900: 1850.2 MHz ~ 1909.8MHz WCDMA Band II: 1852.4 MHz ~ 1907.6MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6MHz WCDMA Band V: 826.4 MHz ~ 846.6MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 1: 1710 MHz ~ 1755 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 17: 704 MHz ~ 716 MHz WLAN 2.4GHz: 2412 MHz ~ 2462 MHz WLAN 5GHz Band 1: 5150 MHz ~ 5350 MHz; WLAN 5GHz Band 2: 5250 MHz ~ 5350 MHz; WLAN 5GHz Band 3: 5470 MHz ~ 5725 MHz; WLAN 5GHz Band 4: 5725 MHz ~ 5850 MHz; WLAN 5GHz Band 4: 5725 MHz ~ 5850 MHz; Bluetooth: 2402 MHz ~ 2480 MHz RFID:902 MHz ~ 928 MHz NFC: 13 56 MHz NFC: 13 56 MHz		
Modulation Mode:	GSM / GPRS: GMSK EDGE: 8PSK	

	WCDMA: AMR/RMC12.2Kbps		
	HSDPA/HSUPA HSPA+		
	LTE: QPSK / 16QAM		
	802.11b/g/n HT20/n HT40		
	802.11a/n HT20/HT40		
	Bluetooth 2.1 BDR (1Mbps) : GFSK		
	Bluetooth 2.1 EDR (2	Mbps) :π/4-DQPSK	
	Bluetooth 2.1 EDR (3	BMbps) : 8-DPSK	
	Bluetooth 4.0 - LE (1	Mbps): GFSK	
	RFID		
	GPS		
	NFC: ASK		
Multi-slot Class:	GPRS: Multi-slot Class 12; EDGE: Multi-slot Class 12;		
Operation mode:	Class B		
Hotspot function:	Not Support Hotspot		
	WWAN : Fixed Intern	al Antenna	
Antenna type:	WLAN : Fixed Internal Antenna		
	Bluetooth : Fixed Internal Antenna		
Battery Model:	646069		
Battery	2000 mAb (2.8)/		
specification:	8000mAn 3.8V		
SIM cards			
description:	Single Silvi card		
Max Scaled	Head	0.247 W/kg	
SAR-1g(W/Kg)	Body-worn	1.168 W/kg	Limit(VV/Kg): 1.6VV/Kg

Note: For a more detailed description, please refer to specification or user's manual supplied by the applicant and/or manufacturer.

1.3. Summary of Maximum SAR Value

		Highest SAR Summary		
Frequency		Head	Body-worn	
	Band	(Separation 0mm)	(Separation 10mm)	
		1g SAR (W/kg)		
	GSM850	0.071	0.388	
	GSM1900	0.124	0.622	
	WCDMA II	0.102	0.569	
	WCDMA IV	0.052	0.962	
\\/\// A NI	WCDMA V	0.057	0.185	
VVVVAN	LTE Band 2	0.085	0.938	
	LTE Band 4	0.055	1.168	
	LTE Band 7	0.247	0.488	
	LTE Band 12	0.059	0.200	
	LTE Band 17	0.078	0.244	
	2.4GHz WLAN	0.181	0.400	
VVLAIN	5GHz WLAN	0.172	0.219	
2.4GHz Band Bluetooth		N/A	N/A	

Maximum Simultaneous Transmission SAR	Head	Body-worn
WWAN+WLAN 2.4GHz	0.428	1.568
WWAN+WLAN 5GHz	0.419	1.387
WWAN+Bluetooth	N/A	N/A

Note:

- 1. The summary maximum simultaneous transmission SAR is combined at the same exposure position.
- 2、Bluetooth is not required for SAR testing.

1.4. Photographs of the EUT

Please refer to the External Photos for the Photos of the EUT

1.5. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title		
1	47 CED82 4002	Radiofrequency Radiation Exposure Evaluation: Portable		
1	47 CFR92.1095	Devices		
		IEEE Recommended Practice for Determining the Peak		
2	IEEE 1529 2012	Spatial-Average Specific Absorption Rate (SAR) in the Human		
2	IEEE 1520-2015	Head from Wireless Communications Devices:		
		Measurement Techniques		
3	KDB 447498 D01v06	General RF Exposure Guidance		
4	KDB 248227 D01v02r02	SAR Measurement Procedures for 802.11 Transmitters		
5	KDB 865664 D01v01r04	SAR Measurement 100 MHz to 6 GHz		
6	KDB 865664 D02v01r02	RF Exposure Reporting		
7	KDB 648474 D04v01r03	Handset SAR		
8	KDB 941225 D01v03r01	3G SAR Measurement Procedures		
9	KDB 941225 D05v02r05	SAR Evaluation Consideration for LTE Devices		
10	KDB 044225 D06v02r04	SAR Evaluation Procedures For Portable Devices With		
10	KUD 941223 DU0VU2[U]	Wireless Router Capabilities		

2. Device Category and SAR Limits

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3. Specific Absorption Rate (SAR)

3.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Middle than the limits for general population/uncontrolled.

3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by,

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rmselectrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typicallyapplied.

4. SAR Measurement Setup

4.1. The Measurement System

Como SAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Como SAR system consists of the Following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The Following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

4.2. Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used

- Dynamic range: 0.01-100 W/kg

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

- Tip Diameter: 6.5 mm
- Distance between probe tip and sensor center: 2.5mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)
- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.25 dB
- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies.

Where :

Pfw = Forward Power

Pbw = Backward Power

a and b = Waveguide dimensions

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with aNPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

 $Vlin(N)=V(N)^{(1+V(N)/DCP(N))}$ (N=1,2,3)

Where DCP is the diode compression point in mV.

4.3. Probe Calibration Process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Where:

 δt = exposure time (30 seconds),

C = heat capacity of tissue (brainor muscle),

 δT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:

 σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

4.4. Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

4.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is Middle than 1°.

Device holder

System Material	Permittivity	Loss Tangent		
Delrin	3.7	0.005		

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

5. Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with Homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing, the liquid height from the ear reference point(ERP) of the phantom to the liquid top surface is larger than15cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

Fig 5.1 Photo of Liquid Height for Head SAR

The following table gives the recipes for tissue simulating liquids

Fig 5.2 Photo of Liquid Height for Body SAR

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)				
Head												
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9				
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5				
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0				
2450	55.0	0	0	0	0	45.0	1.80	39.2				
2600	54.8	0	0	0.1	0	45.1	1.96	39.0				

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)				
Water	64~78%				
Mineral oil	11~18%				
Emulsifiers	9~15%				
Additives and Salt	2~3%				

Note: Please refer to the validation results for dielectric parameters of each frequency band.

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Conductivity Target (σ)	Delta (σ) (%)	Limit (%)	Date
750	HSL	21.2	0.890	0.89	0.00	±5	2018.02.23
835	HSL	21.2	0.892	0.90	-0.89	±5	2018.02.23
1800	HSL	22.6	1.365	1.40	-2.50	±5	2018.02.24
2000	HSL	22.4	1.414	1.40	1.00	±5	2018.02.24
2450	HSL	21.8	1.836	1.80	2.00	±5	2018.02.24
2600	HSL	21.8	1.975	1.96	0.77	±5	2018.02.26
5200	HSL	22.1	4.665	4.66	0.11	±5	2018.04.14
5600	HSL	22.1	5.100	5.07	0.59	±5	2018.04.14
5800	HSL	22.1	5.310	5.27	0.76	±5	2018.04.14
750	MSL	21.2	1.031	0.96	4.17	±5	2018.02.12
835	MSL	21.2	0.972	0.97	0.21	±5	2018.02.22
1800	MSL	22.6	1.515	1.52	-0.33	±5	2018.02.09
2000	MSL	22.4	1.514	1.52	-0.33	±5	2018.02.09
2450	MSL	21.8	1.966	1.95	0.82	±5	2018.02.08
2600	MSL	21.8	2.105	2.16	-2.55	±5	2018.02.09
5200	MSL	22.1	5.543	5.30	4.58	±5	2018.04.14
5600	MSL	22.1	5.743	5.77	-0.47	±5	2018.04.14
5800	MSL	22.1	5.931	6.00	-1.15	±5	2018.04.14

Table : Dielectric Performance of Tissue Simulating Liquid

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax:

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

REPORT	No.	: SZ18010063S01

Frequency (MHz)	Tissue Type	Liquid Temp. (℃)	Permittivity (ε _r)	Permittivity Target (ε _r)	Delta (ε _r) (%)	Limit (%)	Date
750	HSL	21.2	41.350	41.90	-1.31	±5	2018.02.23
835	HSL	21.2	41.182	41.50	-0.77	±5	2018.02.23
1800	HSL	22.6	40.095	40.00	0.24	±5	2018.02.24
2000	HSL	22.4	39.984	40.00	-0.04	±5	2018.02.24
2450	HSL	21.8	39.284	39.20	0.21	±5	2018.02.24
2600	HSL	21.8	39.025	39.00	0.06	±5	2018.02.26
5200	HSL	22.1	36.123	36.00	0.34	±5	2018.04.14
5600	HSL	22.1	35.562	35.50	0.17	±5	2018.04.14
5800	HSL	22.1	35.335	35.30	0.10	±5	2018.04.14
	-			_			-
750	MSL	21.2	53.520	55.50	-3.57	±5	2018.02.12
835	MSL	21.2	55.382	55.20	0.15	±5	2018.02.22
1800	MSL	22.6	53.295	53.30	-0.01	±5	2018.02.09
2000	MSL	22.4	53.285	53.30	-0.03	±5	2018.02.09
2450	MSL	21.8	52.884	52.70	0.35	±5	2018.02.08
2600	MSL	21.8	52.363	52.50	-0.26	±5	2018.02.09
5200	MSL	22.1	48.273	49.00	-1.48	±5	2018.04.14
5600	MSL	22.1	48.394	48.50	-0.22	±5	2018.04.14
5800	MSL	22.1	48.093	48.20	-0.22	±5	2018.04.14

Fax: 86-755-36698525

E-mail: service@morlab.cn

Tel: 86-755-36698555 Http://www.morlab.cn

6. Uncertainty Assessment

The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

6.1. Uncertainty Evaluation For EUT SAR Test

а	b	С	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g Ui	Vi
		(+- %			(1g	(10g)	(+-%)	(+-%)	
)	Dist.)				
Measurement System			-						
Probe calibration	E.2.1	5.83	Ν	1	1	1	5.83	5.83	8
Axial Isotropy	E.2.2	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	8
Hemispherical Isotropy	E.2.2	5.9	R	$\sqrt{3}$	1	1	3.41	3.41	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	E.2.4	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	8
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Readout Electronics	E.2.6	0.5	N	1	1	1	0.5	0.5	8
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	3.0	3.0	8
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
Probe positioner	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Mechanical Tolerance				-					
Probe positioning with	E.6.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Extrapolation.									
interpolation and				_					
integration Algoritms for	E.5.2	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8
Max. SAR Evaluation									
Test sample Related		1		1		1	1	I	
Test sample positioning	E.4.2. 1	2.6	N	1	1	1	2.6	2.6	N-1
Device Holder Uncertainty	E.4.1. 1	3.0	N	1	1	1	3.0	3.0	N-1
Output power Power drift -	6.6.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	8

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

SAR drift measurement									
Phantom and Tissue Para	meters								
Phantom Uncertainty									
(Shape and thickness	E.3.1	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	8
tolerances)									
Liquid conductivity -	E 3 2	2.0	D	$\sqrt{2}$	0.6	0 43	1.60	1 1 2	~
deviation from target value	E.3.2	2.0	n.	ν ⁵	4	0.43	1.09	1.15	3
Liquid conductivity -	E 2 2	25	N	1	0.6	0 42	2 20	2 15	Ν.4
measurement uncertainty	E.3.3	2.5	IN	I	4	0.43	3.20	2.15	IVI
Liquid permittivity -	E 3 2	25	D	$\sqrt{2}$	0.6	0.40	1.28	1.04	~
deviation from target value	L.J.Z	2.5	IX I	ν 5	0.0	0.40	1.20	1.01	
Liquid permittivity -	E 2 2	5.0	N	1	0.6	0.40	6.00	4 00	Ν.4
measurement uncertainty	E.3.3	5.0	IN	I	0.0	0.49	0.00	4.90	IVI
Liquid					0.7				
conductivity-temperature	E.3.4		R	$\sqrt{3}$	0.7	0.41			8
uncertainty					0				
Liquidpermittivity-tempera	E 2 4		D	$\sqrt{2}$	0.2	0.26			8
ture uncertainty	E.3.4		ĸ	νs	3	0.20			3
Combined Standard			RSS				11.55	12.0	
Uncertainty								7	
Expanded Uncertainty			K_2				±	<u>+</u>	
(95% Confidence interval)			r\=Z				23.20	24.17	

6.2. Uncertainty For System Performance Check

а	b	С	d	e=	f	g	h=	i=	k
				f(d,k)			c*f/e	c*g/	
								е	
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g	Vi
		(+-			(1g)	(10g)	(+-%)	Ui	
		%)	Dist.					(+-	
								%)	
Measurement System									
Probe calibration	E.2.1	4.76	Ν	1	1	1	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	8
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	8

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Fax: 86-755-36698525 E-mail: service@morlab.cn

Page19 Of 61

MORLAB

REPORT No. : SZ18010063S01

Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	8
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	∞
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.0	8
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
Probe positioner	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
Mechanical Tolerance								5	
Probe positioning with	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	8
respect to Phantom Shell								3	
Extrapolation	E 5 2	5.0	R	./3	1	1	2.80	28	~
interpolation and	L.J.Z	0.0		N 5	1	1	2.05	2.0	
								9	
integration Algoritms for									
Max. SAR Evaluation									
Dipole		-	-					-	-
Dipole axis to liquid	8,E.4.	1.00	Ν	$\sqrt{3}$	1	1	0.58	0.5	∞
Distance	2							8	
Input power and SAR drift	8,6.6.	4.04	R	$\sqrt{3}$	1	1	2.33	2.3	8
measurement	2							3	
Phantom and Tissue Para	meters								•
Phantom Uncertainty	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.0	8
(Shape and thickness								3	
tolerances)									
Liquid conductivity -	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	∞
deviation from target value								3	
Liquid conductivity -	E.3.3	5.00	Ν	$\sqrt{3}$	0.64	0.43	1.85	1.2	М
measurement uncertainty								4	
Liquid permittivity -	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	∞
deviation from target value								4	
Liquid permittivity -	E.3.3	10.0	Ν	$\sqrt{3}$	0.6	0.49	3.46	2.8	М
measurement uncertainty		0						3	
Combined Standard			RSS				8.83	8.3	
Uncertainty								7	
Expanded Uncertainty			K=2				17.66	16.	
(95% Confidence interval)								73	
,		1	l		i			l	

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

7.SAR Measurement Evaluation

7.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below

The validation dipole is placed beneath the flat phantom with the specifics pacer in place. The distances pacer is touch the phantom surface with alight pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250mWisusedfor700MHzto3GHz, 100mWisusedfor3.5GHzto6 GHz)at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

7.2. Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2018.02.23	750	HSL	100	0.78	8.41	7.84	-6.78
2018.02.23	835	HSL	100	0.97	9.61	9.68	0.73
2018.02.24	1800	HSL	100	3.70	37.05	36.98	-0.19
2018.02.24	2000	HSL	100	4.26	42.70	42.56	-0.33
2018.02.24	2450	HSL	100	5.33	53.34	53.26	-0.15
2018.02.26	2600	HSL	100	5.68	56.94	56.81	-0.23
2018.04.14	5200	HSL	100	16.40	164.05	163.99	-0.04
2018.04.14	5600	HSL	100	17.14	177.81	171.44	-3.58
2018.04.14	5800	HSL	100	17.71	185.02	177.11	-4.28
	_		-			-	-
2018.02.12	750	MSL	100	0.91	8.69	9.054	4.19
2018.02.22	835	MSL	100	0.99	9.88	9.87	-0.10
2018.02.09	1800	MSL	100	3.75	37.78	37.53	-0.66
2018.02.09	2000	MSL	100	4.12	41.43	41.2	-0.24
2018.02.08	2600	MSL	100	5.39	54.07	53.86	-0.39
2018.02.09	2450	MSL	100	5.08	50.93	50.81	-0.24
2018.04.14	5200	MSL	100	16.28	163.36	162.84	-0.32
2018.04.14	5600	MSL	100	17.20	172.11	171.96	-0.09
2018.04.14	5800	MSL	100	17.70	177.10	176.95	-0.08

<1g SAR>

<10g SAR>

	Frequency	Tiesue	Input	Measured	Targeted	Normalized	Doviction
Date	(MU-)	Turne	Power	10g SAR	10g SAR	10g SAR	
	(11112)	туре	(mW)	(W/kg)	(W/kg)	(W/kg)	(%)
2018.02.23	750	HSL	100	0.54	5.52	5.37	-2.72
2018.02.23	835	HSL	100	0.62	6.17	6.22	0.81
2018.02.24	1800	HSL	100	2.05	19.85	20.48	3.17
2018.02.24	2000	HSL	100	1.99	21.39	19.93	-6.97
2018.02.24	2450	HSL	100	2.38	24.22	23.77	-1.86
2018.02.26	2600	HSL	100	2.50	25.06	24.98	-0.32
2018.04.14	5200	HSL	100	5.65	57.03	56.51	-0.91
2018.04.14	5600	HSL	100	6.06	60.90	60.54	-0.59
2018.04.14	5800	HSL	100	5.99	62.43	59.94	-3.99
2018.02.12	750	MSL	100	0.61	5.78	6.097	5.48
2018.02.22	835	MSL	100	0.63	6.48	6.29	-2.93
2018.02.09	1800	MSL	100	2.04	20.15	20.38	1.14
2018.02.09	2000	MSL	100	2.09	20.86	20.93	0.19
2018.02.08	2450	MSL	100	2.38	23.26	23.77	2.19
2018.02.09	2600	MSL	100	2.37	24.27	23.7	-2.35
2018.04.14	5200	MSL	100	5.62	57.09	56.24	-1.49
2018.04.14	5600	MSL	100	5.91	58.61	59.07	0.78
2018.04.14	5800	MSL	100	5.98	59.95	59.83	-0.20

Note: System checks the specific test data please see Annex C

8. Operational Conditions During Test

8.1. Information on the testing

The mobile phone antenna and battery are those specified by the manufacturer. The battery is fully charged before each measurement. The output power and frequency are controlled using a base station simulator. The mobile phone is set to transmit at its highest output peak power level.

The mobile phone is test in the "cheek" and "tilted" positions on the left and right sides of the phantom. The mobile phone is placed with the vertical centre line of the body of the mobile phone and the horizontal line crossing the centre of the earpiece in a plane parallel to the sagittal plane of the phantom.

Illustration for Tilted Position

Description of the "cheek" position:

The mobile phone is well placed in the reference plane and the earpiece is in contact with the ear. Then the mobile phone is moved until any point on the front side get in contact with the cheek of the phantom or until contact with the ear is lost.

Description of the "tilted" position:

The mobile phone is well placed in the "cheek" position as described above. Then the mobile

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

phone is moved outward away from the month by an angle of 15 degrees or until contact with the ear lost.

Remark: Please refer to Appendix B for the test setup photos.

8.2. Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Illustration for Body-Worn Position

8.3. Measurement procedure

The Following steps are used for each test position

- 1. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- 2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

8.4. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

9. Body SAR Evaluation Procedure

Assessment side for SAR								
Test distance: 10mm								
Antennas	Back Side	Front Side						
LTE/WCDMA/GSM	Yes	Yes						
WLAN&BT	Yes	Yes						

Note:

The SAR evaluation procedures for Portable Devices with Wireless Router function is according to KDB 941225 D06 Hotspot SAR v02r01.

1. Head/Body-worn mode SAR assessments are required.

2. Referring to KDB 941225 D06, when the overall device length and width are \geq 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

3. For Main antenna, SAR measurements at Top side and Right Side are not required since the distance between DUT and flat phantom > 25mm.

4. For WLAN&BT antenna, SAR measurements Top side and Right side are not required since the distance between DUT and flat phantom > 25mm.

5.For the secondary antenna, it supports RX only, SAR is not required.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

10. Information Related to LTE Test parameter (Per 941225 D05v02r05)

		Band 2							
		Tx:1850-	1910MHz						
		Band 4							
	Identify the operating	Tx:1710-	1755MHz						
4	frequency range of each LTE	Band 7							
I	transmission FCC band used	Tx:2500-	2570MHz						
	by the device	Band 12							
		Tx:699-7	16MHz						
		Band 17							
		Tx:704-7	Tx:704-716MHz						
		Band?			Channel E	Bandwidth	ו		
		Danuz	20Mhz	15MHz	10MHz	5MHz	3MHz	1.4MHz	
			20050/	20025/	20000/	19975/	19965/	19957/	
		LOW	1720	1717.5	1715	1712.5	1711.5	1710.7	
		Middlo	20175/	20175/	20175/	20175/	20175/	20175/	
		Madie	1732.5	1732.5	1732.5	1732.5	1732.5	1732.5	
		High	20300/	20325/	20350/	20375/	20384/	20392/	
	підп	1745	1747.5	1750	1752.5	1753.5	1754.2		
		Band4			Channel E	Bandwidth	<u>ו</u>		
		Dallu4	20Mhz	15MHz	10MHz	5MHz	3MHz	1.4MHz	
0	Identify the high, middle and	Low	20050/	20025/	20000/	19975/	19965/	19957/	
2	IOW (L, IVI, H) channel	LOW	1720	1717.5	1715	1712.5	1711.5	1710.7	
	numbers and frequencies	Middle	20175/	20175/	20175/	20175/	20175/	20175/	
	tested in each LIE frequency	WILGUIE	1732.5	1732.5	1732.5	1732.5	1732.5	1732.5	
	band	High	20300/	20325/	20350/	20375/	20384/	20392/	
		ingn	1745	1747.5	1750	1752.5	1753.5	1754.2	
		Pand7			Channel E	Bandwidth	า		
		Danu <i>r</i>	20Mhz	15MHz	10MHz	5MHz	3MHz	1.4MHz	
			20850/	20825/	20800/	20775/	1	1	
		LOW	2510	2507.2	2505	2502.5	/	/	
			21100/	21100/	21100/	21100/	,	,	
		Middle	2535	2535	2535	2535	/	/	
		High	21350/	21375/	21400/	21425/	1	1	
			2560	2562.5	2565	2567.5	/	/	
		Band		·	Channel I	Bandwidth	<u>ו</u>	·	

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

		12	10MHz	5MHz	3MHz	1.4MHz	/	/	
			23060/	23035/	23025/	23017/	,	,	
		Low	704	701.5	700.5	699.7	/	/	
			23095/	23095/	23095/	23095/	,		
		Middle	707.5	707.5	707.5	707.5	/	/	
			23130/	23155/	23165/	23173/	,	,	
		High	711	713.5	714.5	715.3	/	/	
		Band		1	Channel I	Bandwidth	า		
		17	10MHz	5MHz	/	/	/	/	
			23780/	23755/	,	,	,		
		LOW	709	706.5	/	/	/	/	
			23790/	23790/	,	,	1		
		Middle	710	710	/	/	/	/	
		Llink	23800/	23825/	1	/	1	1	
		High	711	713.5	/	/	/	/	
2	Specify the UE category and	The UE (The UE Category is 4 and the uplink modulations used are QPSK and						
3	uplink modulations used	16QAM.							
4	Descriptions of the LTE transmitter and antenna implementation & identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware components and/or antenna(s) with other transmitters etc.	The module has a primary antenna for all LTE&UMTS bands, a Wi-Fi Tx/Rx antenna.							
5	Identify the LTE Band Voice/data requirements in each operating mode and exposure condition with respect to head and body test configurations, antenna locations, handset flip-cover or slide positions, antenna diversity conditions, etc.	Mobile H report.	lotspot Mo	ode will be	e tested a	ccording 1	o Section	9 of this	
0		ve her a	UFF 13 30		(2012-0	55)			

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

	Reduction (MPR) is optional	al Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class							
	or mandatory, i.e. built-in by	3							
	design: only mandatory MPR may be		Chan bandy	nel k vidth (l	oandwie N _{RB})	dth /	Transn	nission	MPR
	considered during SAR	Modulation	1.4	3.0	5	10	15	20	(dB)
	testing, when the maximum		MHz	MHz	MHz	MHz	MHz	MHz	
	output power is permanently	QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
	implemented within the LIE:	16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
	and only for the applicable	16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤2
	RB (resource block) configurations specified in LTE standards b) A-MPR (additional MPR) must be disabled.	A-MPR is sup	ported	by desi	gn, but	disable for	SAR te	sting.	
7	Include the maximum average conducted output power measured on the required test channels for each channel bandwidth and UL modulation used in each frequency band: a) with 1 RB allocated at the low, centred, high end of a channel b) using 50% RB allocation low, centered, high end within a channel c) using 100% RB allocation	This is include	ed in the	e sectio	n 11 of	this report			
8	Include the maximum average conducted output power measured for the other wireless mode and frequency bands	This is include	ed in the	e sectio	n 13 of	this report			

10	Identify the simultaneous transmission conditions for the voice and data configurations supported by all wireless modes, device configurations and frequency bands, for the head and body exposure conditions and device operating configurations (handset flip or cover positions, antenna diversity conditions etc.)	This is included in Section 15
11	When power reduction is applied to certain wireless modes to satisfy SAR compliance for simultaneous transmission conditions, other equipment certification or operating requirements, include the maximum average conducted output power measured in each power reduction mode applicable to the simultaneous voice/data transmission configurations for such wireless configurations and frequency bands; and also include details of the power reduction implementation and measurement setup	Not applicable.

Tel: 86-755-36698555 F

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn

11. SAR Evaluation Procedures for LTE

1. QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and *required test channel* combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each *required test channel*. When the *reported* SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations and *required test channels* is not required for 1 RB allocation; otherwise, SAR is required for the remaining *required test channels* and only for the RB offset configuration with the highest output power for that channel.6 When the *reported* SAR of a *required test channel* is > 1.45 W/kg, SAR is required for all three RB offset configurations for that *required test channel*.

2. QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1. are applied to measure the SAR for QPSK with50% RB allocation.

3. QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output

power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB

allocations and the highest *reported* SAR for 1 RB and 50% RB allocation in 1. and 2. are \leq 0.8W/kg. Otherwise, SAR is measured for the highest output power channel and if the *reported* SAR

is > 1.45 W/kg, the remaining *required test channels* must also be tested.

Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in sections 1. and 2.and 3. to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power or the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the *reported* SAR for the QPSK configuration is > 1.45 W/kg.

4. Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section 5.2 to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > $\frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the *reported* SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

The equivalent channel configuration for the RB allocation, RB offset and modulation etc. Is determined for the smaller channel bandwidth according to the same number of RB allocated in

The largest channel bandwidth. For example, 50 RB in 10 MHz channel bandwidth does not apply to5MHz channel bandwidth; therefore, this cannot be tested in the smaller channel bandwidth. However, 50% RB allocation in 10 MHz channel bandwidths equivalent to 100% RB allocation in 5 MHz channel bandwidth; therefore, these are the equivalent configurations to be compared to determine the specific channel and configuration in the smaller channel bandwidth that need SAR testing."

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 E-mail: service@morlab.cn Http://www.morlab.cn

Fax: 86-755-36698525

12. Measurement of Conducted output power

GSM850	Burst A	st Average Power (dBm)		Tune-up	Frame-Average Power (dBm)			Tune-up
TX Channel	128	190	251	Limit	128	190	251	Limit
Frequency (MHz)	824.2	836.6	848.8	(dBm)	824.2	836.6	848.8	(dBm)
GSM 1 Tx slot	32.09	32.12	32.15	32.50	23.09	23.12	23.15	23.50
GPRS 1 Tx slot	32.15	32.19	32.22	32.50	23.15	23.19	23.22	23.50
GPRS 2 Tx slots	31.57	31.64	31.62	32.00	25.57	25.64	25.62	26.00
GPRS 3 Tx slots	29.94	29.95	29.93	30.00	25.68	25.69	25.67	25.74
GPRS 4 Tx slots	28.74	28.78	28.78	29.00	25.74	25.78	25.78	26.00
EDGE 1 Tx slot	27.06	27.14	26.99	27.50	18.06	18.14	17.99	18.50
EDGE 2 Tx slots	26.93	26.45	26.37	27.00	20.93	20.45	20.37	21.00
EDGE 3 Tx slots	26.94	25.27	25.92	27.00	22.68	21.01	21.66	22.74
EDGE 4 Tx slots	24.96	24.27	24.41	25.00	21.96	21.27	21.41	22.00

1. **GSM** Conducted Average output power

GSM1900	Burst Average Power (dBm)		Tune-up	Frame-Average Power (dBm)			Tune-up	
TX Channel	512	661	810	Limit	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GSM 1 Tx slot	27.52	27.91	28.41	28.50	18.52	18.91	19.41	19.50
GPRS 1 Tx slot	27.34	27.71	28.49	28.50	18.34	18.71	19.49	19.50
GPRS 2 Tx slots	26.89	27.31	28.03	28.50	20.89	21.31	22.03	22.50
GPRS 3 Tx slots	25.53	25.87	27.01	27.50	20.97	21.61	22.75	23.24
GPRS 4 Tx slots	24.36	24.97	25.99	26.00	21.36	21.97	22.99	23.00
EDGE 1 Tx slot	26.06	26.02	26.16	26.50	17.06	17.02	17.16	17.50
EDGE 2 Tx slots	25.02	25.27	25.07	25.50	19.02	19.27	19.07	19.50
EDGE 3 Tx slots	22.80	23.18	23.09	23.50	18.54	18.92	18.83	19.24
EDGE 4 Tx slots	22.07	22.26	22.10	22.50	19.07	19.26	19.10	19.50

Time slot consignations:

No. of Slots	Slot 1	Slot 2	Slot 3	Slot 4
Slot Consignation	1Up4Down	2Up3Down	3Up2Down	4Up1Down
Duty Cycle	1:83	1:4.15	1:2.77	1:208
Correct Factor	-9.03dB	-6.02dB	-4.26dB	-3.01dB

2. WCDMA Conducted Average output power

Band		WCDMA II		Tung un		WCDMA IV		Tune un
TX Channel	9262	9400	9538	Tune-up	1312	1413	1513	Tune-up
Rx Channel	9662	9800	9938	(dPm)	1537	1638	1738	(dBm)
Frequency (MHz)	1852.4	1880	1907.6	(dbiii)	1712.4	1732.6	1752.6	(dbiii)
AMR 12.2Kbps	20.90	20.93	21.25	21.50	21.52	21.51	21.55	22.00
RMC 12.2Kbps	20.93	20.99	21.27	21.50	21.54	21.54	21.56	22.00
HSDPA Subtest-1	20.09	20.13	20.50	21.00	20.63	20.66	20.63	21.00
HSDPA Subtest-2	20.03	20.12	20.51	21.00	20.64	20.70	20.67	21.00
HSDPA Subtest-3	19.59	19.70	20.08	20.50	20.21	20.23	20.21	20.50
HSDPA Subtest-4	19.56	19.64	20.07	20.50	20.18	20.22	20.21	20.50
HSUPA Subtest-1	18.07	18.19	18.45	19.00	18.73	18.70	18.71	19.00
HSUPA Subtest-2	17.98	18.08	18.47	18.50	18.67	18.70	18.73	19.00
HSUPA Subtest-3	19.02	19.07	19.43	19.50	19.68	19.69	19.72	20.00
HSUPA Subtest-4	17.60	17.68	17.89	18.50	18.12	18.14	18.15	19.00
HSUPA Subtest-5	19.98	20.02	20.39	20.50	20.65	20.65	20.63	21.00
HSPA+ (16QAM) Subtest-1	22.10	22.36	22.40	22.50	21.48	21.64	21.65	22.00

Band		WCDMA V		Tung un
TX Channel	4132	4182	4233	Tune-up
Rx Channel	4357	4407	4458	(dBm)
Frequency (MHz)	826.4	836.4	846.6	(dBill)
AMR 12.2Kbps	22.20	21.95	22.08	22.50
RMC 12.2Kbps	22.21	21.98	22.10	22.50
HSDPA Subtest-1	21.10	20.98	21.19	21.50
HSDPA Subtest-2	21.16	21.02	21.18	21.50
HSDPA Subtest-3	20.69	20.56	20.70	21.00
HSDPA Subtest-4	20.66	20.56	20.67	21.00
HSUPA Subtest-1	19.21	19.03	19.18	20.00
HSUPA Subtest-2	19.15	19.05	19.14	19.50
HSUPA Subtest-3	20.14	20.05	20.18	20.50
HSUPA Subtest-4	18.68	18.49	18.66	19.50
HSUPA Subtest-5	21.19	21.01	21.12	21.50
HSPA+ (16QAM) Subtest-1	21.77	21.66	21.70	22.00

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

D--- 68 ---

3. LTE Conducted Average output power

LTE Band 2

MORL

				Power	Power	Power	
BW [MHz]	Modulation	RB Size	RB Offset	Low	Middle	High	Tune-up
				Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	limit
	Chan	nel		18700	18900	19100	(dBm)
	Frequency	′ (MHz)		1860	1880	1900	
20	QPSK	1	0	23.26	23.38	23.36	
20	QPSK	1	49	23.16	23.05	23.01	23.5
20	QPSK	1	99	22.95	23.29	23.27	
20	QPSK	50	0	22.16	22.09	22.13	
20	QPSK	50	24	22.09	22.12	22.02	22 F
20	QPSK	50	50	22.13	22.09	22.01	22.5
20	QPSK	100	0	21.19	21.20	21.13	
20	16QAM	1	0	21.73	22.21	22.43	
20	16QAM	1	49	21.88	22.28	22.29	22.5
20	16QAM	1	99	21.93	22.02	22.20	
20	16QAM	50	0	20.83	20.98	21.07	
20	16QAM	50	24	20.74	20.91	21.04	04.5
20	16QAM	50	50	20.77	20.99	21.13	21.5
20	16QAM	100	0	20.77	21.00	21.15	
	Chan	nel		18675	18900	19125	Tune-up
	Fraguana			1957 F	1990	1002 5	limit
	Frequency			1057.5	1000	1902.5	(dBm)
15	QPSK	1	0	23.12	23.10	23.21	
15	QPSK	1	37	23.08	23.06	23.00	23.5
15	QPSK	1	74	23.12	23.10	23.01	
15	QPSK	36	0	22.08	22.07	22.10	
15	QPSK	36	20	22.12	22.10	22.08	22.5
15	QPSK	36	39	22.11	22.08	22.10	22.5
15	QPSK	75	0	22.31	22.41	22.38	
15	16QAM	1	0	21.71	22.26	22.47	
15	16QAM	1	37	21.86	22.28	22.25	22.5
15	16QAM	1	74	21.82	21.89	22.35	
15	16QAM	36	0	20.65	20.92	20.98	
15	16QAM	36	20	20.62	20.92	21.01	21.5
15	16QAM	36	39	20.64	20.89	21.04	

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Page36 0f 61

15	16QAM	75	0	20.64	20.92	21.05	
	Chanr	nel		18650	18900	19150	Tune-up
	Frequency	v (MHz)		1855	1880	1905	limit (dBm)
10	QPSK	1	0	22.49	22.76	22.91	
10	QPSK	1	25	23.05	23.01	23.31	23.5
10	QPSK	1	49	22.88	23.04	23.08	
10	QPSK	25	0	22.31	22.29	22.18	
10	QPSK	25	12	22.34	22.30	22.28	00 F
10	QPSK	25	25	22.25	22.15	22.10	22.5
10	QPSK	50	0	22.16	22.21	22.08	
10	16QAM	1	0	21.46	21.64	21.83	
10	16QAM	1	25	21.94	22.30	22.17	22.5
10	16QAM	1	49	21.85	21.87	22.03	
10	16QAM	25	0	20.57	20.88	20.98	
10	16QAM	25	12	20.49	20.84	20.96	04.5
10	16QAM	25	25	20.51	20.88	21.07	21.5
10	16QAM	50	0	20.59	20.93	21.05	
	Chanr	nel		18625	18900	19175	Tune-up
	Frequency	/ (MHz)		1852.5	1880	1907.5	limit (dBm)
5	QPSK	1	0	22.88	22.86	22.92	
5	QPSK	1	12	22.96	22.91	22.90	23.5
5	QPSK	1	24	23.01	22.98	22.80	
5	QPSK	12	0	21.81	21.93	21.89	
5	QPSK	12	7	21.78	21.82	21.79	00 F
5	QPSK	12	13	22.05	22.12	22.03	22.5
5	QPSK	25	0	22.03	22.10	22.05	
5	16QAM	1	0	21.36	21.57	21.96	
5	16QAM	1	12	21.80	22.08	22.35	22.5
5	16QAM	1	24	21.45	21.81	21.75	
5	16QAM	12	0	20.62	20.83	21.08	
5	16QAM	12	7	20.50	20.82	21.00	04.5
5	16QAM	12	13	20.55	20.86	21.10	21.5
5	16QAM	25	0	20.48	20.86	20.96	
	Chanr	nel		18615	18900	19185	Tune-up
	Frequency	r (MHz)		1851.5	1880	1908.5	limit (dBm)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

3	QPSK	1	0	22.48	22.81	22.78	
3	QPSK	1	8	22.38	22.40	22.43	23.5
3	QPSK	1	14	22.35	22.72	22.61	
3	QPSK	8	0	21.96	22.02	21.96	
3	QPSK	8	4	21.95	21.86	21.79	00.5
3	QPSK	8	7	21.86	21.79	21.63	22.5
3	QPSK	15	0	21.99	21.88	21.66	
3	16QAM	1	0	21.88	22.27	22.21	
3	16QAM	1	8	21.52	21.78	22.15	22.5
3	16QAM	1	14	21.54	21.93	22.31	
3	16QAM	8	0	20.47	20.97	20.92	
3	16QAM	8	4	20.40	20.87	21.10	21 5
3	16QAM	8	7	20.51	20.83	21.05	21.5
3	16QAM	15	0	20.53	20.95	20.98	
	Chan	nel		18607	18900	19193	Tune-up
	Frequency	/ (MHz)		1850.7	1880	1909.3	limit (dBm)
1.4	QPSK	1	0	22.84	22.84	22.85	
1.4	QPSK	1	3	22.96	23.06	22.93	
1.4	QPSK	1	5	22.99	23.01	23.10	00 F
1.4	QPSK	3	0	23.01	23.10	23.02	23.5
1.4	QPSK	3	1	22.98	22.97	23.09	
1.4	QPSK	3	3	22.86	22.96	22.96	
1.4	QPSK	6	0	22.12	22.13	22.02	22.5
1.4	16QAM	1	0	21.32	21.68	22.01	
4.4			Ŭ	202	21.00	-	
1.4	16QAM	1	3	21.74	22.28	22.19	
1.4	16QAM 16QAM	1	3	21.74 21.40	22.28 21.64	22.19 21.96	00 F
1.4 1.4 1.4	16QAM 16QAM 16QAM	1 1 3	3 5 0	21.74 21.40 21.47	22.28 21.64 22.21	22.19 21.96 21.91	22.5
1.4 1.4 1.4 1.4 1.4	16QAM 16QAM 16QAM 16QAM	1 1 3 3	3 5 0 1	21.74 21.40 21.47 21.46	22.28 21.64 22.21 21.99	22.19 21.96 21.91 22.14	22.5
1.4 1.4 1.4 1.4 1.4	16QAM 16QAM 16QAM 16QAM 16QAM	1 1 3 3 3	3 5 0 1 3	21.74 21.40 21.47 21.46 21.38	22.28 21.64 22.21 21.99 21.79	22.19 21.96 21.91 22.14 22.12	22.5

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

LTE Band 4

				Power	Power	Power	
BW [MHz]	Modulation	RB Size	RB Offset	Low	Middle	High	Tune-up
				Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	limit
	Cha	nnel		20050	20175	20300	(dBm)
	Frequen	cy (MHz)		1720	1732.5	1745	
20	QPSK	1	0	23.96	23.98	23.99	
20	QPSK	1	49	23.78	23.69	23.88	24.0
20	QPSK	1	99	23.89	23.88	23.90	
20	QPSK	50	0	23.32	23.31	23.35	
20	QPSK	50	24	23.25	23.16	23.39	22 F
20	QPSK	50	50	23.26	23.13	23.21	23.5
20	QPSK	100	0	23.10	23.08	23.12	
20	16QAM	1	0	22.60	22.33	22.66	
20	16QAM	1	49	22.54	22.50	22.59	23.5
20	16QAM	1	99	22.14	22.44	22.77	
20	16QAM	50	0	21.23	21.24	21.44	
20	16QAM	50	24	21.11	21.10	21.46	22 F
20	16QAM	50	50	21.02	21.20	21.74	22.5
20	16QAM	100	0	21.14	21.18	21.55	
	Cha	nnel		20025	20175	20325	Tune-up
	Fraguan			1717.5	1722.5	1747 5	limit
	Fiequeir			1717.5	1732.5	1747.5	(dBm)
15	QPSK	1	0	23.80	23.82	23.91	
15	QPSK	1	37	23.79	23.86	23.96	24.5
15	QPSK	1	74	23.88	23.96	23.99	
15	QPSK	36	0	22.96	23.03	23.21	
15	QPSK	36	20	23.01	23.10	23.02	22.5
15	QPSK	36	39	23.12	23.01	23.00	23.5
15	QPSK	75	0	22.98	22.98	23.02	
15	16QAM	1	0	22.49	22.37	22.51	
15	16QAM	1	37	22.42	22.12	22.95	23.5
15	16QAM	1	74	22.10	22.18	22.91	
15	16QAM	36	0	21.18	21.13	21.46	
15	16QAM	36	20	21.12	21.05	21.63	00 F
15	16QAM	36	39	21.03	21.09	21.78	22.5
15	16QAM	75	0	21.10	21.13	21.61	
	Cha	nnel		20000	20175	20350	Tune-up

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

	Frequency (MHz)				1732.5	1750	limit (dBm)
10	QPSK	1	0	23.08	23.09	23.01	
10	QPSK	1	25	23.01	23.03	23.10	23.5
10	QPSK	1	49	23.12	23.10	23.08	
10	QPSK	25	0	23.22	23.21	23.12	
10	QPSK	25	12	23.23	23.12	22.98	
10	QPSK	25	25	23.01	22.97	22.90	23.5
10	QPSK	50	0	22.98	22.96	22.96	
10	16QAM	1	0	21.85	22.12	22.46	
10	16QAM	1	25	22.29	22.36	22.80	22.5
10	16QAM	1	49	22.28	22.37	23.17	
10	16QAM	25	0	21.07	21.06	21.54	
10	16QAM	25	12	21.02	20.98	21.61	
10	16QAM	25	25	21.01	21.07	21.76	21.5
10	16QAM	50	0	21.04	21.13	21.70	
-	Cha	nnel		19975	20175	20375	Tune-up
	Frequen	cy (MHz)		1712.5	1732.5	1752.5	limit (dBm)
5	QPSK	1	0	23.05	22.91	23.01	(dBill)
5	QPSK	1	12	23.12	23.01	23.11	23.5
5	QPSK	1	24	23.41	23.10	23.57	
5	QPSK	12	0	23.20	23.18	23.08	
5	QPSK	12	7	23.20	23.02	23.12	
5	QPSK	12	13	23.12	23.23	23.36	23.5
5	QPSK	25	0	23.21	23.22	23.26	
5	16QAM	1	0	22.14	21.89	22.63	
5	16QAM	1	12	22.41	22.13	23.09	22.5
5	16QAM	1	24	21.93	21.68	22.41	
5	16QAM	12	0	21.06	21.16	21.71	
5	16QAM	12	7	21.06	20.95	21.69	
5	16QAM	12	13	21.10	21.00	21.68	21.5
5	16QAM	25	0	21.01	20.95	21.65	
	Cha	nnel	1	19965	20175	20385	Tune-up
	Frequency (MHz)				1732.5	1753.5	limit (dBm)
3	QPSK	1	0	22.98	23.38	23.43	
3	QPSK	1	8	22.96	23.25	23.41	23.5

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

3	QPSK	1	14	23.01	23.34	23.44	
3	QPSK	8	0	22.12	22.10	22.16	
3	QPSK	8	4	22.32	22.31	22.26	22.5
3	QPSK	8	7	22.41	22.40	22.43	22.5
3	QPSK	15	0	22.46	22.35	22.25	
3	16QAM	1	0	22.15	22.19	22.01	
3	16QAM	1	8	22.04	22.31	22.86	22.5
3	16QAM	1	14	22.47	22.40	23.09	
3	16QAM	8	0	20.95	21.19	21.56	
3	16QAM	8	4	21.07	21.09	21.60	04.5
3	16QAM	8	7	21.05	20.99	21.87	21.5
3	16QAM	15	0	21.08	21.17	21.70	
	Cha	nnel		19957	20175	20393	Tune-up
	Fraguan			1710 7	1700 E	1754.0	limit
	Fiequei	cy (IVIHZ)		1710.7	1732.5	1754.5	(dBm)
1.4	QPSK	1	0	23.69	23.74	23.69	
1.4	QPSK	1	3	23.58	23.70	23.66	
1.4	QPSK	1	5	23.46	23.50	23.56	24
1.4	QPSK	3	0	23.16	23.20	23.46	24
1.4	QPSK	3	1	23.60	23.69	23.87	
1.4	QPSK	3	3	23.77	23.78	23.80	
1.4	QPSK	6	0	22.89	22.80	22.79	23
1.4	16QAM	1	0	21.92	21.72	22.56	
1.4	16QAM	1	3	22.27	22.42	22.74	
1.4	16QAM	1	5	21.92	21.89	22.52	22
1.4	16QAM	3	0	22.34	22.07	22.82	23
1.4	16QAM	3	1	22.13	22.18	22.75	
1.4	16QAM	3	3	21.93	22.10	22.70	
1.4	16QAM	6	0	21.01	21.00	21.71	22

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

LTE Band 7

BW [MHz]	Modulation	RB Size	RB Offset		Measured Power		Tune-up
	Cha	nnel	1	20850	21100	21350	limit
	Frequen	cy (MHz)		2510	2535	2560	(dBm)
20	QPSK	1	0	23.79	23.87	24.18	
20	QPSK	1	49	24.01	23.88	24.12	24.5
20	QPSK	1	99	23.00	23.87	23.98	
20	QPSK	50	0	23.02	23.48	23.01	
20	QPSK	50	24	23.13	23.03	23.25	00 F
20	QPSK	50	50	23.26	23.16	23.06	23.5
20	QPSK	100	0	23.41	23.34	23.30	
20	16QAM	1	0	22.78	22.93	23.44	
20	16QAM	1	49	22.95	22.93	23.07	23.5
20	16QAM	1	99	22.87	23.09	22.85	
20	16QAM	50	0	21.58	21.83	21.92	
20	16QAM	50	24	20.59	21.72	21.82	
20	16QAM	50	50	20.76	21.68	21.77	22
20	16QAM	100	0	20.68	21.80	21.93	
	Cha	nnel		20825	21100	21375	Tune-up
	Frequency (MHz)				2535	2562.5	limit (dBm)
15	QPSK	1	0	23.88	23.96	24.01	
15	QPSK	1	37	23.86	23.89	23.99	24.5
15	QPSK	1	74	23.94	24.03	24.06	
15	QPSK	36	0	22.96	23.12	23.05	
15	QPSK	36	20	23.01	23.22	23.22	
15	QPSK	36	39	23.06	23.05	23.01	23.5
15	QPSK	75	0	23.41	23.12	23.10	
15	16QAM	1	0	21.86	23.06	22.84	
15	16QAM	1	37	22.12	22.92	22.84	23.5
15	16QAM	1	74	21.85	22.93	22.85	
15	16QAM	36	0	20.43	21.62	21.77	
15	16QAM	36	20	20.60	21.49	21.81	00 F
15	16QAM	36	39	20.67	21.60	21.81	22.5
15	16QAM	75	0	20.56	21.56	21.83	
	Cha	nnel		20800	21100	21400	Tune-up
	Frequen	cy (MHz)		2505	2535	2565	limit

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

							(dBm)
10	QPSK	1	0	23.98	23.94	24.01	
10	QPSK	1	25	23.76	23.86	23.99	24.5
10	QPSK	1	49	23.89	24.04	24.06	
10	QPSK	25	0	22.90	23.10	23.05	
10	QPSK	25	12	23.01	23.27	23.22	00 F
10	QPSK	25	25	23.08	23.06	23.02	23.5
10	QPSK	50	0	23.48	23.11	23.12	
10	16QAM	1	0	21.58	22.63	22.68	
10	16QAM	1	25	21.74	22.71	23.02	23
10	16QAM	1	49	21.82	22.68	23.12	
10	16QAM	25	0	20.42	21.56	21.75	
10	16QAM	25	12	20.39	21.42	21.69	00.5
10	16QAM	25	25	20.57	21.51	21.80	22.5
10	16QAM	50	0	20.50	21.51	21.79	
	Cha	innel		20775	21100	21425	Tune-up
	Frequen	cy (MHz)		2502.5	2535	2567.5	limit (dBm)
5	QPSK	1	0	23.29	23.55	23.68	
5	QPSK	1	12	23.12	23.10	23.22	24.5
5	QPSK	1	24	23.27	23.59	23.63	
5	QPSK	12	0	23.40	23.48	23.40	
5	QPSK	12	7	23.24	23.20	23.15	
5	QPSK	12	13	23.35	23.12	23.10	23.5
5	QPSK	25	0	23.30	23.15	23.11	
5	16QAM	1	0	22.21	22.53	22.67	
5	16QAM	1	12	21.57	22.75	22.93	23.5
5	16QAM	1	24	22.05	22.81	22.72	
5	16QAM	12	0	20.29	21.63	21.77	
5	16QAM	12	7	20.34	21.37	21.81	00 5
5	16QAM	12	13	20.32	21.54	21.83	22.5
5	16QAM	25	0	20.31	21.54	21.74	

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

LTE Band 12

				Power	Power	Power	
BW [MHz]	Modulation	RB Size	RB Offset	Low	Middle	High	Tune-up
				Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	limit
	Cha	nnel		23060	23095	23130	(dBm)
	Frequen	cy (MHz)		704	707.5	711	
10	QPSK	1	0	22.22	22.29	21.97	
10	QPSK	1	25	22.18	22.19	22.01	22.5
10	QPSK	1	49	22.22	22.12	21.84	
10	QPSK	25	0	21.18	21.19	21.13	
10	QPSK	25	12	21.13	21.01	21.08	21 5
10	QPSK	25	25	21.08	21.03	21.00	21.5
10	QPSK	50	0	21.14	21.15	21.08	
10	16QAM	1	0	21.48	21.46	20.93	
10	16QAM	1	25	21.48	21.49	21.08	21.5
10	16QAM	1	49	21.40	21.02	20.88	
10	16QAM	25	0	20.26	20.20	19.96	
10	16QAM	25	12	20.12	20.06	19.85	20 F
10	16QAM	25	25	20.07	20.04	19.73	20.5
10	16QAM	50	0	20.22	20.12	19.92	
	Cha	nnel		23035	23095	23155	Tune-up
	Frequen	cy (MHz)		701.5	707.5	713.5	limit
							(dBm)
5	QPSK	1	0	22.27	22.10	21.96	
5	QPSK	1	12	22.13	22.09	21.96	22.5
5	QPSK	1	24	21.99	21.79	21.25	
5	QPSK	12	0	21.19	21.20	21.08	
5	QPSK	12	7	21.10	21.13	21.11	21.5
5	QPSK	12	13	21.12	21.09	21.12	
5	QPSK	25	0	21.13	21.15	21.14	
5	16QAM	1	0	21.37	21.10	20.74	
5	16QAM	1	12	21.49	21.27	21.22	21.5
5	16QAM	1	24	21.15	21.09	20.32	
5	16QAM	12	0	20.41	20.18	19.84	
5	16QAM	12	7	20.15	20.09	19.67	20.5
5	16QAM	12	13	20.24	20.08	19.47	20.0
5	16QAM	25	0	20.29	20.04	19.60	
	Channel				23095	23165	Tune-up

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

714.5

22.06

21.96

21.89

21.32

21.28

707.5

21.99

21.89

21.78

21.37

21.34

limit

(dBm)

22.5

MO	RLAB	•				
		Frequen	cy (MHz)		700.5	
	3	QPSK	1	0	22.09	
	3	QPSK	1	8	21.98	
	3	QPSK	1	14	21.94	
	3	QPSK	8	0	21.12	
	3	QPSK	8	4	21.08	
	3	QPSK	8	7	21.43	
	3	QPSK	15	0	21.01	
	3	16QAM	1	0	21.22	
	3	16QAM	1	8	21.32	
	3	16QAM	1	14	21.46	
	3	16QAM	8	0	20.45	
	3	16QAM	8	4	20.35	
	3	16QAM	8	7	20.46	
	3	16QAM	15	0	20.26	
		Cha	nnel		23017	
		Frequen	cy (MHz)		699.7	
	1	1	1			

-		-					21 5
3	QPSK	8	7	21.43	21.35	21.28	21.5
3	QPSK	15	0	21.01	21.08	21.13	
3	16QAM	1	0	21.22	21.44	20.95	
3	16QAM	1	8	21.32	21.36	20.45	21.5
3	16QAM	1	14	21.46	21.46	20.55	
3	16QAM	8	0	20.45	20.10	19.45	
3	16QAM	8	4	20.35	20.18	19.28	20.5
3	16QAM	8	7	20.46	19.94	19.30	20.5
3	16QAM	15	0	20.26	20.14	19.58	
	Cha	nnel		23017	23095	23173	Tune-up
	Frequen	су (MHz)		699.7	707 5	715 3	limit
	riequen			033.7	101.5	710.0	(dBm)
1.4	QPSK	1	0	22.11	21.74	21.22	
1.4	QPSK	1	3	22.03	22.02	21.99	
1.4	QPSK	1	5	22.12	22.01	22.03	22.5
1.4	QPSK	3	0	22.08	21.87	21.86	22.5
1.4	QPSK	3	1	21.98	21.88	21.88	
1.4	QPSK	3	3	21.92	21.89	21.96	
1.4	QPSK	6	0	20.90	20.98	20.89	21.5
1.4	16QAM	1	0	21.10	21.08	20.35	
1.4	16QAM	1	3	21.47	21.47	20.74	
1.4	16QAM	1	5	21.25	21.01	20.10	01 E
1.4	16QAM	3	0	21.41	21.50	20.56	21.5
1.4	16QAM	3	1	21.50	21.22	20.62	
1.4	16QAM	3	3	21.46	21.08	20.49	
1.4	16QAM	6	0	20.31	20.11	19.49	20.5

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

LTE Band 17

				Power	Power	Power	
BW [MHz]	Modulation	RB Size	RB Offset	Low	Middle	High	Tune-up
				Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	limit
	Cha	nnel		23780	23790	23800	(dBm)
	Frequen	cy (MHz)		709	710	711	
10	QPSK	1	0	22.46	22.26	22.31	
10	QPSK	1	25	22.34	22.08	21.99	23
10	QPSK	1	49	22.31	22.01	21.91	
10	QPSK	25	0	21.40	21.38	21.08	
10	QPSK	25	12	21.38	21.14	21.22	22
10	QPSK	25	25	21.78	21.77	21.93	22
10	QPSK	50	0	21.18	21.18	21.09	
10	16QAM	1	0	21.50	21.20	21.41	
10	16QAM	1	25	21.37	21.58	21.24	22
10	16QAM	1	49	21.36	21.28	20.93	
10	16QAM	25	0	20.28	20.33	20.10	
10	16QAM	25	12	20.27	20.13	19.97	01
10	16QAM	25	25	20.12	19.94	19.80	21
10	16QAM	50	0	20.19	20.15	19.95	
	Cha	nnel		23755	23790	23825	Tune-up
	Frequen	cy (MHz)		706.5	710	713.5	limit (dBm)
5	QPSK	1	0	22.16	22.16	21.40	
5	QPSK	1	12	22.23	22.28	22.19	23
5	QPSK	1	24	22.19	22.18	22.21	
5	QPSK	12	0	21.32	21.28	21.59	
5	QPSK	12	7	21.52	21.36	21.28	
5	QPSK	12	13	21.29	21.23	21.21	22
5	QPSK	25	0	21.12	21.16	21.24	
5	16QAM	1	0	21.01	21.34	20.95	
5	16QAM	1	12	21.50	21.58	20.87	22
5	16QAM	1	24	21.00	21.23	20.54	
5	16QAM	12	0	20.37	20.34	19.83	
5	16QAM	12	7	20.27	20.07	19.72	04
5	16QAM	12	13	20.24	20.17	19.51	21
5	16QAM	25	0	20.24	20.07	19.72	

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

4. 2.4GHz Wi-Fi Average output power

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
	000 445	CH 1	2412	16.07	16.50	100
	802.11D	CH 6	2437	16.09	16.50	100
	Twops	CH 11	2462	15.96	16.50	100
	802 11 a	CH 1	2412	12.09	12.50	100
2.4GHz WLAN	6Mbps	CH 6	2437	14.06	14.50	100
		CH 11	2462	13.84	14.50	100
	802 11n HT20	CH 1	2412	12.04	12.50	100
	802.110-FT120	CH 6	2437	14.01	14.50	100
	MCGO	CH 11	2462	13.83	14.50	100
	000 44a UT40	CH 3	2422	13.20	13.50	100
	002.110-H140	CH 6	2437	13.19	13.50	100
	MCS0	CH 9	2452	13.05	13.50	100

5. 5GHz Wi-Fi Average output power

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
	802.11a 6Mbps	CH 36	5180	13.79	14.00	100
		CH 44	5220	13.14	14.00	100
5.2GHz WLAN		CH 48	5240	13.83	14.00	100
	802.11n-HT20	CH 36	5180	13.90	14.50	100
		CH 44	5220	13.91	14.50	100
	WC30	CH 48	5240	13.18	13.50	100
	802.11n-HT40	CH 38	5190	13.52	14.00	100
	MCS0	CH 46	5230	13.53	14.00	100

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
	802.11a 6Mbps	CH 52	5260	13.08	13.50	100
		CH 60	5300	13.84	14.50	100
5.3GHz WLAN		CH 64	5320	13.61	14.00	100
	802.11n-HT20	CH 52	5260	13.56	14.00	100
		CH 60	5300	12.94	13.50	100
	MCSU	CH 64	5320	13.65	14.00	100
	802.11n-HT40	CH 54	5270	13.39	14.00	100
	MCS0	CH 62	5310	13.38	14.00	100

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
	902 110	CH 100	5500	14.60	15.00	100
	6Mbps	CH 120	5600	14.46	15.00	100
	ownps	CH 140	5700	14.80	15.50	100
5.5GHZ WLAN	802.11n-HT20	CH 100	5500	14.03	14.50	100
		CH 120	5600	14.57	15.00	100
	WC30	CH 140	5700	14.26	14.50	100
	000 44a UT40	CH 102	5510	13.35	14.00	100
	802.11n-H140 MCS0	CH 126	5630	13.55	14.00	100
		CH 142	5710	13.83	14.00	100

	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
	802.115	CH 149	5745	13.23	13.50	100
	6Mbps	CH 157		12.88	13.50	100
5.8GHz WLAN		CH 165	5825	13.49	14.00	100
	802.11n-HT20 MCS0	CH 149	5745	13.28	13.50	100
		CH 157	5785	13.36	13.50	100
		CH 165	5825	12.90	13.50	100
	802.11n-HT40	CH 151	5755	12.56	13.00	100
	MCS0	CH 159	5795	13.19	13.50	100

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

6. BT average output power

Mode	Channel	Frequency	Average power (dBm)				
Mode	Channel	(MHz)	1Mbps	2Mbps	3Mbps		
	CH 00	2402	3.87	3.14	3.25		
BR / EDR	CH 39 2441		5.94	4.94	5.01		
	CH 78	2480	5.01	5.04	4.15		
Т	une-Up Limit (dBm	ו)	6.5	5.5	5.5		

Mode	Channel	Frequency	Peak power (dBm)		
	Charmer	(MHz)	GFSK		
LE	CH 00	2402	-3.16		
	CH 19	2440	-3.21		
	CH 39	2480	-3.98		

Stand-alone SAR Evaluation

Test distance: 10m	m		
Band	Highest power(mW) per tune up	1-g SAR test threshold	Test required?
Wi-Fi (2.4G)	45.00		Yes
Wi-Fi (5.2GHz)	28.00		Yes
Wi-Fi (5.3GHz)	28.00	[(max. power of channel, including tune-up	Yes
Wi-Fi (5.5G)	35.00	mm)] • $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR	Yes
Wi-Fi (5.8G)	25.00		Yes
Bluetooth	4.00		No

The SAR test for BT is not required.

13. Test Results List

Test Guidance:

<GSM>

- 1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 2. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4Tx slots) for GSM850/GSM1900 is considered as the primary mode.
- 3. Other configurations of GSM / GPRS / EDGE are considered as secondary modes.

<WCDMA>

- The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode.
- The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 3. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.
- 4. For HSPA+ devices supporting 16 QAM in the uplink, power measurements procedure is according to the configurations in Table C.11.1.4 of 3GPP TS 34.121-1.
- 5. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. The maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA / HSPA+ is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA / HSPA+ to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA / HSPA+, and according to the following RF output power, the output power results of the secondary modes (HSDPA / HSUPA / DC-HSDPA / HSPA+) are less than ¼ dB higher than the primary modes; therefore, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA / HSPA+.

<LTE>

1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"

c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor d. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor

e. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The Reported TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.

- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively.
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 4. Per KDB 648474 D04v01r03, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required.
- 5. Considering the users may install 3rd party software to enable VOIP, LTE Head SAR is also evaluated. Because FCC has not published uniform procedures for VOIP in LTE, therefore all channels and modes and modulations required under the other KDB pub 941225 D05 FCC LTE procedures were used for the held-near-head testing.
- Per KDB 941225 D05, for LTE, if the smaller bandwidth output power is within +/- ½ dB of the largest bandwidth, and the maximum SAR of the largest bandwidth is ≤ 1.45 W/kg, SAR for smaller bandwidth can be excluded.
- Per KDB 941225 D05, if the measured 50%-RB QPSK 1g-SAR for the middle or highest output power channel is ≤ 0.8W/kg, remaining 2 channels SAR tests can be excluded. Otherwise, 50% RB allocation of the remaining 2 channels SAR tests are necessary.
- 8. Per KDB 941225 D05, for LTE, if 50%-RB QPSK SAR ≤ 1.45 W/kg, 100%-RB QPSK SAR can be excluded; if 50%-RB 16QAM SAR ≤ 1.45 W/kg, 100%-RB 16QAM SAR can be excluded.

- 9. If SAR of 1 RB allocation is ≤ 1.45W/kg, SAR of 1 RB allocation of remaining channels can be excluded.
- 10. Per KDB 648474, if the highest output channel SAR for each exposure position is ≤ 0.8 W/kg, other channels SAR tests are not necessary.

<WLAN>

1. SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

- 2. 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for
- 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.
- 4. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. Justification for test configurations for WLAN per KDB Publication 248227 D02DR02-41929 for 2.4 GHz WI-FI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.

SAR Test List: Summary of Measurement Results for Head <GSM850 & GSM1900>

Plot			Test		Freq	Tune-up	Measured	Reported
No	Band	Mode	Position	Ch.	(MHz)	Scaling	1g SAR	1g SAR
110.			rosition		(11112)	Factor	(W/kg)	(W/kg)
1#	GSM850	GPRS(4 TX slots)	Right Cheek	251	848.8	1.052	0.066	0.069
	GSM850	GPRS(4 TX slots)	Right Tilt	251	848.8	1.052	0.030	0.032
	GSM850	GPRS(4 TX slots)	Left Cheek	251	848.8	1.052	0.054	0.057
	GSM850	GPRS(4 TX slots)	Left Tilt	251	848.8	1.052	0.043	0.045
	GSM1900	GPRS(4 TX slots)	Right Cheek	810	1909.8	1.002	0.053	0.053
	GSM1900	GPRS(4 TX slots)	Right Tilt	810	1909.8	1.002	0.030	0.030
2#	GSM1900	GPRS(4 TX slots)	Left Cheek	810	1909.8	1.002	0.121	0.121
	GSM1900	GPRS(4 TX slots)	Left Tilt	810	1909.8	1.002	0.038	0.038

<WCDMA Band II/IV/V>

Dist			Test		Free	Tune-up	Measured	Reported
Plot	Band	Mode	Test	Ch.	Freq.	Scaling	1g SAR	1g SAR
NO.			Position		(IVITIZ)	Factor	(W/kg)	(W/kg)
	WCDMA II	RMC 12.2Kbps	Right Cheek	9538	1907.6	1.054	0.094	0.099
	WCDMA II	RMC 12.2Kbps	Right Tilt	9538	1907.6	1.054	0.068	0.072
3#	WCDMA II	RMC 12.2Kbps	Left Cheek	9538	1907.6	1.054	0.097	0.102
	WCDMA II	RMC 12.2Kbps	Left Tilt	9538	1907.6	1.054	0.034	0.036
	WCDMA IV	RMC 12.2Kbps	Right Cheek	1513	1752.6	1.107	0.029	0.032
	WCDMA IV	RMC 12.2Kbps	Right Tilt	1513	1752.6	1.107	0.022	0.024
5#	WCDMA IV	RMC 12.2Kbps	Left Cheek	1513	1752.6	1.107	0.047	0.052
	WCDMA IV	RMC 12.2Kbps	Left Tilt	1513	1752.6	1.107	0.018	0.020
7#	WCDMA V	RMC 12.2Kbps	Right Cheek	4132	826.4	1.069	0.053	0.057
	WCDMA V	RMC 12.2Kbps	Right Tilt	4132	826.4	1.069	0.029	0.031
	WCDMA V	RMC 12.2Kbps	Left Cheek	4132	826.4	1.069	0.049	0.052
	WCDMA V	RMC 12.2Kbps	Left Tilt	4132	826.4	1.069	0.049	0.052

<LTE Band 2/4/7/12/17>

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

Plot		BW		RB	RB	Test		Freq.	Tune-up	Measured	Reported
No.	Band	(MHz)	Modulation	Size	offset	Position	Ch.	(MHz)	Scaling	1g SAR	1g SAR
		(0.20	•••			()	Factor	(W/kg)	(W/kg)
	LTE Band 2	20Mhz	QPSK	1	0	Right Cheek	18900	1880	1.029	0.051	0.052
	LTE Band 2	20Mhz	QPSK	1	0	Right Tilt	18900	1880	1.029	0.056	0.058
16#	LTE Band 2	20Mhz	QPSK	1	0	Left Cheek	18900	1880	1.029	0.083	0.085
	LTE Band 2	20Mhz	QPSK	1	0	Left Tilt	18900	1880	1.029	0.037	0.038
	LTE Band 2	20Mhz	QPSK	50	0	Right Cheek	18900	1880	1.074	0.043	0.046
	LTE Band 2	20Mhz	QPSK	50	0	Right Tilt	18900	1880	1.074	0.041	0.044
	LTE Band 2	20Mhz	QPSK	50	0	Left Cheek	18900	1880	1.074	0.067	0.072
	LTE Band 2	20Mhz	QPSK	50	0	Left Tilt	18900	1880	1.074	0.031	0.033
	LTE Band 4	20Mhz	QPSK	1	0	Right Cheek	20300	1745	1.002	0.044	0.044
	LTE Band 4	20Mhz	QPSK	1	0	Right Tilt	20300	1745	1.002	0.023	0.023
	LTE Band 4	20Mhz	QPSK	1	0	Left Cheek	20300	1745	1.002	0.043	0.043
	LTE Band 4	20Mhz	QPSK	1	0	Left Tilt	20300	1745	1.002	0.016	0.016
	LTE Band 4	20Mhz	QPSK	50	0	Right Cheek	20300	1745	1.035	0.035	0.036
	LTE Band 4	20Mhz	QPSK	50	0	Right Tilt	20300	1745	1.035	0.019	0.020
18#	LTE Band 4	20Mhz	QPSK	50	0	Left Cheek	20300	1745	1.035	0.053	0.055
	LTE Band 4	20Mhz	QPSK	50	0	Left Tilt	20300	1745	1.035	0.013	0.013
	LTE Band 7	20Mhz	QPSK	1	0	Right Cheek	21350	2560	1.078	0.122	0.131
	LTE Band 7	20Mhz	QPSK	1	0	Right Tilt	21350	2560	1.078	0.079	0.085
20#	LTE Band 7	20Mhz	QPSK	1	0	Left Cheek	21350	2560	1.078	0.229	0.247
	LTE Band 7	20Mhz	QPSK	1	0	Left Tilt	21350	2560	1.078	0.086	0.093
	LTE Band 7	20Mhz	QPSK	50	0	Right Cheek	21100	2535	1.052	0.064	0.067
	LTE Band 7	20Mhz	QPSK	50	0	Right Tilt	21100	2535	1.052	0.031	0.033
	LTE Band 7	20Mhz	QPSK	50	0	Left Cheek	21100	2535	1.052	0.134	0.141
	LTE Band 7	20Mhz	QPSK	50	0	Left Tilt	21100	2535	1.052	0.037	0.039
22#	LTE Band 12	10Mhz	QPSK	1	0	Right Cheek	23095	707.5	1.051	0.056	0.059
	LTE Band 12	10Mhz	QPSK	1	0	Right Tilt	23095	707.5	1.051	0.026	0.027
	LTE Band 12	10Mhz	QPSK	1	0	Left Cheek	23095	707.5	1.051	0.051	0.054
	LTE Band 12	10Mhz	QPSK	1	0	Left Tilt	23095	707.5	1.051	0.030	0.032
	LTE Band 12	10Mhz	QPSK	25	0	Right Cheek	23095	707.5	1.075	0.046	0.049
	LTE Band 12	10Mhz	QPSK	25	0	Right Tilt	23095	707.5	1.075	0.031	0.033
	LTE Band 12	10Mhz	QPSK	25	0	Left Cheek	23095	707.5	1.075	0.042	0.045
	LTE Band 12	10Mhz	QPSK	25	0	Left Tilt	23095	707.5	1.075	0.023	0.025

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

24#	LTE Band 17	10Mhz	QPSK	1	0	Right Cheek	23780	709	1.133	0.069	0.078
	LTE Band 17	10Mhz	QPSK	1	0	Right Tilt	23780	709	1.133	0.023	0.026
	LTE Band 17	10Mhz	QPSK	1	0	Left Cheek	23780	709	1.133	0.065	0.074
	LTE Band 17	10Mhz	QPSK	1	0	Left Tilt	23780	709	1.133	0.042	0.048
	LTE Band 17	10Mhz	QPSK	25	25	Right Cheek	23780	709	1.052	0.056	0.059
	LTE Band 17	10Mhz	QPSK	25	25	Right Tilt	23780	709	1.052	0.022	0.023
	LTE Band 17	10Mhz	QPSK	25	25	Left Cheek	23780	709	1.052	0.050	0.053
	LTE Band 17	10Mhz	QPSK	25	25	Left Tilt	23780	709	1.052	0.032	0.034

<WLAN2.4GHz &WLAN 5GHz >

Dist			Teet		Free	Tune-up	Measured	Reported
	Band	Mode	Desition	Ch.	rieq.	Scaling	1g SAR	1g SAR
NO.			Position		(MHZ)	Factor	(W/kg)	(W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Right Cheek	6	2437	1.099	0.140	0.154
	WLAN2.4GHz	802.11b 1Mbps	Right Tilt	6	2437	1.099	0.109	0.120
14#	WLAN2.4GHz	802.11b 1Mbps	Left Cheek	6	2437	1.099	0.165	0.181
	WLAN2.4GHz	802.11b 1Mbps	Left Tilt	6	2437	1.099	0.142	0.156
	WLAN5.3GHz	802.11a 6Mbps	Right Cheek	60	5300	1.164	0.080	0.093
	WLAN5.3GHz	802.11a 6Mbps	Right Tilt	60	5300	1.164	0.098	0.114
09#	WLAN5.3GHz	802.11a 6Mbps	Left Cheek	60	5300	1.164	0.116	0.135
	WLAN5.3GHz	802.11a 6Mbps	Left Tilt	60	5300	1.164	0.041	0.048
	WLAN5.5GHz	802.11a 6Mbps	Right Cheek	140	5700	1.175	0.110	0.129
	WLAN5.5GHz	802.11a 6Mbps	Right Tilt	140	5700	1.175	0.064	0.075
	WLAN5.5GHz	802.11a 6Mbps	Left Cheek	140	5700	1.175	0.074	0.087
10#	WLAN5.5GHz	802.11a 6Mbps	Left Tilt	140	5700	1.175	0.146	0.172
	WLAN5.8GHz	802.11a 6Mbps	Right Cheek	165	5825	1.125	0.105	0.118
28#	WLAN5.8GHz	802.11a 6Mbps	Right Tilt	165	5825	1.125	0.128	0.144
	WLAN5.8GHz	802.11a 6Mbps	Left Cheek	165	5825	1.125	0.062	0.070
	WLAN5.8GHz	802.11a 6Mbps	Left Tilt	165	5825	1.125	0.046	0.052

Summary of Measurement Results for Body (test distance 10mm) < GSM850&GSM1900>

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Tune-up Scaling Factor	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	GPRS(4 TX slots)	Front Side	251	848.8	1.052	0.112	0.118
26#	GSM850	GPRS(4 TX slots)	Back Side	251	848.8	1.052	0.369	0.388
	GSM1900	GPRS(4 TX slots)	Front Side	810	1909.8	1.002	0.097	0.097
27#	GSM1900	GPRS(4 TX slots)	Back Side	810	1909.8	1.002	0.621	0.622

<WCDMA Band II/IV/V>

Plot			Test		Freq	Tune-up	Measured	Reported
No	Band	Mode	Position	Ch.	(MHz)	Scaling	1g SAR	1g SAR
110.			1 051001		(11112)	Factor	(W/kg)	(W/kg)
	WCDMA II	RMC 12.2Kbps	Front Side	9538	1907.6	1.054	0.093	0.098
4#	WCDMA II	RMC 12.2Kbps	Back Side	9538	1907.6	1.054	0.540	0.569
	WCDMA IV	RMC 12.2Kbps	Front Side	1513	1752.6	1.107	0.064	0.071
6#	WCDMA IV	RMC 12.2Kbps	Back Side	1513	1752.6	1.107	0.869	0.962
	WCDMA IV	RMC 12.2Kbps	Back Side	1312	1712.4	1.112	0.684	0.760
	WCDMA IV	RMC 12.2Kbps	Back Side	1412	1732.4	1.112	0.786	0.874
	WCDMA V	RMC 12.2Kbps	Front Side	4132	826.4	1.069	0.024	0.026
8#	WCDMA V	RMC 12.2Kbps	Back Side	4132	826.4	1.069	0.173	0.185

<LTE Band 2/4/7/12/17>

Blat		DW/	DD	DD	Teet		From	Tune-up	Measured	Reported
PIOL	Band		KD Size	KD offoot	Resition	Ch.	(MU=)	Scaling	1g SAR	1g SAR
NO.		(11172)	5120	onset	Position		(11172)	Factor	(W/kg)	(W/kg)
	LTE Band 2	20Mhz	1	0	Front Side	18900	1880	1.029	0.168	0.173
	LTE Band 2	20Mhz	1	0	Back Side	18900	1880	1.029	0.912	0.938
	LTE Band 2	20Mhz	100	0	Back Side	18900	1880	1.028	0.564	0.580
	LTE Band 2	20Mhz	1	0	Back Side	18700	1860	1.057	0.826	0.873
17#	LTE Band 2	20Mhz	1	0	Back Side	19100	1900	1.033	0.701	0.724
	LTE Band 2	20Mhz	50	0	Front Side	18900	1880	1.074	0.128	0.137
	LTE Band 2	20Mhz	50	0	Back Side	18900	1880	1.074	0.703	0.755

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

	LTE Band 4	20Mhz	1	0	Front Side	20300	1745	1.002	0.084	0.084
19#	LTE Band 4	20Mhz	1	0	Back Side	20300	1745	1.002	1.166	1.168
	LTE Band 4	20Mhz	1	0	Back Side	20050	1720	1.002	1.018	1.020
	LTE Band 4	20Mhz	1	0	Back Side	20175	1732.5	1.005	1.144	1.149
	LTE Band 4	20Mhz	100	0	Back Side	20300	1745	1.002	1.030	1.032
	LTE Band 4	20Mhz	100	0	Back Side	20050	1720	1.002	0.848	0.850
	LTE Band 4	20Mhz	100	0	Back Side	20175	1732.5	1.005	0.904	0.908
	LTE Band 4	20Mhz	50	0	Front Side	20300	1745	1.035	0.070	0.072
	LTE Band 4	20Mhz	50	0	Back Side	20300	1745	1.035	0.949	0.982
	LTE Band 4	20Mhz	50	0	Back Side	20050	1720	1.042	0.839	0.875
	LTE Band 4	20Mhz	50	0	Back Side	20175	1732.5	1.045	0.760	0.794
	LTE Band 4	20Mhz	100	0	Back Side	20300	1745	1.035	0.901	0.933
	LTE Band 7	20Mhz	1	0	Front Side	21350	2560	1.078	0.453	0.488
21#	LTE Band 7	20Mhz	1	0	Back Side	21350	2560	1.078	0.200	0.216
	LTE Band 7	20Mhz	50	0	Front Side	21100	2535	1.052	0.245	0.258
	LTE Band 7	20Mhz	50	0	Back Side	21100	2535	1.052	0.099	0.104
	LTE Band 12	10Mhz	1	0	Front Side	23095	707.5	1.051	0.042	0.044
	LTE Band 12	10Mhz	1	0	Back Side	23095	707.5	1.051	0.190	0.200
	LTE Band 12	10Mhz	25	0	Front Side	23095	707.5	1.075	0.022	0.024
23#	LTE Band 12	10Mhz	25	0	Back Side	23095	707.5	1.075	0.153	0.164
	LTE Band 17	10Mhz	1	0	Front Side	23780	709	1.133	0.079	0.090
	LTE Band 17	10Mhz	1	0	Back Side	23780	709	1.133	0.199	0.226
	LTE Band 17	10Mhz	25	0	Front Side	23780	709	1.052	0.062	0.065
25#	LTE Band 17	10Mhz	25	0	Back Side	23780	709	1.052	0.232	0.244

Tel: 86-755-36698555 E-mail: service@morlab.cn

Fax: 86-755-36698525

Http://www.morlab.cn

<WLAN2.4GHz &WLAN 5GHz >

Blat			Test		From	Tune-up	Measured	Reported
PIOL	Band	Mode	Desition	Ch.	rieq.	Scaling	1g SAR	1g SAR
NO.			Position		(MHZ)	Factor	(W/kg)	(W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Front Side	6	2437	1.099	0.046	0.051
15#	WLAN2.4GHz	802.11b 1Mbps	Back Side	6	2437	1.099	0.364	0.400
	WLAN5GHz	802.11a 6Mbps	Front Side	60	5300	1.164	0.170	0.198
11#	WLAN5GHz	802.11a 6Mbps	Back Side	60	5300	1.164	0.171	0.199
	WLAN5GHz	802.11a 6Mbps	Front Side	140	5700	1.175	0.165	0.194
12#	WLAN5GHz	802.11a 6Mbps	Back Side	140	5700	1.175	0.113	0.133
	WLAN5GHz	802.11a 6Mbps	Front Side	165	5825	1.125	0.195	0.219
13#	WLAN5GHz	802.11a 6Mbps	Back Side	165	5825	1.125	0.185	0.208

<RFID>

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Tune-up Scaling	Measured 1g SAR	Reported 1g SAR
					1 40101	(•••,Kg)	(**/Kg)	
	RFID	-	Front Side	-	915.25	1.099	0.033	0.033
	RFID	-	top Side	-	915.25	1.099	0.015	0.015
	RFID	-	Left Side	-	915.25	1.099	0.014	0.015
	RFID	-	Right Side	-	915.25	1.099	0.012	0.013
29#	RFID	-	Front Side	-	902.75	1.099	0.048	0.048
	RFID	-	Front Side	-	927.25	1.099	0.027	0.028

<Bluetooth>

The BT stand-alone SAR is not required, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

(Max power=4.00 mW; min. test separation distance= 5mm for Head; f=2.4GHz)

BT estimated Head SAR =0.168W/Kg (1g)

(Max power=4.00 mW; min. test separation distance= 10mm for Body; f=2.4GHz)

BT estimated Body SAR =0.084W/Kg (1g)

14. Repeated SAR Measurement

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

-	Band	Mode	Test Position	Ch.	Freq. (MHz)	Tune-up Scaling Factor	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
original	WCDMA IV	RMC 12.2Kbps	Back Side	1513	1752.6	1.107	0.869	0.962
Repeat	WCDMA IV	RMC 12.2Kbps	Back Side	1513	1752.6	1.107	0.86	0.952

<Repeat SAR List>

-	Band	BW (MHz)	RB Size	RB offset	Test Position	Ch.	Freq. (MHz)	Tune-up Scaling	Measured 1g SAR	Reported 1g SAR
		. ,					、 ,	Factor	(W/kg)	(W/kg)
original	LTE Band 2	20Mhz	1	0	Back Side	18900	1880	1.029	0.912	0.938
Repeat	LTE Band 2	20Mhz	1	0	Back Side	18900	1880	1.029	0.91	0.936
original	LTE Band 4	20Mhz	1	0	Back Side	20300	1745	1.002	1.166	1.168
Repeat	LTE Band 4	20Mhz	1	0	Front Side	20300	1745	1.002	1.159	1.163
original	LTE Band 4	20Mhz	50	0	Back Side	20300	1745	1.035	0.949	0.982
Repeat	LTE Band 4	20Mhz	50	0	Back Side	20300	1745	1.035	0.941	0.974

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

15. Multiple Transmitters Evaluation

Simultaneous Evaluation:

No.	Simultaneous transmission Condition	Head	Body-worn
1	GSM/GPRS/EDGE + WLAN 2.4GHz	Yes	Yes
2	WCDMA + WLAN 2.4GHz	Yes	Yes
3	LTE + WLAN 2.4GHz	Yes	Yes
4	GSM/GPRS/EDGE + WLAN 5GHz	Yes	Yes
5	WCDMA + WLAN 5GHz	Yes	Yes
6	LTE + WLAN 5GHz	Yes	Yes
7	GSM/GPRS/EDGE + Bluetooth	Yes	Yes
8	WCDMA + Bluetooth	Yes	Yes
9	LTE + Bluetooth	Yes	Yes

Note:

- 1. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the Wi-Fi transmitter and another WWAN transmitter. Both transmitter often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.
- The hotspot SAR result may overlap with the body-worn accessory SAR requirements, per KDB 941225 D06, the more conservative configurations can be considered, thus excluding some unnecessary body-worn accessory SAR tests.
- 3. GSM supports voice and data transmission, though not simultaneously. WCDMA supports voice and data transmission simultaneously.
- 4. Simultaneous Transmission SAR evaluation is not required for BT and Wi-Fi, because the software mechanism have been incorporated to guarantee that the WLAN and Bluetooth transmitters would not simultaneously operate.
- 5. Per KDB 447498D01v06, Simultaneous Transmission SAR Evaluation procedures is as followed:

Step 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required. Step 2: If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated.

Step 3: If the ratio of SAR to peak separation distance is \leq 0.04, Simultaneous SAR measurement is not required.

Step 4: If the ratio of SAR to peak separation distance is > 0.04, Simultaneous SAR measurement is required and simultaneous transmission SAR value is calculated.

(The ratio is determined by: (SAR1 + SAR2) $^{1.5/Ri} \leq 0.04$,

Ri is the separation distance between the peak SAR locations for the antenna pair in mm)

Applicable Multiple Scenario Evaluation

Test	Main Ant.	Bluetooth	Wi-Fi	∑1-g SAR _{Max} (W/Kg)		
Position	SAR _{Max} (W/Kg)	SAR(W/Kg)	SAR _{Max} (W/Kg)	BT&Main Ant	Wi-Fi &Main Ant	
Hood	0.247	0.169	0.191	0.415	0.429	
Heau	0.247	0.100	0.101	0.415	0.420	
Body-worn	1.168	0.084	0.400	1.252	1.568	

Simultaneous Transmission SAR evaluation is not required for Wi-Fi and WCDMA&GSM<E, because the sum of 1g SAR_{Max} is **1.568** W/Kg < 1.6W/Kg for Wi-Fi and WCDMA&GSM<E. Simultaneous Transmission SAR evaluation is not required for BT and WCDMA&GSM<E, because the sum of 1g SAR_{Max} is **1.252**W/Kg < 1.6W/Kg for BT and WCDMA&GSM<E. (According to KDB 447498D01v06, the sum of the Highest <u>reported</u>SAR of each antenna does not exceed the limit, simultaneous transmission SAR evaluation is not required.)

END OF REPORT

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525

w.morlab.cn E-mail: service@morlab.cn

Annex A General Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road,
	Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R.
	China
ResponsibleTest Lab	Mr. Su Fong
Manager:	Mi. Su Feng
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab
	Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road,
	Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R.
	China

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

3. List of Test Equipments

No.	Instrument	Туре	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz,	(\mathbf{p}, \mathbf{q})	(\mathbf{n}, \mathbf{n})
	PC	SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Aglient (8960, SN:10752)	2017-5-24	1year
3	Network Emulator	Rohde&Schwarz (CMW500,SN:124534)	2017-5-25	1year
4	Network Analyzer	Agilent(E5071B ,SN:MY42404762)	2017-5-25	1year
5	Voltmeter	Keithley (2000, SN:1000572)	2017-7-8	1year
6	Synthetizer	Rohde&Schwarz (SML_03, SN:101868)	2017-8-24	1year
7	Signal Generator	Rohde&Schwarz (SMP_02)	2017-7-8	1year
8	Power Amplifier	PRANA (Ap32 SV125AZ)	2017-7-8	1year
9	Power Meter	Agilent (E4416A, SN:MY45102093)	2017-7-8	1year
10	Power Sensor	Agilent (N8482A, SN:MY41091706)	2017-7-8	1year
11	Power Meter	Rohde&Schwarz (NRVD, SN:101066)	2017-7-8	1year
12	Power Sensor	MA2411B	2017-7-8	1year
13	Directional coupler	Giga-tronics(SN:1829112)	2017-7-24	1year
14	Probe	Satimo (SN:SN 37/08 EP80)	2017-7-5	1year
15	Probe	Satimo (SN:SN 37/13 EPG193)	2017-7-5	1year
16	Dielectric Probe Kit	Agilent (85033E)	2017-7-5	1year
17	Phantom	Satimo (SN:SN_36_08_SAM62)	N/A	N/A
18	Liquid	Satimo(Last Calibration: 2018-01-08 to 2018-04-19)	N/A	N/A
19	Dipole 750MHz	Satimo (SN30/13 DIP0G750)	2017-7-5	1year
20	Dipole 835MHz	Satimo (SN 20/08 DIPC99)	2017-7-5	1year
21	Dipole 1800MHz	Satimo (SN 36/08 DIPF101)	2017-7-5	1year
22	Dipole 2000MHz	Satimo (SN 20/08 DIPI102)	2017-7-5	1year
23	Dipole 2450MHz	Satimo (SN 30/13 DIP2G450-263)	2017-7-5	1year
24	Dipole 2600MHz	Satimo (SN 30/13 DIP2G600-265)	2017-7-5	1year
25	Dipole 5-6GHz	Satimo (SN 41/12 WGA21)	2017-7-5	1year
26	Thermo meter	KTJ(mode-01)	2017-6-10	1year

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Annex B Test Setup Photos

Head

Right Cheek

Right Tilt

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

Left Cheek

Left Tilt

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel:
 86-755-36698555
 Fax

 Http://www.morlab.cn
 E-m

Fax: 86-755-36698525 E-mail: service@morlab.cn

Front Side_10mm

Back Side_10mm

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Top Side_10mm

Front Side_10mm

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel:
 86-755-36698555
 Fax:

 Http://www.morlab.cn
 E-ma

Fax: 86-755-36698525 E-mail: service@morlab.cn

Left Side_10mm

Right Side_10mm

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel:
 86-755-36698555
 Fax:
 86

 Http://www.morlab.cn
 E-mail:
 s

Fax: 86-755-36698525 E-mail: service@morlab.cn

Annex C Plots of System Performance Check

System Performance Check Data (750MHz Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.23

Measurement duration: 13 minutes 28 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	
Band	750MHz
Channels	
Signal	CW

B. SAR Measurement Results

Frequency (MHz)	750.00000
Relative permittivity (real part)	41.350601
Conductivity (S/m)	0.885608
Power drift (%)	1.030000
Ambient Temperature:	22.6°C
Liquid Temperature:	21.2°C
ConvF:	6.44
Crest factor:	1:1

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

Maximum location: X=2.00, Y=0.00

SAR 10g (W/Kg)	0.539271
SAR 1g (W/Kg)	0.783215

Z Axis Scan

System Performance Check Data (750MHz Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.12

Measurement duration: 13 minutes 36 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	
Band	750MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	750.00000
Relative permittivity (real part)	53.517799
Conductivity (S/m)	1.031025
Power drift (%)	0.320000
Ambient Temperature:	22.6°C
Liquid Temperature:	21.2°C
ConvF:	6.68
Crest factor:	1:1

MORLAB

Maximum location: X=2.00, Y=0.00

SAR 10g (W/Kg)	0.609663
SAR 1g (W/Kg)	0.905411

<u>Z Axis Scan</u>

System Performance Check Data (835MHz Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.23

Measurement duration: 13 minutes 35 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	
Band	835MHz
Channels	
Signal	CW

B. SAR Measurement Results

Frequency (MHz)	835.000000
Relative permittivity (real part)	41.182291
Conductivity (S/m)	0.891718
Power drift (%)	1.070000
Ambient Temperature:	22.6°C
Liquid Temperature:	21.2°C
ConvF:	6.13
Crest factor:	1:1

Maximum location: X=7.00, Y=-1.00

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR 10g (W/Kg)	0.622151
SAR 1g (W/Kg)	0.968476

<u>Z Axis Scan</u>

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

System Performance Check Data (835MHz Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.22

Measurement duration: 13 minutes 28 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	
Band	835MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	835.00000
Relative permittivity (real part)	55.382291
Conductivity (S/m)	0.972171
Power drift (%)	1.070000
Ambient Temperature:	22.6°C
Liquid Temperature:	21.2°C
ConvF:	6.37
Crest factor:	1:1

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	0.629151
SAR 1g (W/Kg)	0.986576

Z Axis Scan

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

System Performance Check Data(1800MHz Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.24

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	
Band	1800MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	1800.000000
Relative permittivity (real part)	40.095167
Conductivity (S/m)	1.365073
Power drift (%)	0.310000
Ambient Temperature:	22.3°C
Liquid Temperature:	22.6°C
ConvF:	5.21
Crest factor:	1:1

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Maximum location: X=3.00, Y=1.00

SAR 10g (W/Kg)	2.048386
SAR 1g (W/Kg)	3.698154

Z Axis Scan

System Performance Check Data(1800MHz Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.09

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	
Band	1800MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	1800.000000
Relative permittivity (real part)	53.295167
Conductivity (S/m)	1.515073
Power drift (%)	0.310000
Ambient Temperature:	22.3°C
Liquid Temperature:	22.6°C
ConvF:	5.38
Crest factor:	1:1

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Maximum location: X=3.00, Y=1.00

SAR 10g (W/Kg)	2.038386
SAR 1g (W/Kg)	3.753454

Z Axis Scan

System Performance Check Data(2000MHz Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.24

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Flat		
Device Position			
Band	2000MHz		
Channels			
Signal	CW		

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2000.000000
Relative permittivity (real part)	39.984477
Conductivity (S/m)	1.414283
Power drift (%)	-0.830000
Ambient Temperature:	22.1°C
Liquid Temperature:	22.4°C
ConvF:	5.61
Crest factor:	1:1

MORLAB

Maximum location: X=7.00, Y=1.00

SAR 10g (W/Kg)	1.992518
SAR 1g (W/Kg)	4.255954

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.2075	7.3996	5.4654	4.1101	3.1286	2.4128
(W/Kg)							
	S 10.21 - 9.00 - 8.00 - 7.00 - 1.00 - 3.00 - 1.88 - 0.0	AR, Z A	xis Scar	n (X =)	7, Y = 1	.0 35.0	

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

System Performance Check Data(2000MHz Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.09

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Flat		
Device Position			
Band	2000MHz		
Channels			
Signal	CW		

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2000.000000	
Relative permittivity (real part)	53.285167	
Conductivity (S/m)	1.514073	
Power drift (%)	-1.860000	
Ambient Temperature:	22.1°C	
Liquid Temperature:	22.4°C	
ConvF:	5.71	
Crest factor:	1:1	

MORLAB

Maximum location: X=7.00, Y=1.00

SAR 10g (W/Kg)	2.092518
SAR 1g (W/Kg)	4.119540

Z Axis Scan

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

System Performance Check Data(2450MHz Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=12mm,dy=12mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 2018.02.24

Measurement duration: 13 minutes 31 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Flat		
Device Position			
Band	2450MHz		
Channels			
Signal	CW		

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2450.000000
Relative permittivity (real part)	39.284446
Conductivity (S/m)	1.836061
Power Drift (%)	1.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	4.74
Crest factor:	1:1

MORLAB

Maximum location: X=6.00, Y=1.00

SAR 10g (W/Kg)	2.377250
SAR 1g (W/Kg)	5.326074

Z Axis Scan

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

System Performance Check Data(2450MHz Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=12mm,dy=12mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 2018.02.08

Measurement duration: 13 minutes 31 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Flat		
Device Position			
Band	2450MHz		
Channels			
Signal	CW		

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2450.000000
Relative permittivity (real part)	52.884446
Conductivity (S/m)	1.966143
Power Drift (%)	1.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	4.93
Crest factor:	1:1

MORLAB

Maximum location: X=6.00, Y=1.00

SAR 10g (W/Kg)	2.377250	
SAR 1g (W/Kg)	5.081074	

Z Axis Scan

System Performance Check Data(2600MHz Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=12mm,dy=12mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2018.02.26

Measurement duration: 13 minutes 31 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt	
Phantom	Flat	
Device Position		
Band	2600MHz	
Channels		
Signal	CW	

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2600.000000
Relative permittivity (real part)	39.024564
Conductivity (S/m)	1.975236
Power Drift (%)	1.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	4.74
Crest factor:	1:1

MORLAB

Maximum location: X=6.00, Y=1.00

SAR 10g (W/Kg)	2.498154	
SAR 1g (W/Kg)	5.681472	

Z Axis Scan

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

System Performance Check Data(2600MHz Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.09

Measurement duration: 13 minutes 31 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Flat		
Device Position			
Band	2600MHz		
Channels			
Signal	CW		

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2600.000000
Relative permittivity (real part)	52.362564
Conductivity (S/m)	2.105256
Power Drift (%)	1.380000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	4.93
Crest factor:	1:1

MORLAB

Maximum location: X=6.00, Y=1.00

SAR 10g (W/Kg)	2.369854	
SAR 1g (W/Kg)	5.386472	

Z Axis Scan

Z (mm)		0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0	.0000	12.9745	6.2193	3.8245	2.4624	1.5033	1.0220
(W/Kg)								
	SAR (W/kg)	S 12.91 - 10.00 8.00 4.00 2.00 0.66 - 0.0	SAR, Z A	xis Sca	n (X =	6, Y = 3	1)	
_					Z (mm)			

System Performance Check Data(5200MHz Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=10mm,dy=10mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.14

Measurement duration: 23 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Validation plane			
Device Position				
Band	5200MHz			
Channels				
Signal	CW			

B. SAR Measurement Results

Band SAR

Frequency (MHz)	5200.000000
Relative permittivity (real part)	36.123014
Conductivity (S/m)	4.665260
Power Drift (%)	2.310000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	21.61
Crest factor:	1:1

MORLAB

Maximum location: X=1.00, Y=3.00

SAR 10g (W/Kg)	5.651263	
SAR 1g (W/Kg)	16.398864	

Z Axis Scan

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

System Performance Check Data(5600MHz Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=10mm,dy=10mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.14

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Validation plane			
Device Position				
Band	5600MHz			
Channels				
Signal	CW			

B. SAR Measurement Results

Band SAR

Frequency (MHz)	5600.000000
Relative permittivity (real part)	35.562139
Conductivity (S/m)	5.100255
Power Drift (%)	1.080000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	22.92
Crest factor:	1:1

MORLAB

Maximum location: X=-1.00, Y=-5.00

SAR 10g (W/Kg)	6.0553669
SAR 1g (W/Kg)	17.144263

Z Axis Scan

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525

E-mail: service@morlab.cn

System Performance Check Data(5800MHz Head)

Type: Phone measurement (Complete)

Area scan resolution: dx=10mm,dy=10mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.14

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	5800MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	5800.000000
Relative permittivity (real part)	35.334675
Conductivity (S/m)	5.310226
Power Drift (%)	1.260000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	22.42
Crest factor:	1:1

MORLAB

Maximum location: X=-6.00, Y=-1.00

SAR 10g (W/Kg)	5.994412
SAR 1g (W/Kg)	17.711256

Z Axis Scan

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

System Performance Check Data(5200MHz Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=10mm,dy=10mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.14

Measurement duration: 23 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	5200MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	5200.000000
Relative permittivity (real part)	48.273014
Conductivity (S/m)	5.543260
Power Drift (%)	2.310000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	22.11
Crest factor:	1:1

MORLAB

Maximum location: X=1.00, Y=3.00

SAR 10g (W/Kg)	5.624355
SAR 1g (W/Kg)	16.28442

Z Axis Scan

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

System Performance Check Data(5600MHz Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=10mm,dy=10mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.14

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	5600MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	5600.000000
Relative permittivity (real part)	48.394381
Conductivity (S/m)	5.7432600
Power Drift (%)	1.080000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	23.69
Crest factor:	1:1

MORLAB

Maximum location: X=-1.00, Y=-5.00

SAR 10g (W/Kg)	5.906961
SAR 1g (W/Kg)	17.19624

Z Axis Scan

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn

System Performance Check Data(5800MHz Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=10mm,dy=10mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.14

Measurement duration: 23 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	5800MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	5800.000000
Relative permittivity (real part)	48.093428
Conductivity (S/m)	5.930716
Power Drift (%)	1.260000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	23.02
Crest factor:	1:1

Maximum location: X=-6.00, Y=-1.00

SAR 10g (W/Kg)	5.982634
SAR 1g (W/Kg)	17.695290

Z Axis Scan

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Annex D Plots of Maximum SAR Test Results

MEASUREMENT 1	
Type: Phone measurement (Complete)	
Area scan resolution: dx=15mm,dy=15mm	
Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm	
Date of measurement: 2018.02.23	
Measurement duration: 16 minutes 29 seconds	
A. Experimental conditions.	
Phantom File	surf_sam_plan.txt
Phantom	Right head
Device Position	Cheek
Band	CUSTOM (GPRS850 4Tx)
<u>Channels</u>	High
Signal	GPRS
B. SAR Measurement Results	
Higher Band SAR (Channel 251):	
Frequency (MHz)	848.799988
Relative permittivity (real part)	41.150000
Conductivity (S/m)	0.914818
Power drift (%)	0.150002
Ambient Temperature:	22.6°C
Liquid Temperature:	21.2°C
ConvF:	6.13
Crest factor:	1:2.08

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SAR Feak. 0.09 W/kg		
SAR 10g (W/Kg)	0.047486	
SAR 1g (W/Kg)	0.065845	

Maximum location: X=-58.00, Y=-43.00 SAR Peak: 0.09 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

MEASUREMENT 2

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.24

Measurement duration: 16 minutes 25 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Left head
Device Position	Cheek
Band	CUSTOM (GPRS1900_4Tx)
<u>Channels</u>	High
Signal	GPRS

B. SAR Measurement Results

Higher Band SAR (Channel 810):

Frequency (MHz)	1909.800049
Relative permittivity (real part)	40.250000
Conductivity (S/m)	1.400023
Power drift (%)	0.250000
Ambient Temperature:	22.1°C
Liquid Temperature:	22.4°C
ConvF:	5.61
Duty cycle:	1:2.08

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

SAR Peak: 0.08 W/kg		
SAR 10g (W/Kg)	0.080173	
SAR 1g (W/Kg)	0.121036	

Maximum location: X=-53.00, Y=-11.00 SAR Peak: 0.08 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.24

Measurement duration: 16 minutes 13 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Left head
Device Position	Cheek
Band	Band2_WCDMA1900
<u>Channels</u>	High
Signal	RMC

B. SAR Measurement Results

Higher Band SAR (Channel 9538):

Frequency (MHz)	1907.599976
Relative permittivity (real part)	40.250000
Conductivity (S/m)	1.400023
Power drift (%)	0.520000
Ambient Temperature:	22.1°C
Liquid Temperature:	22.4°C
ConvF:	5.71
Duty cycle:	1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

SAR Peak: 0.16 W/kg	
SAR 10g (W/Kg)	0.051254
SAR 1g (W/Kg)	0.097002

Maximum location: X=-48.00, Y=-48.00 SAR Peak: 0.16 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.09

Measurement duration: 16 minutes 53 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt,
Phantom	<u>Flat</u>
Device Position	Body
Band	Band2_WCDMA1900
<u>Channels</u>	High
Signal	RMC

B. SAR Measurement Results

Higher Band SAR (Channel 9538):

Frequency (MHz)	1907.599976
Relative permittivity (real part)	53.499999
Conductivity (S/m)	1.500281
Power drift (%)	0.420000
Ambient Temperature:	22.1°C
Liquid Temperature:	22.4°C
ConvF:	5.71
Duty cycle:	1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR Feak. 0.94 W/kg	
SAR 10g (W/Kg)	0.253668
SAR 1g (W/Kg)	0.539670

Maximum location: X=-14.00, Y=-11.00

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.09

Measurement duration: 16 minutes 18 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Left head
Device Position	Cheek
Band	Band4_WCDMA1700
<u>Channels</u>	High
Signal	RMC

B. SAR Measurement Results

Higher Band SAR (Channel 1513):

Frequency (MHz)	1752.000000
Relative permittivity (real part)	40.296001
Conductivity (S/m)	1.371076
Power drift (%)	-3.670000
Ambient Temperature:	22.3°C
Liquid Temperature:	22.6°C
ConvF:	5.21
Crest factor:	1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

SART eak. 0.00 Wrkg	
SAR 10g (W/Kg)	0.024932
SAR 1g (W/Kg)	0.046596

Maximum location: X=-49.00, Y=-49.00 SAR Peak. 0.08 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.09

Measurement duration: 16 minutes 50 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	<u>Flat</u>
Device Position	Body
Band	Band4_WCDMA1700
<u>Channels</u>	High
Signal	RMC

B. SAR Measurement Results

Higher Band SAR (Channel 1513):

Frequency (MHz)	1752.000000
Relative permittivity (real part)	53.426315
Conductivity (S/m)	1.490532
Power drift (%)	-0.580000
Ambient Temperature:	22.3°C
Liquid Temperature:	22.6°C
ConvF:	5.38
Crest factor:	1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Maximum location: X=-5.00, Y=-23.00 SAR Peak: 1.43 W/kg

SAR 10g (W/Kg)	0.442378
SAR 1g (W/Kg)	0.868714

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.23

Measurement duration: 16 minutes 15 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Right head
Device Position	Cheek
Band	Band5_WCDMA850
<u>Channels</u>	Low
Signal	RMC

B. SAR Measurement Results

Lower Band SAR (Channel 4132):

Frequency (MHz)	846.599976
Relative permittivity (real part)	41.000000
Conductivity (S/m)	0.899780
Power drift (%)	1.700000
Ambient Temperature:	22.6°C
Liquid Temperature:	21.2°C
ConvF:	6.13
Crest factor:	1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR Peak: 0.07 W/kg				
SAR 10g (W/Kg)	0.038002			
SAR 1g (W/Kg)	0.052841			

Maximum location: X=-52.00, Y=-36.00 SAR Peak: 0.07 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.22

Measurement duration: 16 minutes 51 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt,
<u>Phantom</u>	<u>Flat</u>
Device Position	Body
Band	Band5_WCDMA850
<u>Channels</u>	Low
<u>Signal</u>	RMC

B. SAR Measurement Results

Lower Band SAR (Channel 4132):

Frequency (MHz)	826.400024
Relative permittivity (real part)	55.433505
Conductivity (S/m)	0.972171
Power drift (%)	-3.850000
Ambient Temperature:	22.6°C
Liquid Temperature:	21.2°C
ConvF:	6.37
Crest factor:	1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR Feak. 0.20 W/kg				
SAR 10g (W/Kg)	0.097789			
SAR 1g (W/Kg)	0.172739			

Maximum location: X=-6.00, Y=-25.00

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 F Http://www.morlab.cn E

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=10mm,dy=10mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.14

Measurement duration: 27 minutes 30 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Right head
Device Position	Cheek
Band	IEEE 802.11a U-NII
<u>Channels</u>	High
Signal	OFDM

B. SAR Measurement Results

Higher Band SAR (Channel 60):

Frequency (MHz)	5300.000000
Relative permittivity (real part)	35.975001
Conductivity (S/m)	4.767514
Power Drift (%)	2.440000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	21.61
Crest factor:	1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

UANT CAR. 0.04 Wing												
SAR 10g (W/Kg)						0.066371						
SAR 1g (W/Kg)							0.1158	365				
Ζ	0.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0
(m					0	0	0	0	0	0	0	0
m)												
SA	0.34	0.14	0.04	0.12	0.03	0.03	0.03	0.16	0.03	0.07	0.03	0.11
R	66	61	80	82	49	66	74	80	21	26	52	01
(W/												
Kg)												
0.35-												
		0.3	0-									
			- I V									
		ୁ ଜୁନ	5- 									
		§0.2	0	+			++					
		뛽 0.1	5	+			⊢∧					
		0.1	0-	$-\Lambda$			$+ \Pi$			<u> </u>		
					$\langle \rangle$				$\langle /$	\mathbf{N}		
	0 2 4 0 0 10 12 14 10 10 20 22 24 20 7 (mm)											
	2 (mm)											

Maximum location: X=24.00, Y=5.00 SAR Peak: 0.34 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Type: Phone measurement (Complete)

Area scan resolution: dx=10mm,dy=10mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.14

Measurement duration: 27 minutes 22 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Left head
Device Position	<u>Tilt</u>
Band	IEEE 802.11a U-NII
<u>Channels</u>	High
<u>Signal</u>	OFDM

B. SAR Measurement Results

Higher Band SAR (Channel 140):

Frequency (MHz)	5700.000000
Relative permittivity (real part)	35.300002
Conductivity (S/m)	5.171167
Power Drift (%)	2.210000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	22.42
Crest factor:	1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR Peak: 0.62 W/kg				
SAR 10g (W/Kg)	0.088095			
SAR 1g (W/Kg)	0.146265			

Maximum location: X=-77.00, Y=-63.00

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Type: Phone measurement (Complete)

Area scan resolution: dx=10mm,dy=10mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.14

Measurement duration: 27 minutes 19 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt,				
Phantom	<u>Flat</u>				
Device Position	Body				
Band	IEEE 802.11a U-NII				
<u>Channels</u>	Middle				
Signal	OFDM				

B. SAR Measurement Results

Middle Band SAR (Channel 60):

Frequency (MHz)	5300.00000				
Relative permittivity (real part)	48.300002				
Conductivity (S/m)	5.859694				
Power Drift (%)	-3.120001				
Ambient Temperature:	22.9°C				
Liquid Temperature:	22.1°C				
ConvF:	23.02				
Crest factor:	1:1				

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR 10g (W/Kg)							0.101124							
SAR 1g (W/Kg)							0.170542							
Ζ	0.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0		
(m					0	0	0	0	0	0	0	0		
m)														
SA	0.48	0.17	0.08	0.11	0.08	0.12	0.10	0.13	0.10	0.10	0.07	0.08		
R	99	92	15	12	27	08	06	35	04	89	71	53		
(W/														
Kg)														
		0.5 0.4 (³⁹ 0.3 (⁹ 0.3 8 (0.2 0.1 0.1		4 6	8 1	0 12 Z (r	14 16 m)	18 20		4 26				

Maximum location: X=-3.00, Y=-24.00 SAR Peak: 0.69 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=10mm,dy=10mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.14

Measurement duration: 27 minutes 18 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt,					
Phantom	<u>Flat</u>					
Device Position	Body					
Band	IEEE 802.11a U-NII					
<u>Channels</u>	High					
Signal	DSSS					

B. SAR Measurement Results

Higher Band SAR (Channel 140):

Frequency (MHz)	5700.000000					
Relative permittivity (real part)	48.400002					
Conductivity (S/m)	5.871167					
Power Drift (%)	1.770000					
Ambient Temperature:	22.9°C					
Liquid Temperature:	22.1°C					
ConvF:	23.02					
Crest factor:	1:1					

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR Peak: 0.58 W/kg							
SAR 10g (W/Kg)	0.116325						
SAR 1g (W/Kg)	0.165312						

Maximum location: X=19.00, Y=20.00 SAD Dooks 0 59 W/kg

Ζ	0.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0
(m					0	0	0	0	0	0	0	0
m)												
SA	0.36	0.24	0.10	0.19	0.09	0.13	0.02	0.07	0.02	0.03	0.02	0.02
R	99	26	87	60	05	64	98	04	48	28	59	53
(W/												
Kg)												
0.37												

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.14

Measurement duration: 27 minutes 18 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt,				
Phantom	<u>Flat</u>				
Device Position	Body				
Band	IEEE 802.11a U-NII				
<u>Channels</u>	High				
Signal	OFDM				

B. SAR Measurement Results

Higher Band SAR (Channel 165):

Frequency (MHz)	5825.000000				
Relative permittivity (real part)	48.075002				
Conductivity (S/m)	5.997514				
Power Drift (%)	1.450000				
Ambient Temperature:	22.9°C				
Liquid Temperature:	22.1°C				
ConvF:	23.02				
Crest factor:	1:1				

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR Peak: 0.60 W/kg							
SAR 10g (W/Kg)	0.149778						
SAR 1g (W/Kg)	0.194641						

Maximum location: X=21.00, Y=49.00 SAR Peak: 0.60 W/kg

Z	0.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0
(m					0	0	0	0	0	0	0	0
m)												
,	0.40	0.00	0.00	0.40	0.00	0.00	0.00	0.07	0.00	0.40	0.00	0.00
SA	0.42	0.22	0.08	0.12	0.06	0.06	0.02	0.07	0.02	0.10	0.02	0.08
R	09	06	60	49	42	04	58	08	30	05	84	54
(W/												
Ka)												
1.9/												
	0.42-											
	U. 35											
	0.30-											
	المراجع الم المراجع المراجع الم المراجع المراجع الم المراجع المراجع ا المراجع المراجع ال المراجع المراجع المراج											
	8 0.20-											
		- E	_									
		VI U. I	3- 									
		0.1	0				+ +					
	0.02-											
			02	4 1	68	10 12	14 16	18 20	D 22 2	24 26		
						Ζ (mm)					

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=12mm,dy=12mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 2018.02.24

Measurement duration: 16 minutes 18 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt				
Phantom	Left head				
Device Position	Cheek				
Band	IEEE 802.11b ISM				
<u>Channels</u>	Middle				
<u>Signal</u>	DSSS				

B. SAR Measurement Results

Middle Band SAR (Channel 6): 2437.000000 Frequency (MHz) **Relative permittivity (real part)** 39.626002 Conductivity (S/m) 1.788081 Power Drift (%) 0.440000 **Ambient Temperature:** 22.0°C Liquid Temperature: 21.8°C 4.74 ConvF: **Crest factor:** 1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Child Call Citer Ming						
SAR 10g (W/Kg) 0.079221						
SAR 1g (W/Kg)	0.165300					

Maximum location: X=-25.00, Y=15.00 SAR Peak: 0.31 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Type: Phone measurement (Complete)

Area scan resolution: dx=12mm,dy=12mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 2018.02.08

Measurement duration: 16 minutes 42 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt,		
Phantom	Flat		
Device Position	Body		
Band	IEEE 802.11b ISM		
<u>Channels</u>	Middle		
<u>Signal</u>	DSSS		

B. SAR Measurement Results

Middle Band SAR (Channel 6): 2437.000000 Frequency (MHz) **Relative permittivity (real part)** 53.084927 Conductivity (S/m) 1.937580 Power Drift (%) -4.650000 **Ambient Temperature:** 22.0°C **Liquid Temperature:** 21.8°C ConvF: 4.93 **Crest factor:** 1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

SAR Peak: 0.83 W/kg				
SAR 10g (W/Kg) 0.192644				
SAR 1g (W/Kg)	0.364189			

Maximum location: X=-14.00, Y=-10.00

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.09

Measurement duration: 16 minutes 43 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Left head		
Device Position	<u>Cheek</u>		
Band	LTE band 2		
<u>Channels</u>	Middle		
Signal	<u>LTE</u>		

B. SAR Measurement Results

Middle Band SAR (Channel 18900):

Frequency (MHz)	1860.000000				
Relative permittivity (real part)	40.299999				
Conductivity (S/m)	1.520724				
Power drift (%)	2.350000				
Ambient Temperature:	22.1°C				
Liquid Temperature:	22.4°C				
ConvF:	5.61				
Duty cycle:	1:1				

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR 10g (W/Kg)				0.041149			
SAR 1g (W/Kg)				0.083255			
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Ka)	0.1542	0.0885	0.0420	0.0240	0.0131	0.0075	0.0046

Maximum location: X=-58.00, Y=-60.00 SAR Peak: 0.15 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.09

Measurement duration: 16 minutes 51 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt,		
Phantom	<u>Flat</u>		
Device Position	Body		
Band	LTE band 2		
<u>Channels</u>	Middle		
Signal	LTE		

B. SAR Measurement Results

Middle Band SAR (Channel 18900):

Frequency (MHz)	1879.500000				
Relative permittivity (real part)	53.499999				
Conductivity (S/m)	1.500724				
Power drift (%)	0.470000				
Ambient Temperature:	22.1°C				
Liquid Temperature:	22.4°C				
ConvF:	5.71				
Duty cycle:	1:1				

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR Peak: 1.55 W/kg					
SAR 10g (W/Kg) 0.439813					
SAR 1g (W/Kg)	0.911517				

Maximum location: X=-12.00, Y=-8.00

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.24

Measurement duration: 16 minutes 17 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Left head			
Device Position	<u>Cheek</u>			
Band	LTE band 4			
<u>Channels</u>	High			
Signal	LTE			

B. SAR Measurement Results

Higher Band SAR (Channel 20300):

Frequency (MHz)	1744.500000				
Relative permittivity (real part)	40.305000				
Conductivity (S/m)	1.356961				
Power drift (%)	2.720001				
Ambient Temperature:	22.3°C				
Liquid Temperature:	22.6°C				
ConvF:	5.21				
Crest factor:	1:1				

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR 10g (W/Kg)

SAR 1g (W/Kg)

0.025585

0.053463

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.1110	0.0597	0.0269	0.0145	0.0104	0.0057	0.0035
(W/Kg)							
	0.11-						
	0.10-	+++					
	0.08-						
	Q.						
	≨ 0.06-						
	₹ 0.04-						
	0.02-						
	0.00-				╺┿╾┽╾┥╴╵		
	0	02.55.07.5	12.5 17	.5 22.5	27.5 32.5	40.0	
				Z (mm)			

Maximum location: X=-49.00, Y=-48.00 SAR Peak: 0.11 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.09

Measurement duration: 16 minutes 39 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	<u>Flat</u>			
Device Position	Body			
Band	LTE band 4			
<u>Channels</u>	High			
Signal	LTE			

B. SAR Measurement Results

Higher Band SAR (Channel 20300):

Frequency (MHz)	1744.500000			
Relative permittivity (real part)	53.446053			
Conductivity (S/m)	1.485873			
Power drift (%)	1.600000			
Ambient Temperature:	22.2°C			
Liquid Temperature:	22.6°C			
ConvF:	5.38			
Crest factor:	1:1			

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR Feak. 1.90 W/kg						
SAR 10g (W/Kg)	0.621824					
SAR 1g (W/Kg)	1.165548					

Maximum location: X=-5.00, Y=-17.00

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=12mm,dy=12mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 2018.02.26

Measurement duration: 16 minutes 23 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt			
Phantom	Left head			
Device Position	Cheek			
Band	LTE band 7			
<u>Channels</u>	High			
Signal	LTE			

B. SAR Measurement Results

Higher Band SAR (Channel 21350):

Frequency (MHz)	2560.000000			
Relative permittivity (real part)	39.253333			
Conductivity (S/m)	1.916681			
Power Drift (%)	-2.630000			
Ambient Temperature:	22.0°C			
Liquid Temperature:	21.8°C			
ConvF:	4.74			
Crest factor:	1:1			

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR 10g (W/Kg)				0.113651			
SAR 1g (W/Kg) 0.228890							
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
C A D	0 4022	0 0 4 0 0	0 4404	0.0000	0 0 0 0 0 0 0	0.0420	0.0077

Maximum location: X=-49.00, Y=-58.00 SAR Peak: 0.40 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=12mm,dy=12mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 2018.02.09

Measurement duration: 16 minutes 41 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt, h= 5.00 mm		
Phantom	<u>Flat</u>		
Device Position	Body		
Band	LTE band 7		
<u>Channels</u>	High		
Signal	LTE		

B. SAR Measurement Results

Higher Band SAR (Channel 21350):

Frequency (MHz)	2560.000000	
Relative permittivity (real part)	52.560001	
Conductivity (S/m)	2.096356	
Power Drift (%)	1.060000	
Ambient Temperature:	22.0°C	
Liquid Temperature:	21.8°C	
ConvF:	4.93	
Crest factor:	1:1	

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	SAR 10g (W/Kg) 0.214116						
	SAR 1g	(W/Kg)			0.453	3377	
7 (0.00	4.00	A AA	44.00	40.00		00.00

Maximum location: X=-10.00, Y=-10.00 SAR Peak: 0.84 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-m

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.23

Measurement duration: 16 minutes 16 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Right head		
Device Position	Cheek		
Band	LTE band 12		
<u>Channels</u>	Middle		
Signal	LTE		

B. SAR Measurement Results

Middle Band SAR (Channel 23095):

Frequency (MHz)	707.500000
Relative permittivity (real part)	42.826667
Conductivity (S/m)	0.814404
Power drift (%)	2.050003
Ambient Temperature:	22.6°C
Liquid Temperature:	21.2°C
ConvF:	6.44
Crest factor:	1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR 10g (W/Kg)	0.037951	
SAR 1g (W/Kg)	0.056328	

Maximum location: X=-50.00, Y=-47.00 SAR Peak: 0.08 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.12

Measurement duration: 16 minutes 54 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt,		
Phantom	<u>Flat</u>		
Device Position	Body		
Band	LTE band 12		
<u>Channels</u>	Middle		
Signal	LTE		

B. SAR Measurement Results

Middle Band SAR (Channel 23095):

Frequency (MHz)	707.500000
Relative permittivity (real part)	55.696754
Conductivity (S/m)	1.019129
Power drift (%)	2.340000
Ambient Temperature:	22.6°C
Liquid Temperature:	21.2°C
ConvF:	6.68
Crest factor:	1:1

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Maximum location: X=-5.00, Y=57.00 SAR Peak: 0.25 W/kg

	5
SAR 10g (W/Kg)	0.141297
SAR 1g (W/Kg)	0.190350

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-r

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.23

Measurement duration: 16 minutes 18 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Right head		
Device Position	Cheek		
<u>Band</u>	LTE band 17		
<u>Channels</u>	Low		
<u>Signal</u>	LTE		

B. SAR Measurement Results

Lower Band SAR (Channel 23780):

Frequency (MHz)	709.00000	
Relative permittivity (real part)	42.826667	
Conductivity (S/m)	0.814404	
Power drift (%)	0.670000	
Ambient Temperature:	22.6°C	
Liquid Temperature:	21.2°C	
ConvF:	6.44	
Crest factor:	1:1	

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

OANT eak. 0.05 Wikg		
SAR 10g (W/Kg)	0.046388	
SAR 1g (W/Kg)	0.068536	

Maximum location: X=-51.00, Y=-45.00 SAR Peak: 0.09 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.12

Measurement duration: 16 minutes 55 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt,					
Phantom	Flat					
Device Position	Body					
Band	LTE band 17					
<u>Channels</u>	Low					
Signal	LTE					

B. SAR Measurement Results

Lower Band SAR (Channel 23780)

Frequency (MHz)	709.00000					
Relative permittivity (real part)	55.696754					
Conductivity (S/m)	1.019129					
Power drift (%)	1.459999					
Ambient Temperature:	22.6°C					
Liquid Temperature:	21.2°C					
ConvF:	6.68					
Crest factor:	1:1					

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	SAR 100	g (W/Kg)		0.171528					
	SAR 1g	(W/Kg)		0.232407					
7 (mm)	0.00	4 00	0.00	14.00	10.00	24.00	20.00		

Maximum location: X=-5.00, Y=47.00 SAR Peak: 0.28 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.22

Measurement duration: 16 minutes 51 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt				
Phantom	Flat				
Device Position	Body				
Band	CUSTOM (GPRS850_4Tx)				
<u>Channels</u>	High				
Signal	GPRS				

B. SAR Measurement Results

Frequency (MHz)	848.799988				
Relative permittivity (real part)	55.237426				
Conductivity (S/m)	0.986924				
Power drift (%)	3.750000				
Ambient Temperature:	22.6°C				
Liquid Temperature:	21.2°C				
ConvF:	6.37				
Crest factor:	1:2.08				

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR 10g (W/Kg)

0.0-

0.02.55.07.5

12.5

0.210968

32.5

40.0

27.5

22.5

0.368605 SAR 1g (W/Kg) Z (mm) 0.00 4.00 14.00 19.00 24.00 29.00 9.00 SAR 0.5324 0.3859 0.1767 0.1190 0.0868 0.0610 0.2568 (W/Kg) 0.5 0.4 (W/kg)0.3 ₩ 0.2 0.1

17.5

Z (mm)

Maximum location: X=6.00, Y=-13.00 SAR Peak: 0.55 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement : 2018.02.09

Measurement duration: 16 minutes 53 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt				
Phantom	Flat				
Device Position	Body				
Band	CUSTOM (GPRS1900_4Tx)				
<u>Channels</u>	High				
Signal	GPRS				

B. SAR Measurement Results

Frequency (MHz)	1909.800049
Relative permittivity (real part)	53.484287
Conductivity (S/m)	1.514073
Power drift (%)	0.820000
Ambient Temperature:	22.1°C
Liquid Temperature:	22.4°C
ConvF:	5.71
Duty cycle:	1:2.08

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR Peak: 1.06 W/kg						
SAR 10g (W/Kg) 0.301010						
SAR 1g (W/Kg)	0.621083					

Maximum location: X=-1.00, Y=-2.00

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Type: Phone measurement (Complete)

Area scan resolution: dx=10mm,dy=10mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2018.04.17

Measurement duration: 27 minutes 26 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt					
Phantom	Left head					
Device Position	Cheek					
Band	IEEE 802.11a U-NII					
<u>Channels</u>	Middle					
Signal	OFDM					

B. SAR Measurement Results

Middle Band SAR (Channel 165):

Frequency (MHz)	5825.000000					
Relative permittivity (real part)	35.275001					
Conductivity (S/m)	5.297514					
Power Drift (%)	2.440000					
Ambient Temperature:	22.9°C					
Liquid Temperature:	22.1°C					
ConvF:	21.61					
Crest factor:	1:1					

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

	OANT Cak. 0.54 Wing											
SAR 10g (W/Kg)						0.066371						
SAR 1g (W/Kg)					0.127865							
												_
Ζ	0.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0
(m					0	0	0	0	0	0	0	0
m)												
SA	0.34	0.14	0.04	0.12	0.03	0.03	0.03	0.16	0.03	0.07	0.03	0.11
R	66	61	80	82	49	66	74	80	21	26	52	01
(W/												
Kg)												
	0.35-											
		0.3	30 - 🔨									
		ିହ ଜୁ										
		≦ ^{0.2}	20	$\mathbf{+}$								
		띛 0.1	15-	- +	+ +			\square				
		0.1	10-	$-\Lambda$	\square					_		
					$V \cap$				kI	\mathbf{N}		
						4	(mm)					

Maximum location: X=24.00, Y=5.00 SAR Peak: 0.34 W/kg

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Type: Phone measurement (Complete)

Area scan resolution: dx=15mm,dy=15mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2018.02.22

Measurement duration: 16 minutes 44 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	<u>Flat</u>
Device Position	Body
Frequency	<u>902.75MHz</u>
Signal	RFID

B. SAR Measurement Results

Frequency (MHz)	902.750000
Relative permittivity (real part)	55.060925
Conductivity (S/m)	1.025559
Power drift (%)	-0.120000
Ambient Temperature:	22.6°C
Liquid Temperature:	21.2°C
ConvF:	6.37
Crest factor:	1:1

Maximum location: X=-3.00, Y=-24.00

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SAR	Peak:	0.12	W/ka
	i can.	V. I Z	11/KG

	0
SAR 10g (W/Kg)	0.029223
SAR 1g (W/Kg)	0.047761

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525