

TEST REPORT

APPLICANT	:	Shenzhen Chainway Information Technology Co.,Ltd.
PRODUCT NAME	:	Mobile Data Terminal
MODEL NAME	:	C72
BRAND NAME	:	CHAINWAY
FCC ID	:	2AC6AC72
STANDARD(S)	:	47 CFR Part 15 Subpart C
TEST DATE	:	2018-01-12 to 2018-03-27
ISSUE DATE	:	2018-04-28

Tested by:

ng

Su Hang (Test Ergineer)

Approved by:

Andy Yeh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. T	Technical Information ······	4
1.1.	Applicant and Manufacturer Information	4
1.2.	Equipment Under Test (EUT) Description	4
1.3.	Test Standards and Results	5
1.4.	Environmental Conditions	5
2. 4	7 CFR Part 15C Requirements	6
2.1.	Antenna requirement	6
2.2.	Peak Output Power	6
2.3.	Bandwidth	9
2.4.	Conducted Spurious Emissions and Band Edge	8
2.5.	Power spectral density (PSD)3	1
2.6.	Restricted Frequency Bands4	0
2.7.	Conducted Emission52	2
2.8.	Radiated Emission5	5
Ann	ex A Test Uncertainty7	1
Ann	ex B Testing Laboratory Information72	2

Change History					
Issue	Date	Reason for change			
1.0	2018-04-28	First edition			

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Shenzhen Chainway Information Technology Co.,Ltd.	
Applicant Address:	Applicant Address: 9/F, Building 2, Daqian Industrial Park, Longchang Rd., District	
	67, Bao'an, Shenzhen	
Manufacturer:	Shenzhen Chainway Information Technology Co.,Ltd.	
Manufacturer Address:	9/F, Building 2, Daqian Industrial Park, Longchang Rd., District	
	67, Bao'an, Shenzhen	

1.2. Equipment Under Test (EUT) Description

Product Name:	Mobile Data Terminal
Serial No:	(N/A, marked #1 by test site)
Hardware Version:	C70SE_MB_V11
Software Version:	C72A_MT6735_V1.1-AM_GIT938ee72_20171205
Modulation Type:	DSSS, OFDM
	802.11b/g/n-20MHz: 2.412GHz - 2.462GHz
Operating Frequency Range:	802.11n-40MHz: 2.422GHz - 2.452GHz
Channel Number:	802.11b/g/n-20MHz: 11
	802.11n-40MHz: 7
Antenna Type:	PIFA Antenna
Antenna Gain:	0.58 dBi

Note 1: The EUT is operating at 2.4GHz ISM; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

For 802.11b/g/n-20MHz (2.4GHz band), the frequencies allocated is F (MHz) =2412+5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

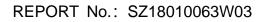
For 802.11n-40MHz, the frequencies allocated is F (MHz) = $2412+5^{*}(n-1)$ (3<=n<=9). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:


No	Identity	Identity		Document Title				
1				Radio Frequency Devices				
Test detailed items/section required by FCC rules and results are as below:								
No. Section Description Test Date Test Engineer Result								
1	15.203	Antenna Requirement		N/A	N/A	PASS		
2	15.247(b)	Peak Output Power		Jan 12, 2018	Su Hang	PASS		
3	15.247(a)	Bandwidth		Jan 12, 2018	Su Hang	PASS		
4	15.247(d)	Conducted Spurious Emission and Band Edge		Jan 12, 2018	Su Hang	PASS		
5	15.247(e)	Power spectral density (PS	D)	Jan 12, 2018	Su Hang	PASS		
6	15.247(d)	Restricted Frequency Banc	ls	Mar 25, 2018	Wu Zhognwen	PASS		
7	15.207	Conducted Emission		Mar 14, 2018	Wu Zhognwen	PASS		
8	15.209, 15.247(d)	Radiated Emission		Mar 27, 2018	Wu Zhognwen	PASS		
Note	: The tests c	f Conducted Emission and F	Radiate	ed Emission wer	e performed acco	rding to		
the r	nethod of me	asurements prescribed in Al	NSI Ce	63.10 2013 and	KDB558074 D01	v04		
(04/0	05/2017).							

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

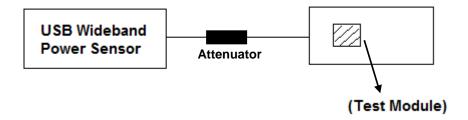
2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Peak Output Power


2.2.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

2.2.2. Test Description

The measured output power was calculated by the reading of the USB Wideband Power Sensor and calibration.

A. Test Setup:

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

B. Equipments List:

Please refer ANNEX A(1.5).

2.2.3. Test Result

Channel		Measured C	utput Peak Power	Limit) (a raliat	
Channel	Frequency (MHz)	dBm	W	dBm	W	Verdict	
1	2412	18.55	0.07161			PASS	
6	2437	18.85	0.07674	30	1	PASS	
11	2462	18.33	0.06808			PASS	

2.2.3.1 802.11b Test Mode

Channel	Frequency (MHz)	Measured Output Average Power		Limit		Verdict	
		dBm	W	dBm	W		
1	2412	16.07	0.04046			PASS	
6	2437	16.09	0.04064	30	1	PASS	
11	2462	15.96	0.03945			PASS	

2.2.3.2 802.11g Test mode

Channel Frequency (MHz)	Measured C	Output Peak Power	Limit		Verdict	
Channel	Frequency (MHz)	dBm	W	dBm	W	verdict
1	2412	21.03	0.12677			PASS
6	2437	22.26	0.16827	30	1	PASS
11	2462	21.52	0.14191			PASS

Channel Frequency (MHz)			Output Average Power	Limit		Verdict
		dBm	W	dBm	W	
1	2412	12.09	0.01618			PASS
6	2437	14.06	0.02547	30	1	PASS
11	2462	13.84	0.02421			PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Channel Frequency (MHz)	Measured Output Peak Power		Limit		Vordict	
Channel		dBm	W	dBm	W	Verdict
1	2412	21.13	0.12972			PASS
6	2437	21.91	0.15524	30	1	PASS
11	2462	21.71	0.14825			PASS

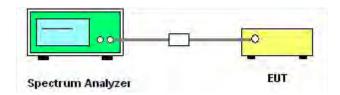
2.2.3.3 802.11n-20MHz Test mode

Channel	Frequency (MHz)	Measured Output Average Power		Limit		Verdict
		dBm	W	dBm	W	
1	2412	12.04	0.01600			PASS
6	2437	14.01	0.02518	30	1	PASS
11	2462	13.83	0.02415			PASS

2.2.3.4 802.11n-40MHz Test mode

		Measured Output Peak Power		Limi	Verdict	
Channel	Frequency (MHz)	dBm W dBm		W	verdict	
3	2422	21.82	0.15205		1	PASS
6	2437	21.48	0.14060	30		PASS
9	2452	21.21	0.13213			PASS

Channel	Frequency (MHz)	Measured Output Average Power		Limit		Verdict
			W	dBm	W	
3	2422	13.20	0.02089			PASS
6	2437	13.19	0.02084	30	1	PASS
9	2452	13.05	0.02018			PASS



2.3.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.3.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 8.1 Option 1 was used in order to prove compliance.

B. Equipments List:

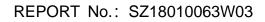
Please refer ANNEX A(1.5).

2.3.3. Test Result

2.3.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	9.594	≥500	PASS
6	2437	9.579	≥500	PASS
11	2462	9.587	≥500	PASS


B. Test Plots


(Channel 1, 2412MHz, 802.11b)

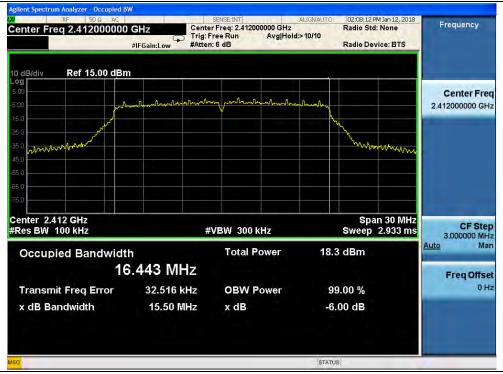

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437 MHz, 802.11b)

(Channel 11, 2462MHz, 802.11b)

MORLAB

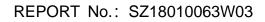
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



2.3.3.2 802.11g Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	15.50	≥500	PASS
6	2437	15.31	≥500	PASS
11	2462	15.74	≥500	PASS


B. Test Plots:


(Channel 1, 2412MHz, 802.11g)

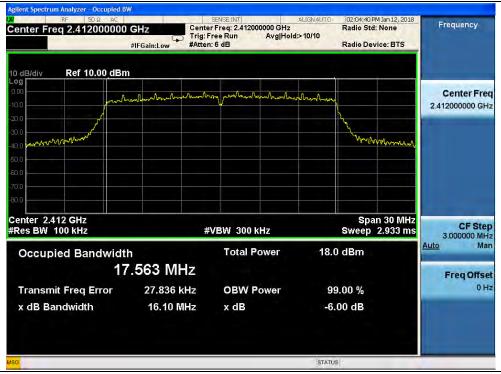
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437MHz, 802.11g)

(Channel 11, 2462MHz, 802.11g)

MORLAB

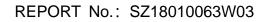
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



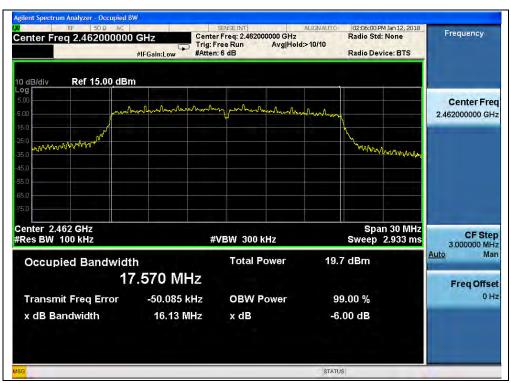
2.3.3.3 802.11n-20 Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	16.10	≥500	PASS
6	2437	15.33	≥500	PASS
11	2462	16.13	≥500	PASS


B. Test Plots:


(Channel 1, 2412MHz, 802.11n-20)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437MHz, 802.11n-20)

(Channel 11, 2462MHz, 802.11n-20)

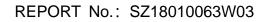
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

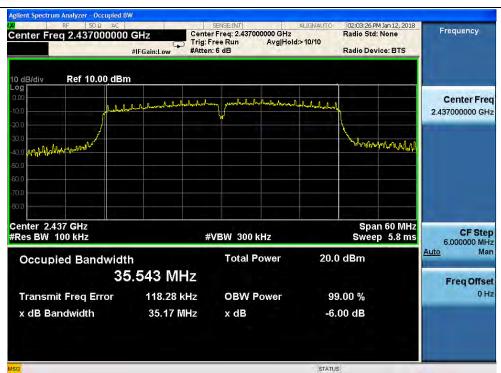
2.3.3.4 802.11n-40 Test mode

A. Test Verdict:

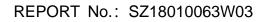
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
3	2422	35.48	≥500	PASS
6	2437	35.17	≥500	PASS
9	2452	35.20	≥500	PASS


B. Test Plots:

enter Freq 2.422000000		SENSE:INT r Freq: 2.422000000 GHz ree Run Avg Hol :: 6 dB	ALIGNAUTO	02:03:59 P Radio Std Radio Dev		Frequency
0 dB/div Ref 10.00 dBm						
10.0	ly by march algorithmic bardes	an freesely freeholder and the second	Aphahalahad			Center Fre 2.422000000 GH
10.0 Any Malang want				will-non-	MANN	
0.0						
						_
enter 2.422 GHz Res BW 100 kHz	#	VBW 300 kHz			n 60 MHz p 5.8 ms	CF Ste 6.000000 Mi
Occupied Bandwidth 35	, .816 MHz	Total Power	19.9	9 dBm		Auto Ma Freq Offs
Transmit Freq Error x dB Bandwidth	174.10 kHz 35.48 MHz	OBW Power x dB		9.00 % 00 dB		01
g			STATU	a a		

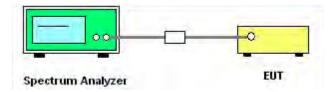

(Channel 3, 2422Mz, 802.11n-40)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(Channel 6	2/37MHz	$802 11 n_{-} 10$
(Channel 6,		802.11n-40)

(Channel 9, 2452MHz, 802.11n-40)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.4. Conducted Spurious Emissions and Band Edge

2.4.1. Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.4.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 11.0 was used in order to prove compliance.

B. Equipments List:

Please refer ANNEX A(1.5).

2.4.3. Test Result

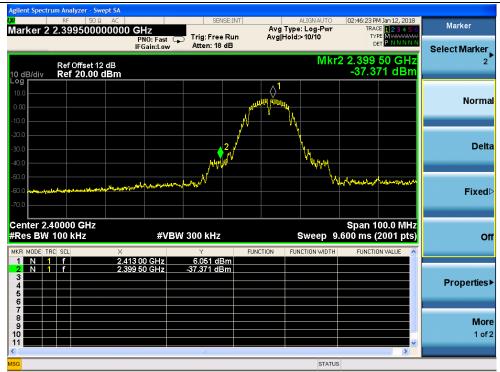
2.4.3.1 802.11b Test mode

A. Test Verdict:

		Measured Max. Out	Limi	t (dBm)	
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-43.92	5.46	-14.54	PASS
6	2437	-45.45	6.00	-14.00	PASS
11	2462	-44.68	4.80	-15.20	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.


gilent Spectrum Ana							
^{RF} Iarker 2 24.0	50 Ω AC 3865500000	0 GHz PNO: Fast	SENSE:IM	Avg	ALIGNAUTO Type: Log-Pwr Hold:>10/10	03:18:43 PM Jan 12, 2018 TRACE 1 2 3 4 5 (TYPE M WWWWW	Marker
		IFGain:Low	Atten: 18 dB			DET PNNNN	Select Marker
	Offset 12 dB 20.00 dBm				M	kr2 24.039 GHz -43.922 dBm	
							Norma
0.0							
0.0						²	Delt
0.0 0.0 Lay/ M 0.0	and the second design of the s	and the second sec	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	egh-tampings breakly ray in the	have been and a second		Fixed
art 30 MHz Res BW 100 I	۲. ۲	#VBW	/ 300 kHz	^	Sweep	Stop 25.00 GHz 2.386 s (2001 pts)	o
(R MODE TRC SCL)		2.415 GHz	∀ 5.463 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 3	24	1.039 GHz	-43.922 dBm				Properties
							Mor 1 of
1			1111			>	
G					STATUS	3	

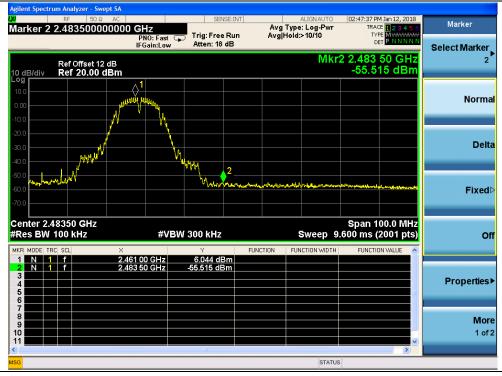
(Channel = 1, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

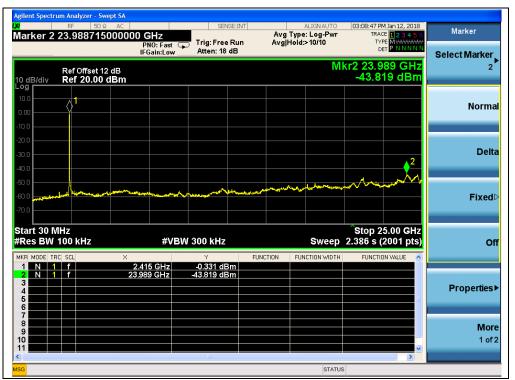
E-mail: service@morlab.cn

Agilent Spectr	um Analyzer - Swe						
Warker 2	RF 50 Ω 24.0511400		SENSE:		ALIGNAUTO Type: Log-Pwr	03:23:38 PM Jan 12, 2018 TRACE 1 2 3 4 5	Marker
Marker Z	24.0511400	PNO: Fast	Trig: Free Ru	un Avgji	Hold:>10/10	TYPE MWWWWWW DET P N N N N	
_		IFGain:Low	Atten: 18 dB	i			Select Marker
10 dB/div	Ref Offset 12 Ref 20.00 d				IVI	kr2 24.051 GHz -44.677 dBm	
10.0	1						Normal
-10.0 -20.0 -30.0						2	Delta
-40.0 -50.0 -60.0 -70.0		And the formation of the state	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	in Sector and a sector product of	~~~~	www.	Fixed⊳
Start 30 M #Res BW	100 kHz	#V	BW 300 kHz	FUNCTION	Sweep	Stop 25.00 GHz 2.386 s (2001 pts	Off
1 N 1 2 N 1 3 4 5 5		2,465 GHz 24.051 GHz	4.801 dBm -44.677 dBm			FUNCTION VALUE	Properties►
6 7 8 9 10							More 1 of 2
<							
MSG					STATUS	3	

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

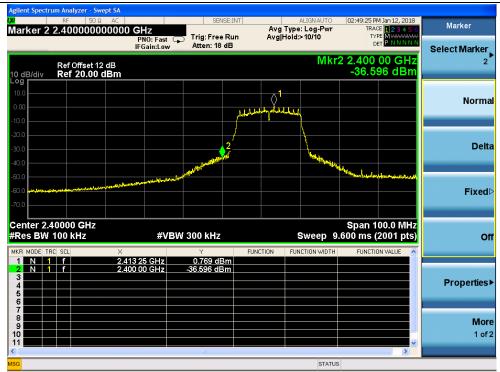

2.4.3.2 802.11g Test mode

A. Test Verdict:

		Measured Max. Out	Limi		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-43.82	-0.33	-20.33	PASS
6	2437	-44.18	0.52	-19.48	PASS
11	2462	-44.11	0.55	-19.45	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.



(Channel = 1, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Agilent Spectrum Analyzer - Swept SA				
KF 50 Ω AC Marker 2 24.051140000000	SENSE:IN	Avg Type: Log-Pwr	03:12:26 PM Jan 12, 2018 TRACE 1 2 3 4 5 6	Marker
	PNO: Fast Trig: Free Run IFGain:Low Atten: 18 dB	Avg Hold:>10/10	DET P N N N N N	Select Marker
Ref Offset 12 dB 10 dB/div Ref 20.00 dBm		MI	kr2 24.051 GHz -44.112 dBm	2
10.0 1 0.00 1 -10.0 1				Normal
-20.0 -30.0 -40.0			2	Delta
-50.0 -60.0 -70.0		Reserved and an and the second se	m	Fixed⊳
Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz	Sweep	Stop 25.00 GHz 2.386 s (2001 pts)	Off
2 N 1 f 24. 3 -	465 GHz 0.547 dBm 051 GHz -44.112 dBm			Properties▶
7 8 9 10 11			>	More 1 of 2
MSG		STATUS	;	

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

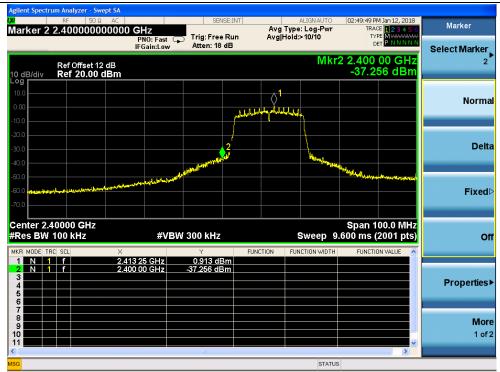
2.4.3.3 802.11n -20MHz Test mode

A. Test Verdict:

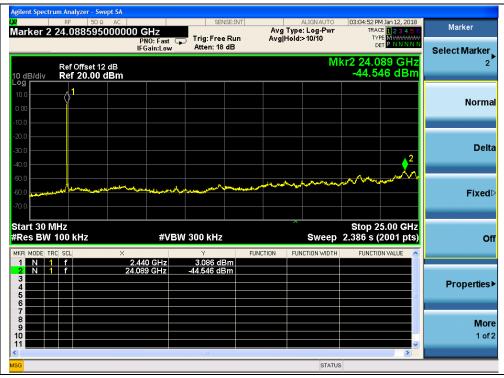
		Measured Max. Out	Limi		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
1	2412	-44.30	-0.40	-20.40	PASS
6	2437	-44.55	3.09	-16.91	PASS
11	2462	-43.90	0.31	-19.69	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.



(Channel = 1, 30MHz to 25GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

9	Analyzer - Swept SA							
	RF 50 Q AC		SENSE:I		ALIGN AUTO Type: Log-Pwr	03:06:17 PM J TRACE	an 12, 2018	Marker
	.02017000000	PNO: Fast C IFGain:Low	Trig: Free Ru Atten: 18 dB		Hold:>10/10	TYPE	MWWWWW PNNNNN	Select Marker
10 dB/div R	ef Offset 12 dB ef 20.00 dBm				М	kr2 24.02 -43.89		2
Log 10.0 0.00 -10.0	↓ 1							Normal
-20.0 -30.0 -40.0							2	Delta
-50.0 -60.0		maral Records	and second and a second se	ayany bay for January and	fran yezhoù ar bezhoù			Fixed⊳
Start 30 MHz #Res BW 100	0 kHz	#VB	W 300 kHz	FUNCTION	Sweep	Stop 25. 2.386 s (20	001 pts)	Off
1 N 1 f 2 N 1 f 3 4 5 6	7	2.465 GHz 4.026 GHz	0.314 dBm -43.899 dBm					Properties▶
7 8 9 10 11							×	More 1 of 2
MSG					STATUS	3		

(Channel = 11, 30MHz to 25GHz)

(Band Edge @ Channel = 11)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4.3.4 802.11n -40MHz Test mode

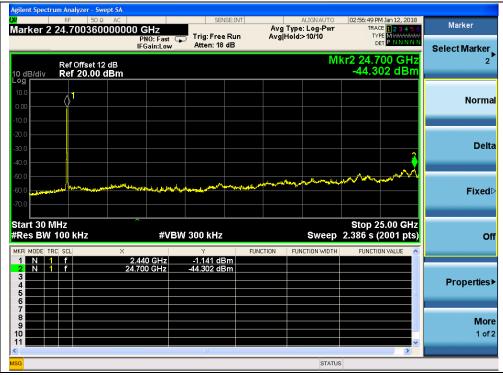
A. Test Verdict:

		Measured Max. Out	Limi		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20dBc Limit	
3	2422	-44.50	-1.66	-21.66	PASS
6	2437	-44.30	-1.14	-21.14	PASS
9	2452	-44.25	-1.85	-21.85	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

(Channel = 3, 30MHz to 25GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge @ Channel = 3)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

Agilent Spectrum Analyzer - Swept SA				
Marker 2 24.07611000000	SENSE:II	ALIGN AUTO Avg Type: Log-Pwr	03:00:26 PM Jan 12, 2018 TRACE 1 2 3 4 5 6	Marker
	PNO: Fast Trig: Free Ru IFGain:Low Atten: 18 dB	n AvgjHold>10/10	TYPE MWWWW DET PNNNN	Select Marker
Ref Offset 12 dB 10 dB/div Ref 20.00 dBm		MI	kr2 24.076 GHz -44.250 dBm	2
10.0 1 0.00 1 0.				Normal
-20.0				Delta
-50.0 -60.0 -70.0	and the second	un na de la construction de la cons		Fixed⊳
Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz	Sweep	Stop 25.00 GHz 2.386 s (2001 pts)	Off
1 N 1 f 2 N 1 f 3 4 5 6	2.452 GHz -1.854 dBm 4.076 GHz -44.250 dBm			Properties▶
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			>	More 1 of 2
MSG		STATUS	;	

(Channel = 9, 30MHz to 25GHz)

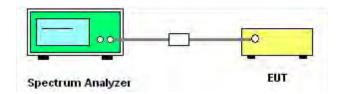
(Band Edge @ Channel = 9)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5. Power spectral density (PSD)

2.5.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.


2.5.2. Test Description

A. Test procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the span to 1.5 times DTS
- c) Set the RBW to 3 kHz
- d) Set the VBW to 10 kHz
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

B. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

KDB 558074 Section 10.2 was used in order to prove compliance.

C. Equipments List:

Please refer ANNEX A(1.5).

2.5.3. Test Result

2.5.3.1 802.11b Test mode

A. Test Verdict:

Spectral power density (dBm/3kHz)						
Channel	Frequency	Measured PSD (dBm/3kHz)	Limit	Verdict		
Channel	(MHz)	Measured FSD (dBII/SKHz)	(dBm/3kHz)			
1	2412	-7.75	8	PASS		
6	2437	-5.61	8	PASS		
11	2462	-2.93	8	PASS		

B. Test Plots:

(Channel = 1, 802.11b)

(Channel = 6, 802.11b)

(Channel = 11, 802.11b)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.3.2 802.11g Test mode

A. Test Verdict:

Spectral power density (dBm/3kHz)						
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict		
1	2412	-14.53	8	PASS		
6	2437	-10.17	8	PASS		
11	2462	-11.79	8	PASS		

B. Test Plots:

(Channel = 1, 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11g)

(Channel = 11, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

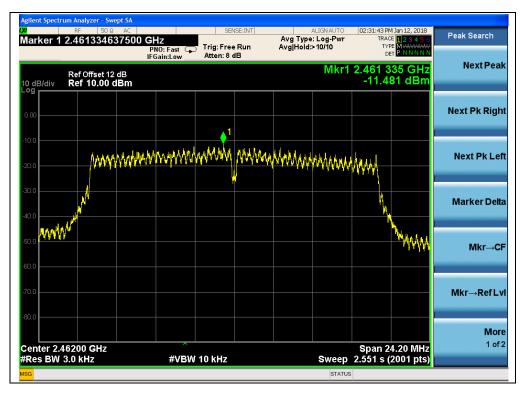
2.5.3.3 802.11n-20MHz Test mode

A. Test Verdict:

Spectral power density (dBm/3kHz)						
Channel	Frequency	Measured PSD (dBm/3kHz)	Limit	Verdict		
(MHz)			(dBm/3kHz)	verdict		
1	2412	-13.21	8	PASS		
6	2437	-10.28	8	PASS		
11	2462	-11.48	8	PASS		

B. Test Plots:

(Channel = 1, 802.11n-20MHz)



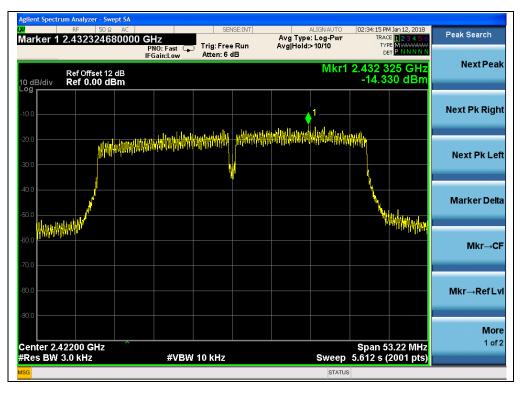
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11n-20MHz)

(Channel = 11, 802.11n-20MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



2.5.3.4 802.11n-40MHz Test mode

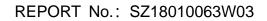
A. Test Verdict:

	Spec	ctral power density (dBm/3kHz)		
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
3	2422	-14.33	8	PASS
6	2437	-13.92	8	PASS
9	2452	-14.13	8	PASS

B. Test Plots:

(Channel = 3, 802.11n-40MHz)

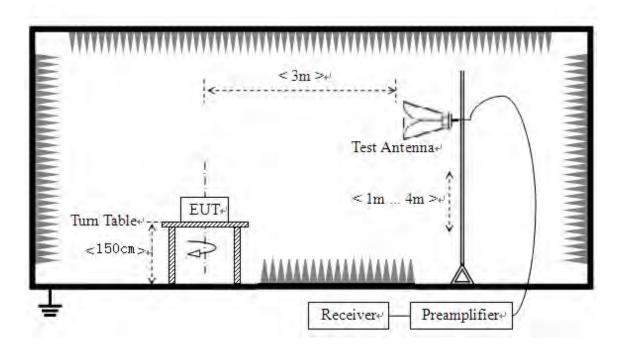
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(Channel = 6, 802.11n-40MHz)

(Channel = 9, 802.11n-40MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.6. Restricted Frequency Bands

2.6.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.6.2. Test Description

A. Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please refer ANNEX A(1.5).

2.6.3. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

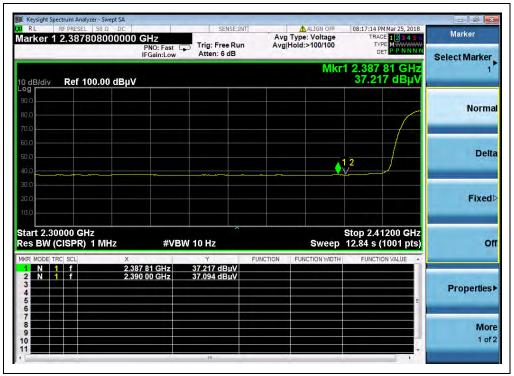
The measurement results are obtained as below: E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T: Total correction Factor except Antenna U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.6.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Chainie	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Voraliet
1	2387.02	PK	49.70	-33.63	32.56	48.63	74	Pass
1	2387.81	AV	37.22	-33.63	32.56	36.15	54	Pass
11	2484.57	PK	50.35	-33.18	32.50	49.67	74	Pass
11	2484.00	AV	37.44	-33.18	32.50	36.76	54	Pass



B. Test Plots:

Keysight Spectrum Analyzer - Swept SA 08:16:30 PM Mar 25, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P N N N N RI Avg Type: Voltage Avg|Hold:>100/100 Marker Marker 1 2.387024000000 GHz TYPE Trig: Free Run Atten: 6 dB PNO: Fast C Select Marker Mkr1 2.387 02 GHz 49.697 dBµ\ 10 dB/div Log Ref 100.00 dBµV Normal ¹ √² Delta Fixed Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off FUNCTION FUNCTION WIDTH /ALC IF N 1 f N 1 f 2.387 02 GHz 2.390 00 GHz 49.697 dBµV 48.237 dBµV **Properties** More 1 of 2

(Channel = 1 PEAK, 802.11b)

(Channel = 1 AVG, 802.11b)

MORLAB

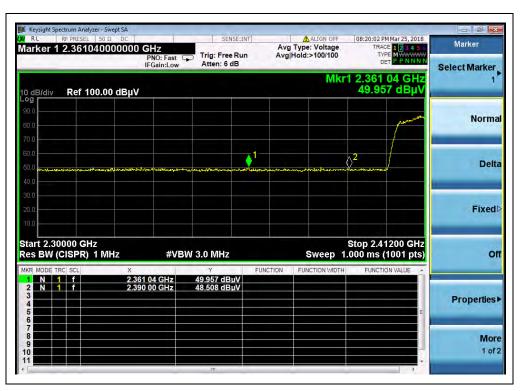
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

- F	M Mar 25, 2018	00/52/20 0	ALIGN OFF		E;INT	CON			nalyzer - Sw EL 50 Ω		
Marker	E 1 2 3 4 5 6	TRAC	pe: Voltage				GHz	00000 G			
Select Marke			old:>100/100	Avgi		Trig: Free Atten: 6 d	PNO: Fast C IFGain:Low				
	66 GHz 9 dBµV	2.484 5 50.34	Mkr2					dBµV	100.00	Ref	dív
Norm											
Norm									1		
				2-				And and a second			
De	akutump ohianga	ang mang hard a sample of the same of the	and the state of the state of the		and a	how have been and	****				
Fixe											
	0000 GHz	Stop 2.50		-							2.462
c	1001 pts)	000 ms (Sweep 1.			V 3.0 MHz	#VB	z	R) 1 MH	ISPF	3W (C
	ON VALUE	FUNCTION	FUNCTION WIDTH	ICTION		Y 48.547 dBu	00 GHz	× 2 483 50		SCL	
Propertie						50.349 dBµ		2.484 56		f	N 1
Tropola	Ę										
Mo											
1 0											

(Channel = 11 PEAK, 802.11b)

(Channel = 11 AVG, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



2.6.3.2 802.11g Test mode

A. Test Verdict:

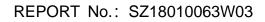
Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Vardiat
Channel	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdict
1	2361.04	PK	49.96	-33.63	32.56	48.89	74	Pass
1	2387.36	AV	37.23	-33.63	32.56	36.16	54	Pass
11	2483.88	PK	57.01	-33.18	32.50	56.33	74	Pass
11	2483.77	AV	40.55	-33.18	32.50	39.87	54	Pass

B. Test Plots:

(Channel = 1 PEAK, 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Marker	M Mar 25, 2018		ALIGN OFF		NSE:INT	SEI			PRESEL 5	
	PE 123456 PE MWWWWWW	т	/pe: Voltage ld:>100/100			Trig: Free	PNO: Fast	0000000	.387360	er 1 2
Select Marke					dB	Atten: 6	IFGain:Low			_
	36 GHz 2 dBµV	37.2	MKr					.00 dBµV	Ref 100.	div
Norm										
Norm										
Del		,2								
	/	<u>}</u>								
Fixed										
	1200 GHz	Stop 2.4			~				00 GHz	
c	1001 pts)	12.84 s	Sweep			V 10 Hz	#VB	MHz	SPR) 11	SW (CI
-	ON VALUE	FUNCT	FUNCTION WIDTH	UNCTION	2017	Y 37.232 dE	37 36 GHz	X 2.30	SCL	
						37.136 dB	90 00 GHz		f	i 1
Properties										
-										
Mo										


(Channel = 1 AVG, 802.11g)

(Channel = 11 PEAK, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

					-			n Analyzer -		
Marker	4 Mar 25, 2018 E 1 2 3 4 5 6 PE MWWWWWW T P P N N N N	TRAC	ALIGN OFF Type: Voltage Hold:>100/100	1	SENSE:IN	GHZ PNO: Fast	000000 G	RESEL 50		rke
Select Marker	TPPNNNN	DE			Atten: 6 dB	IFGain:Low				
2	68 GHz 9 dBµV	2.483 7 40.54	Mkr2				0 dBµV	ef 100.0	iv	lB/d
Norma										
Delta				2						
Fixed										
T IACU.										-
Of	000 GHz	Stop 2.50 4.357 s (*	Succes		10 Hz	#\/B\) GHz PR) 1 M		
UI UI	IN VALUE		FUNCTION WIDTH	FUNCTIO	ТО П2	#VD	x	- ·		
	IN VALUE	FUNCTIO	FUNCTION WIDTH	FUNCTION	40.717 dBµV	500 GHz	2.483 5		1 1	N
Properties					40.549 dBµV	768 GHz	2.483 7		1	N
	E.									
Mor										
1 of:										
					m					

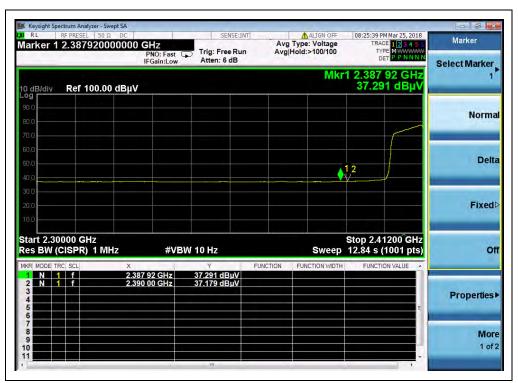
(Channel = 11 AVG, 802.11g)

2.6.3.3 802.11n-20MHz Test mode

A. Test Verdict:

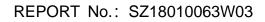
Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission E	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	⊏ (dBµV/m)	(dBµV/m)	
1	2387.02	PK	49.72	-33.63	32.56	48.65	74	Pass
1	2387.92	AV	37.29	-33.63	32.56	36.22	54	Pass
11	2484.34	PK	55.12	-33.18	32.50	54.44	74	Pass
11	2483.73	AV	39.50	-33.18	32.50	38.82	54	Pass

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86


 Http://www.morlab.cn
 E-mail:
 E-mail:

B. Test Plots:

Keysight Spectrum Analyzer - Swept SA Avg Type: Voltage Avg|Hold:>100/100 08:24:54 PM Mar 25, 2018 TRACE 12345 TYPE MWWWW DET PPNNN Trace/Detector Marker 1 2.387024000000 GHz Trig: Free Run PNO: Fast C Atten: 6 dB Select Trace Mkr1 2.387 02 GHz 49.715 dBµV Ref 100.00 dBµV 0 dB/div og Detector Peak► Man Auto $\left(\frac{1}{\sqrt{2}} \right)^2$ Preset Detectors **Clear Trace** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz **Clear All Traces** 2.387 02 GHz 2.390 00 GHz 49.715 dBµV 48.509 dBµV N Preset All Traces More 2 of 3


(Channel = 1 PEAK, 802.11n-20)

(Channel = 1 AVG, 802.11n-20)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn

- 6		-				-			um Analyzer		
Marker	M Mar 25, 2018 DE 123456 DE M WWWWW	TRAC	ALIGN OFF Voltage >100/100	Avg T Avg H		SENS	GHZ PNO: Fast	0Ω DC 8000000	PRESEL 5		RL Irke
Select Mar	PPNNNN				3	Atten: 6 dl	IFGain:Low			_	_
	38 GHz 4 dBµV		Mkr2	-				00 dBµV	Ref 100.	liv	dB/
No								manakan	merman	mnum	
								- A			.0
C	alan dan an anna a	non an	للمسلحة والمعارجة والمعاد	2	in hereinen	runnanalites	energen Thear dependence				0 0
											0-0.
Fix											.0 -
	0000 GHz 1001 pts)	Stop 2.50 000 ms (Sweep 1.			3.0 MHz	#VBW	VIHz	00 GHz SPR) 1		
	ON VALUE	FUNCTIO	ICTION WIDTH			Y 53.588 dBu	500 GHz	X	SCL		R MO
Propert						55.124 dBu	338 GHz	2.485	f	1	Ň
	E,										
Ν											
4											-

(Channel = 11 PEAK, 802.11n-20)

(Channel = 11 AVG, 802.11n-20)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.6.3.4 802.11n-40MHz Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
3	2386.24	PK	50.37	-33.63	32.56	49.30	74	Pass
3	2388.14	AV	37.51	-33.63	32.56	36.44	54	Pass
9	2485.90	PK	52.83	-33.18	32.50	52.15	74	Pass
9	2485.63	AV	39.14	-33.18	32.50	38.46	54	Pass

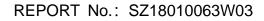
B. Test Plots:

Marker	PM Mar 25, 2018		ALIGN OFF Type: Voltage		SENSE:IN			SEL 50 Ω		RL
		Т	Hold:>100/100	Avg	Trig: Free Run	PNO: Fast	00000	862400	12.	rker
Select Marker					Atten: 6 dB	IFGain:Low	_		_	_
1	24 GHz 65 dBµV	1 2.386 50.3	MKr		_	_	0 dBµV	f 100.00	R	dB/div
Norma										0
	merenne									
	1	× 2	1							o —
Delt	N/	Land mar also	- constrand when a	moutormand	where where we want	man and a start and	the construction of the	مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر مەرمەر	stratio	0
Fixed										
										0
1	1200 GHz	Stop 2.4								Int 2.3
O	(1001 pts)	.000 ms	Sweep 1.		3.0 MHz	#VBV	Hz	r) 1 MH	(CIS	s BW
	ION VALUE	FUNC	FUNCTION WIDTH	FUNCTION	Y 50.365 dBuV	6 24 GHz	× 2.38		TRC S	MODE
Properties					49.048 dBµV	0 00 GHz	2.39		1 1	N
Properues	E,									
Mor										
1 of										

(Channel = 3 PEAK, 802.11n-40)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

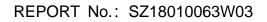
	M Mar 25, 2018		ALIGN OFF		SENSE:IN			Ω DC	Analyzer - Sv SEL 50 S	RF PRE	R	RL
Marker		TY	Type: Voltage Hold:>100/100	A Av	: Free Run		GHz PNO: Fast	000000	881440	2.38	er 1 2	ark
Select Marke		-			en: 6 dB		IFGain:Low				_	_
	14 GHz 1 dBµV		Mkr					00 dBµV	100.0	Ref	/div	dB
Norm												9 0.0
NOTIN												1.0 1.0
	former											3,0 3,0
Del		2										9.Q 9.0
		×										1.0
Fixed												3.0 3.0
	200 GHz	Stop 2.4					^		GHz	000	2.300	art
c	1001 pts)	12.84 s	Sweep		lz	3W 10	#VB	1Hz	R) 1 M	CISP	BW (C	es
_	ON VALUE	FUNCTI	FUNCTION WIDTH	FUNCTION				х		C SCL		
					11 dBµV 38 dBµV		88 14 GHz 00 00 GHz			f	N 1 N 1	2
Properties												3
	E											5
Мо												8
1 of												9
	+				m.							1


(Channel = 3 AVG, 802.11n-40)

(Channel = 9 PEAK, 802.11n-40)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



				-					Analyzer -		
Marker	Mar 25, 2018 E 1 2 3 4 5 6 PE M WWWWW	TRAC	ALIGN OFF be: Voltage d:>100/100			SENSE(I)	GHz PNO: Fast	Ω DC	ESEL 50 85630		rker
Select Marke	T P P N N N N	DE		air		Atten: 6 dB	IFGain:Low	_		_	_
	30 GHz 9 dBµV	2.485 6 39.13	Mkr2					00 dBµV	ef 100.0	R	B/div
Norn											
Norm											
De											
				♦ ²	\Diamond^{1}		~				
Fixe											
Tixe											-
	0000 GHz 1001 pts)	Stop 2.50 4.357 s (Sweep			I0 Hz	#VBV	/IHz	GHz PR) 1 M		
	ON VALUE		INCTION WIDTH	TION	FUNC	Y		х	L.	TRC S	MODE
						9.034 dBµV 9.139 dBµV	500 GHz 630 GHz			1 1	N N
Propertie	=										
Mo											
1 c	_										
	- + ·	_				III				_	

(Channel = 9 AVG, 802.11n-40)

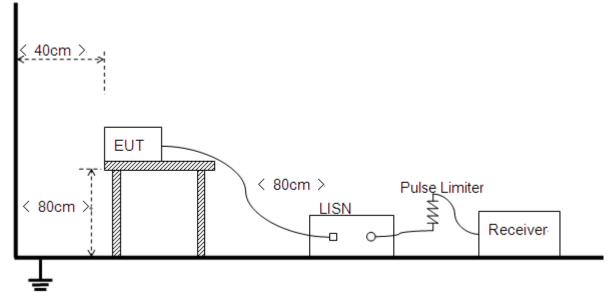
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.7. Conducted Emission

2.7.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)				
(MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5 - 30	60	50			


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.7.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

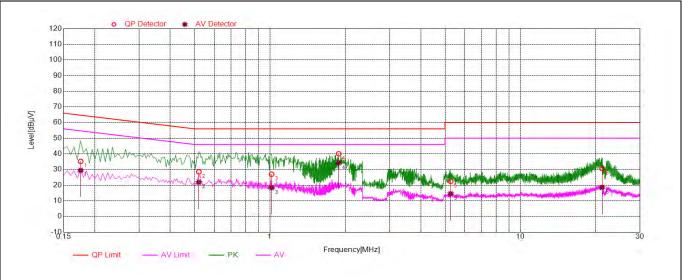
MORLAB

B. Equipments List:

Please refer ANNEX A(1.5).

2.7.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.


Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

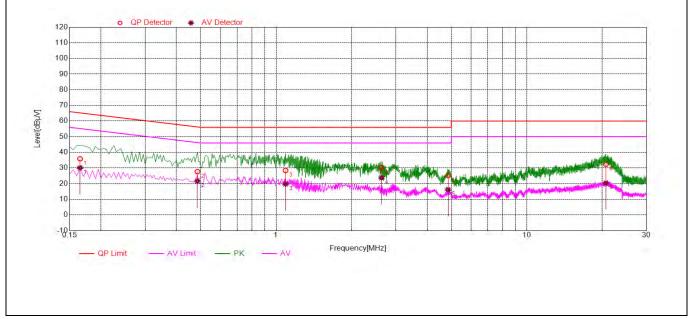
A. Test setup:

The EUT configuration of the emission tests is EUT + Link.

Note: The test voltage is AC 120V/60Hz.

B. Test Plots:

(Plot A: L Phase)


NO.	Fre.	Emission Level (dBµV)		Limit (Limit (dBµV)		Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average	Power-line	
1	0.18	35.23	29.46	64.70	54.70		PASS
2	0.52	28.51	21.86	56.00	46.00		PASS
3	1.02	27.02	18.41	56.00	46.00	Line	PASS
4	1.88	40.09	34.27	56.00	46.00	LINE	PASS
5	5.26	22.40	14.58	60.00	50.00		PASS
6	21.20	30.63	18.57	60.00	50.00	1	PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

(Plot B: N Phase)

NO.	Fre.			Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		t of allot
1	0.16	35.87	30.14	65.21	55.21		PASS
2	0.48	27.72	21.68	56.25	46.25		PASS
3	1.09	28.45	19.79	56.00	46.00	Neutral	PASS
4	2.63	30.27	23.79	56.00	46.00	Neutrai	PASS
5	4.85	25.11	16.15	56.00	46.00		PASS
6	20.68	32.36	20.40	60.00	50.00		PASS

2.8. Radiated Emission

2.8.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

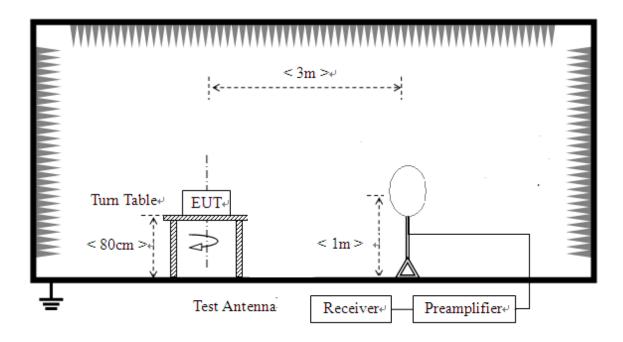
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

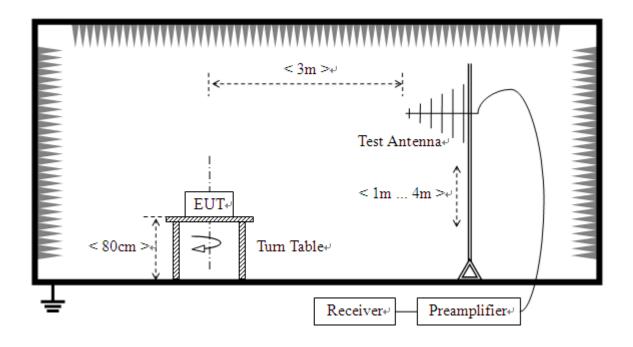
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

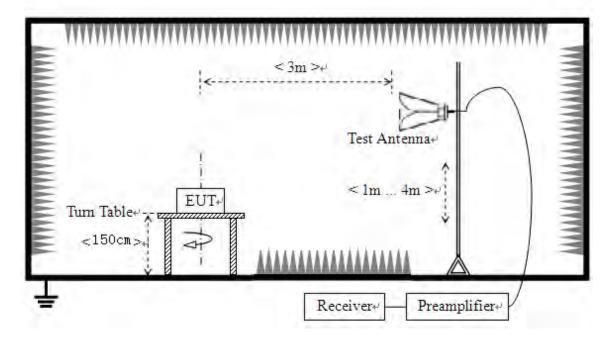
In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)




2.8.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz


2) For radiated emissions from 30MHz to1GHz

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

A. Equipments List:

Please refere ANNEX A(1.5).

2.8.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

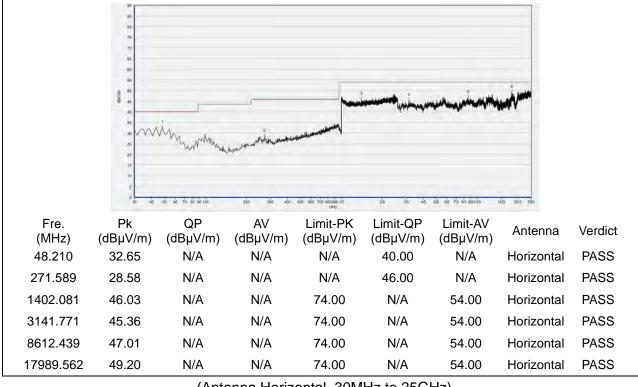
The measurement results are obtained as below:

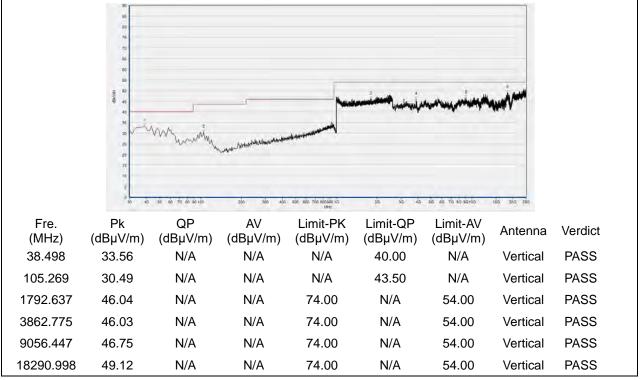
E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T: Total correction Factor except Antenna U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_{T} and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

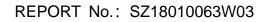
Note2: For the frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.


Note3: For the frequency, which started from 25GHz to 40GHz, was pre-scanned and the result which was 10dB lower than the limit was not recorded.

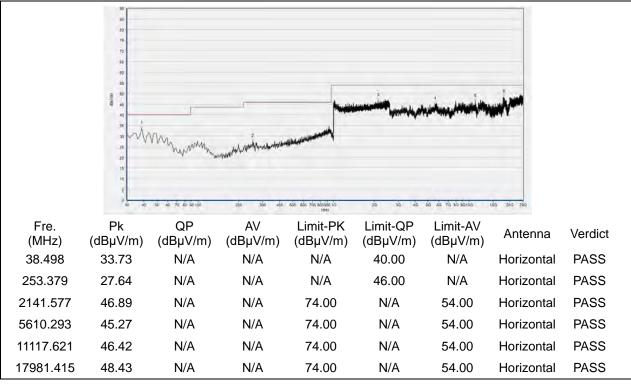


2.8.3.1 802.11b Test mode

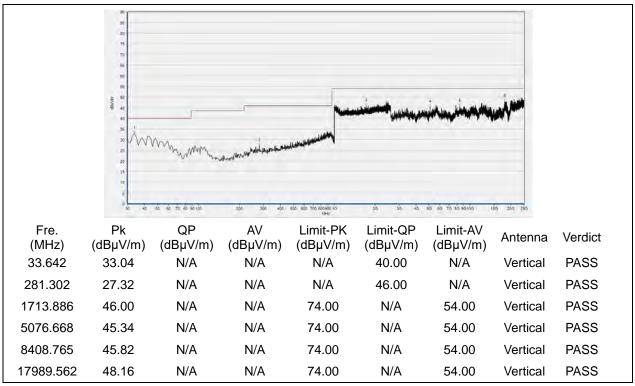
Plots for Channel = 1


(Antenna Horizontal, 30MHz to 25GHz)

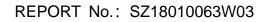
(Antenna Vertical, 30MHz to 25GHz)



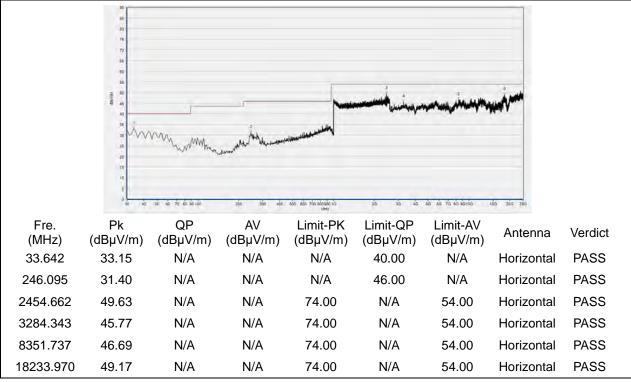
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555



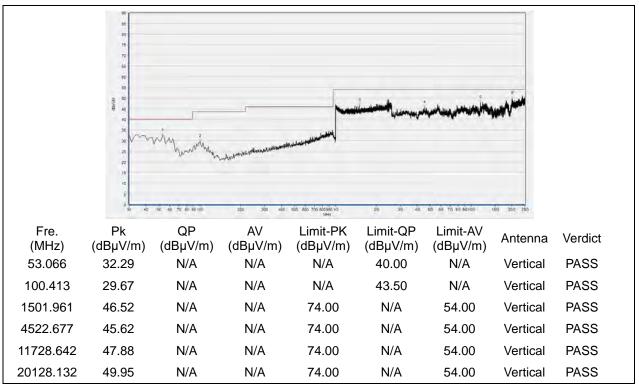
Plot for Channel = 6


(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)



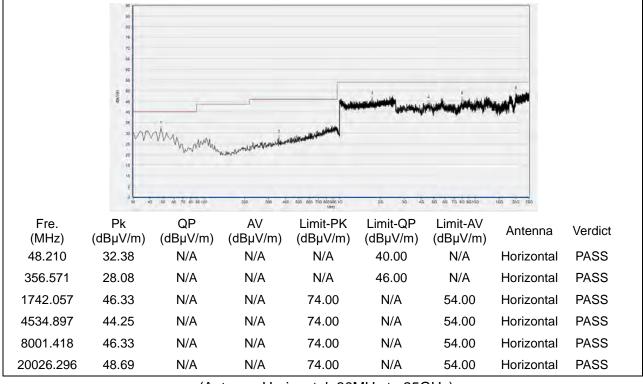
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn



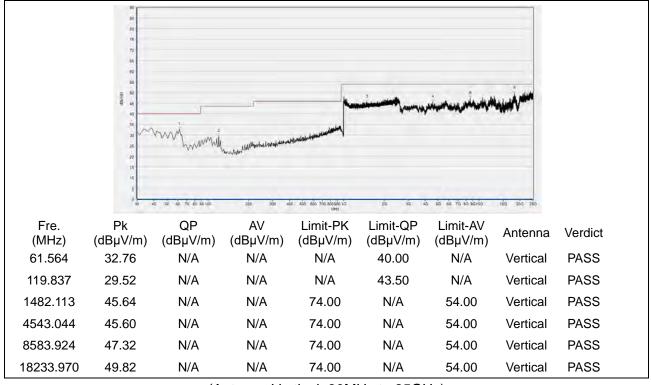
Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)



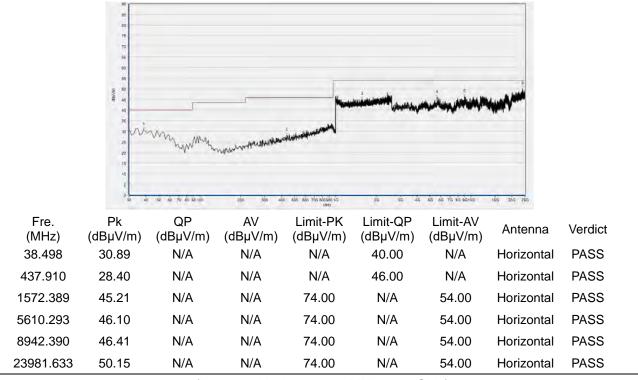
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

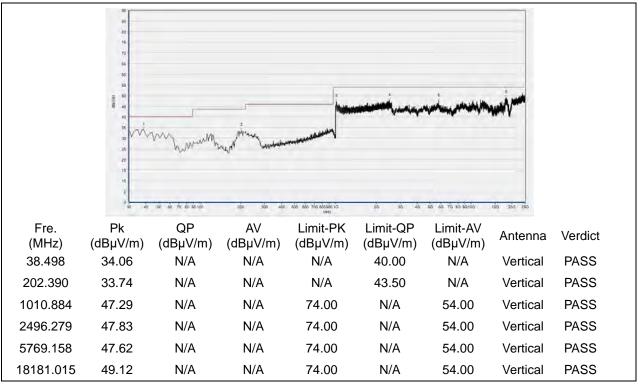


2.8.3.2 802.11g Test mode

Plots for Channel = 1

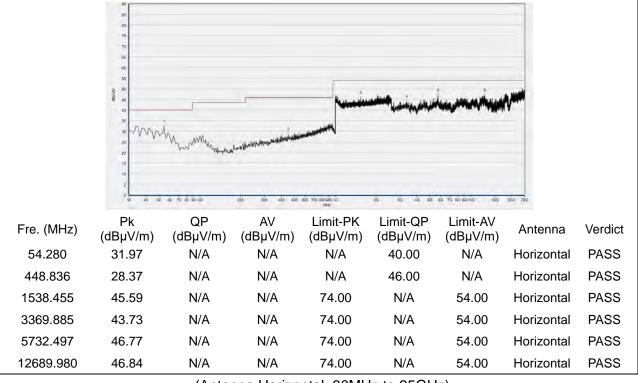
(Antenna Horizontal, 30MHz to 25GHz)

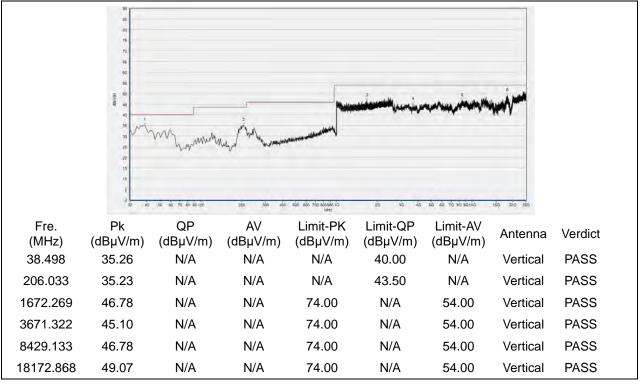

(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86 Http://www.morlab.cn E-mail:

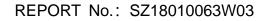
Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

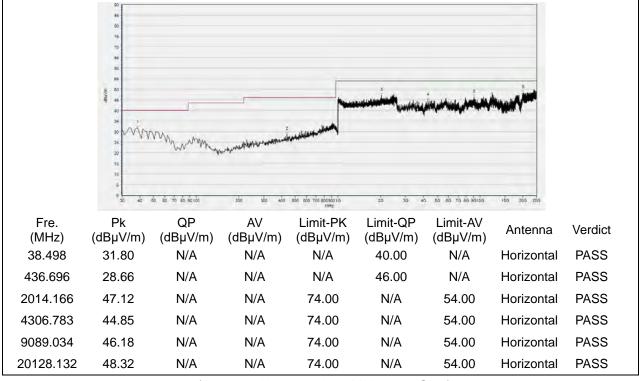

(Antenna Vertical, 30MHz to 25GHz)

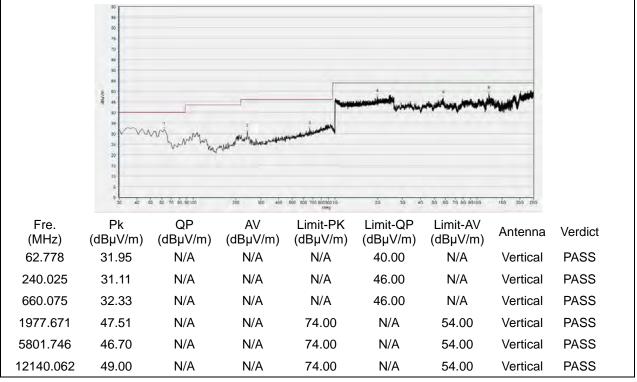

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-ma

Plot for Channel = 11


(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

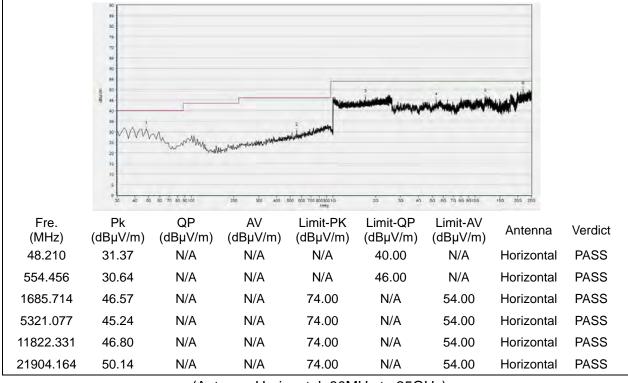

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-n



2.8.3.3 802.11n-20MHz Test mode

Plots for Channel = 1

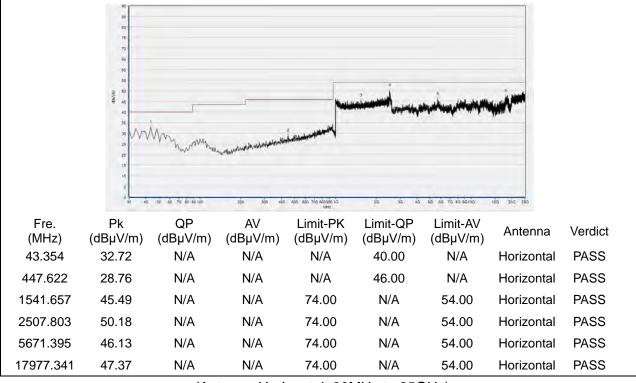
(Antenna Horizontal, 30MHz to 25GHz)

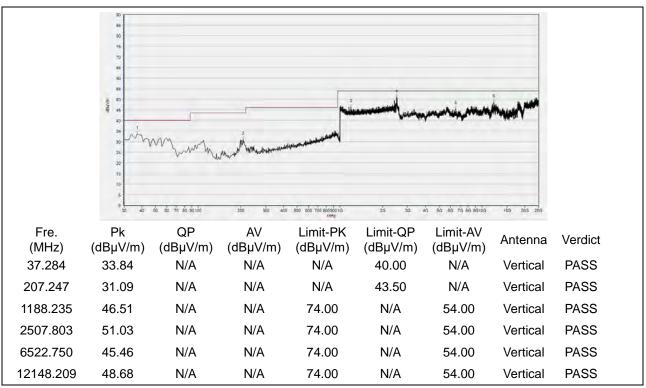

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 F Http://www.morlab.cn E

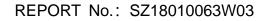
Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

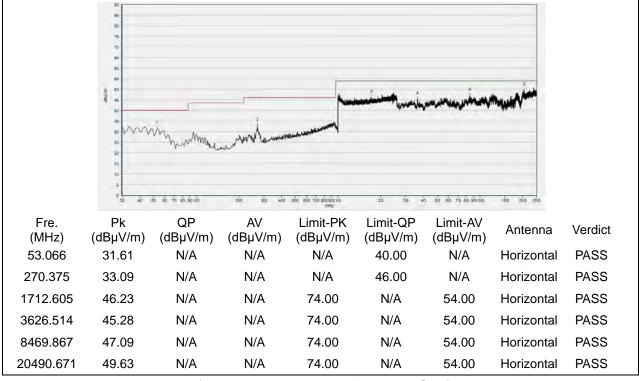

(Antenna Vertical, 30MHz to 25GHz)

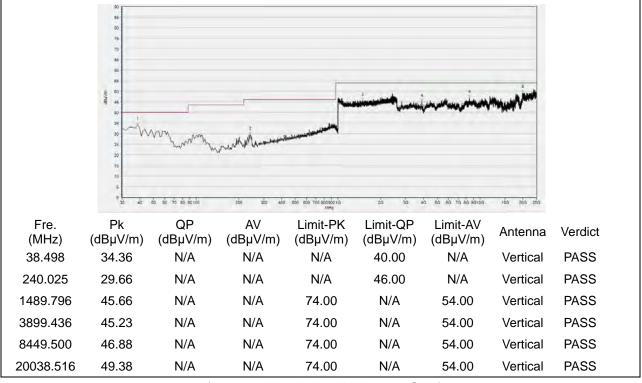

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-m

Plot for Channel = 11


(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

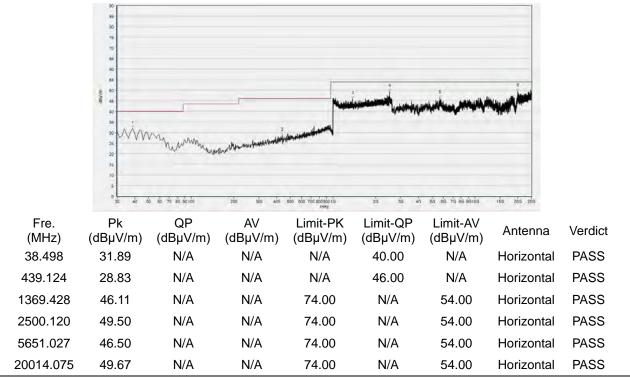

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-n

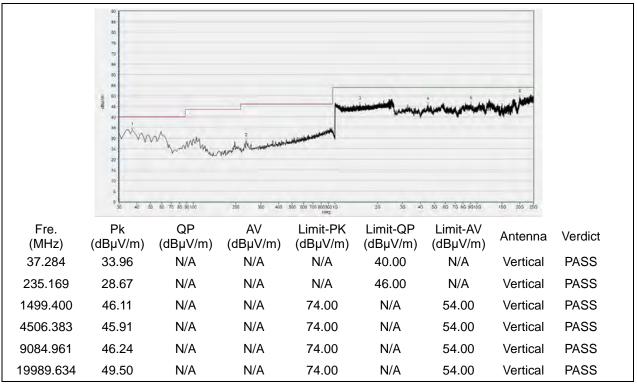


2.8.3.4 802.11n-40MHz Test mode

Plots for Channel = 3

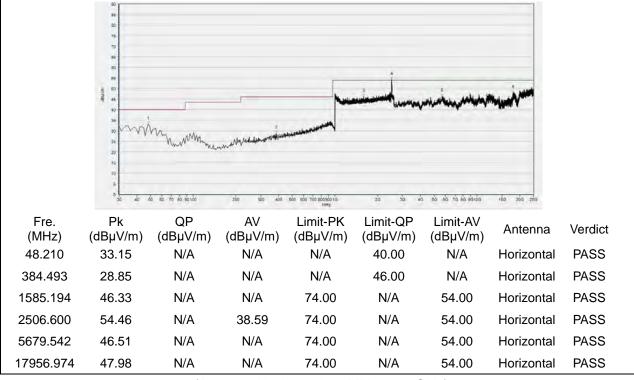
(Antenna Horizontal, 30MHz to 25GHz)

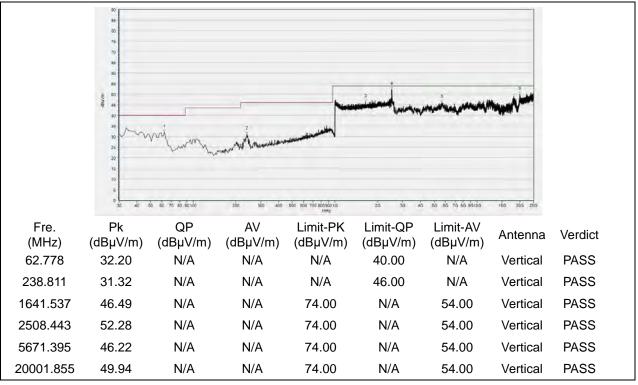

(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 F Http://www.morlab.cn E

Plots for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)


(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

Plots for Channel = 9

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa: Http://www.morlab.cn E-r

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Peak Output Power	±2.22dB
Power spectral density (PSD)	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.			
Department:	Morlab Laboratory			
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang			
	Road, Block 67, BaoAn District, ShenZhen, GuangDong			
	Province, P. R. China			
Responsible Test Lab	Mr. Su Feng			
Manager:				
Telephone:	+86 755 36698555			
Facsimile:	+86 755 36698525			

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23
Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23
Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
USB Wideband Power Sensor	MY54210011	U2021XA	Agilent	2017.05.24	2018.05.23
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2017.07.13	2018.07.12
LISN	812744	NSLK 8127	Schwarzbeck	2017.05.17	2018.05.16
Pulse Limiter (20dB)	9391	VTSD 9561-D	Schwarzbeck	2017.05.17	2018.05.16
Coaxial cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal.Due Date
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 List of Software Used

Description	Manufacturer	Software Version
Test system	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V 1.0

4.5 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date
Receiver	MY54130016	N9038A	Agilent	2017.05.17	2018.05.16
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2017.05.14	2018.05.13
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.09.13	2018.09.12
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2018.03.03	2019.03.02
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2017.09.13	2018.09.12
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable(N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT _____

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China