

TEST REPORT

APPLICANT	:	Shenzhen Chainway Information Technology Co.,Ltd.
PRODUCT NAME	:	Mobile Data Terminal
MODEL NAME	:	C72
BRAND NAME	:	CHAINWAY
FCC ID	:	2AC6AC72
STANDARD(S)	:	47 CFR Part 15 Subpart C
TEST DATE	:	2018-01-12 to 2018-05-14
ISSUE DATE	:	2018-05-14

Tested by:

Hang

Su Hang (Test Ergineer)

Approved by:

Andy Yeh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. T	echnical Information	4
1.1.	Applicant and Manufacturer Information	4
1.2.	Equipment Under Test (EUT) Description	4
1.3.	Test Standards and Results	5
1.4.	Environmental Conditions	5
2. 4	7 CFR Part 15C Requirements	6
2.1.	Antenna requirement	6
2.2.	Peak Output Power ······	6
2.3.	6dB Bandwidth	D
2.4.	Conducted Spurious Emissions and Band Edge1	3
2.5.	Power spectral density (PSD)1	7
2.6.	Restricted Frequency Bands20	D
2.7.	Conducted Emission24	4
2.8.	Radiated Emission	7
Ann	ex A Test Uncertainty34	4
Ann	ex B Testing Laboratory Information	5

Change History					
Issue	Date	Reason for change			
1.0	2018-05-14	First edition			

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Shenzhen Chainway Information Technology Co.,Ltd.
Applicant Address: 9/F, Building 2, Daqian Industrial Park, Longchang Rd., Distr	
	67, Bao'an, Shenzhen
Manufacturer:	Shenzhen Chainway Information Technology Co.,Ltd.
Manufacturer Address:	9/F, Building 2, Daqian Industrial Park, Longchang Rd., District
	67, Bao'an, Shenzhen

1.2. Equipment Under Test (EUT) Description

Product Name:	Mobile Data Terminal		
Serial No:	(N/A, marked #1 by test site)		
Hardware Version:	C70SE_MB_V11		
Software Version:	C72A_MT6735_V1.1-AM_GIT938ee72_20171205		
Modulation Type:	GFSK		
Operating Frequency Range:	The frequency range used is 2402MHz - 2480MHz (40		
Operating Frequency Kange.	channels, at intervals of 2MHz);		
Bluetooth Version:	Bluetooth 4.0 LE		
Antenna Type:	PIFA Antenna		
Antenna Gain:	0.58 dBi		

Note 1: The EUT contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies is F(MHz)=2402+2*n (0<=n<=39). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 19 (2440MHz) and 39 (2480MHz).

Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

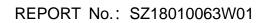
1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

Identity	Document Title
47 CFR Part 15 (10-1-15 Edition)	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result
1	15.203	Antenna Requirement	N/A	N/A	PASS
2	15.247(b)	Peak Output Power	Jan 12, 2018	Su Hang	PASS
3	15.247(a)	Bandwidth	Jan 12, 2018	Su Hang	PASS
4	15.247(d)	Conducted Spurious Emission and Band Edge	Jan 12, 2018	Su Hang	PASS
5	15.247(d)	Restricted Frequency Bands	Jan 22, 2018	Wu Zhongwen	PASS
6	15.207	Conducted Emission	Mar 14, 2018	Wu Zhongwen	PASS
7	15.209, 15.247(d)	Radiated Emission	Jan 22, 2018	Wu Zhongwen	PASS
8	15.247(e)	Power spectral density (PSD)	May 15, 2018	Su Hang	PASS


Note: The tests were performed according to the method of measurements prescribed in ANSIC63.10-2013 and KDB558074 D01 v04 (04/05/2017).

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

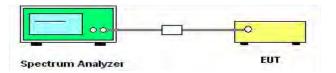
2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Peak Output Power


2.2.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed 1 Watt.

2.2.2. Test Description

The measured output power was calculated by the reading of the spectrum analyzer and calibration.

A. Test Setup:

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

B. Equipments List:

Please refer ANNEX A (1.5).

2.2.3. Test procedure

The measured output power was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for Peak Output Power test on the spectrum analyzer: a) Set analyzer center frequency to channel center frequency.

b)Set the RBW to1MHz

- c) Set VBW to 3MHz
- d) Set span to 3MHz
- e) Sweep time to auto couple.
- f) Detector = peak.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use peak marker function to determine the peak amplitude level.

2.2.4. Test Result

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

A. Test Verdict:

Channel		Measured Output Peak Power		Limit		Verdict
Channel	(MHz)	dBm	W	dBm	W	verdict
0	2402	-3.16	0.00048			PASS
19	2440	-3.21	0.00048	30	1	PASS
39	2480	-3.98	0.00040			PASS

B. Test Plots:

ctrum Analyzer - Swept SA 12:58:08 PM Jan 12, 2018 TRACE 1 2 3 4 5 6 TYPE M SENSE:INT Peak Search Marker 1 2.401850000000 GHz Avg Type: Log-Pwr Avg|Hold:>100/100 Trig: Free Run Atten: 20 dB PNO: Fast 😱 IFGain:Low J NI J DET Next Peak Mkr1 2.401 850 GHz -3.160 dBm Ref Offset 1.5 dB Ref 10.00 dBm 0 dB/div Next Pk Right 1 Next Pk Leff Marker Delta Mkr→CF Mkr→RefLv More Center 2.402000 GHz #Res BW 1.0 MHz Span 3.000 MHz Sweep 1.000 ms (1001 pts) 1 of 2 #VBW 3.0 MHz

(Channel 0: 2402MHz)

(Channel 19: 2440MHz)

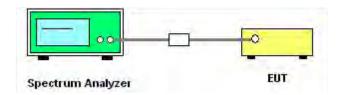
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	RF 50 Ω AC		SENSE:IF	TI	ALIGN AUTO	12:59:24 PM Jan 12, 2018	
larker 1	2.47986800000) GHz PNO: Fast IFGain:Low	Trig: Free Ru Atten: 20 dB		pe: Log-Pwr Id:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Peak Search
0 dB/div	Ref Offset 1.5 dB Ref 10.00 dBm				Mkr1	2.479 868 GHz -3.975 dBm	Next Pe
).00			1				Next Pk Rig
0.0							
20.0							Next Pk L
0.0							Marker De
io.o							Mkr→
:0.0							- mill - A
'0.0							Mkr→Refl
0.0							Mo
	180000 GHz 1.0 MHz	#VBV	V 3.0 MHz		Sween 1	Span 3.000 MHz .000 ms (1001 pts)	1 c

(Channel 39: 2480MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.3. 6dB Bandwidth

2.3.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.3.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

B. Equipments List:

Please refer ANNEX A(1.5).

2.3.3. Test procedure

The steps for the first option are as follows:

- (1) Set analyzer center frequency to channel center frequency.
- a) Set RBW = 100 kHz.
- b) Set the VBW=300 kHz.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by
6 dB relative to the maximum level measured in the fundamental emission.

(2) The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \ge 3 \times RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

2.3.4. Test Result

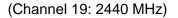
The lowest, middle and highest channels are selected to perform testing to record the 6 dB bandwidth of the module.

A. Test Verdict:

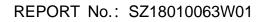
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
0	2402	0.6894	≥500	PASS
19	2440	0.6986	≥500	PASS
39	2480	0.6896	≥500	PASS

B. Test Plots:

(Channel 0: 2402MHz)



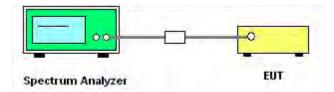
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



(Channel 39: 2480MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn


2.4. Conducted Spurious Emissions and Band Edge

2.4.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.4.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

B. Equipments List:

Please refer ANNEX A (1.5).

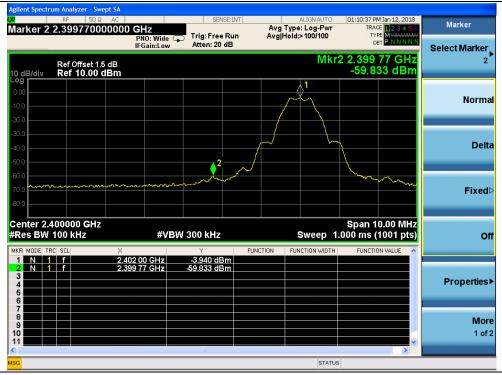
2.4.3. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

	Frequency	Measured Max. Out of	Limit		
Channel	(MHz)	Band Emission (dBm)	Carrier Level	Calculated	Verdict
	()		Carrier Lever	-20dBc Limit	
0	2402	-52.52	-4.06	-24.06	PASS
19	2440	-53.11	-5.01	-25.01	PASS
39	2480	-53.03	-4.94	-24.94	PASS

A. Test Verdict:

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

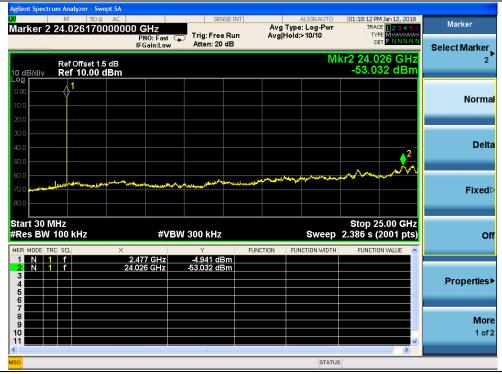


B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Channel = 0, 30MHz to 25GHz)

(Band Edge@ Channel = 0)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
Marker 2 24.013685000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	01:15:51 PM Jan 12, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: Fast IFGain:Low	Trig: Free Run Atten: 20 dB	Avg Hold:>10/10	TYPE M WWWWW DET P N N N N N	
		M	kr2 24.014 GHz	Select Marker
Ref Offset 1.5 dB 10 dB/div Ref 10.00 dBm			-53.108 dBm	-
-10.0				Normal
-20.0				
-30.0				
-40.0				Delta
-50.0			2	
-60.0		بىلىرى بىلىرى يەرىسىلىرى	m	
-70.0 maintendent the states and	An said and a start of the second			Fixed⊳
-80.0				
			0 4	
Start 30 MHz #Res BW 100 kHz #V	BW 300 kHz	Sweep	Stop 25.00 GHz 2.386 s (2001 pts)	Off
MKR MODE TRC SCL X		TION FUNCTION WIDTH	FUNCTION VALUE	on
1 N 1 f 2.440 GHz	-5.014 dBm			
2 N 1 f 24.014 GHz	-53.108 dBm			Duonortion
4				Properties►
6				
8				More
9 10				1 of 2
			~	
MSG		STATUS		

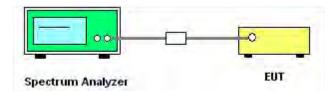
(Channel = 19, 30MHz to 25GHz)

(Channel = 39, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
Marker 2 2.483500000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	01:08:29 PM Jan 12, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: Wide IFGain:Lov	Trig: Free Run Atten: 20 dB	Avg Hold:>100/100	TYPE MWWWWW DET PNNNNN	Select Marker
Ref Offset 1.5 dB 10 dB/div Ref 10.00 dBm		Mkr	2 2.483 50 GHz -66.282 dBm	2
Log 0.00 .100 .200				Normal
-30.0 -40.0 -50.0				Delta
-60.0	~2	manan phanan		Fixed⊳
Center 2.483500 GHz #Res BW 100 kHz #V	BW 300 kHz	Sweep 1	Span 10.00 MHz .000 ms (1001 pts)	Off
1 N 1 f 2.480 00 GHz 2 N 1 f 2.483 50 GHz 3 4 5 6 6	-4.621 dBm -66.282 dBm			Properties►
7 8 9 10 11 11 11			~	More 1 of 2
MSG		STATUS		

(Band Edge@ Channel = 39)


2.5. Power spectral density (PSD)

2.5.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

2.5.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

B. Equipments List:

Please refer ANNEX A (1.5).

2.5.3. Test procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the span to 1.5 times DTS
- c) Set the RBW to 3 kHz
- d) Set the VBW to 10 kHz
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

2.5.4. Test Result

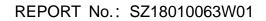
The lowest, middle and highest channels are tested.

A. Test Verdict:

	Spectral power density (dBm/3kHz)								
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict					
0	2402	-17.71	8	PASS					
19	2440	-17.93	8	PASS					
39	2480	-18.39	8	PASS					
Measureme	nt uncertainty: ±1.3d	В							

B. Test Plots:

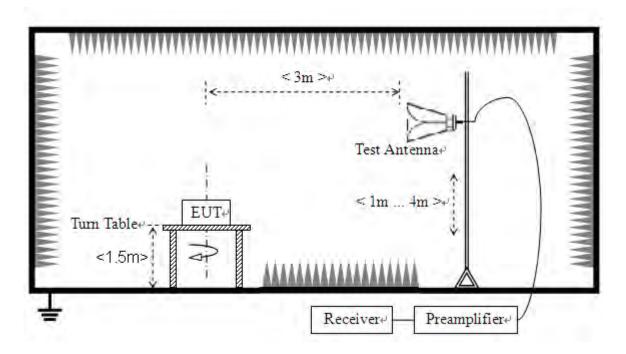
(Channel = 0, 2402MHz)


(Channel = 19, 2440MHz)

(Channel = 39, 2480MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.6. Restricted Frequency Bands

2.6.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.6.2. Test Description

A. Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

B. Equipments List:

Please refer ANNEX A(1.5).

2.6.3. Test Result

The lowest and highest channels are tested to verify the Restricted Frequency Bands.

The measurement results are obtained as below: E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T: Total correction Factor except Antenna U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

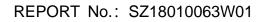
Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Onanner	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdiet
0	2379.98	PK	45.00	-33.63	32.56	43.93	74	PASS
0	2379.98	AV	32.50	-33.63	32.56	31.43	54	PASS
39	2483.50	PK	43.77	-33.18	32.5	43.09	74	PASS
39	2483.50	AV	32.40	-33.18	32.5	31.72	54	PASS

A. Test Verdict:

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Test Plots:

TRACE 1 2 3 4 5 6	1	Type: Voltage	Avg							ker	
DET P P N N N N		Hold:>100/100	Avg			PNO: Fa					
9 976 GHz .001 dBµV	12.	Mkr				ΒμV	00.00 d	Ref	r	B/dív	
D											
2 Quarter and	1		au h Mile Al-1999a	menter	und word yet the	าะใ-งุะสิการะาโชโรงารุงงุงจุล	جرامه میرور الا		ومحارب	der lange	
2.40400 GHz ns (1001 pts)	St 1.00	Sweep		0 MHz	#VBW	#					
JNCTION VALUE	н	FUNCTION WIDT	FUNCTION	Υ .001 dBμV	-Iz			SCL f	TRC 1	MODE	
E				.185 QBUV	1Z	2.390 000 GH			1	N	
	TRACE 123 4 5 TYPE WAYNING DET 2 2 NNNN 379 976 GHz 45.001 dBµV ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	TRACE [23 4.5 G TYPE [23 4.5 G P P NNN 1 2.379 976 GHz 45.001 dBµV	Type: Voltage Hold:>100/100 Mkr1 2.379 976 GHz 45.001 dBµV	Avg Type: Voltage Avg Hold:>100/100 TYPE Def P P NNN Mkr1 2.379 976 GHz 45.001 dBµV	Avg Type: Voltage Avg Hold>100/100 TRACE TYPE TRACE TYPE Image: Trace Type Type Type Type Type Type Type Typ	Avg Type: Voltage Avg Type: Voltage Avg Hold:>100/100 Trig: Free Run Atten: 6 dB Mikr1 2.379 976 GHz 45.001 dBµV Mikr1 2.379 976 GHz 45.001 dBµV 1 2 Stop 2.40400 GHz Sweep 1.000 ms (1001 pts) Y EUNCTION FUNCTION WIDTH FUNCTION VALUE	OUDO GHz PNO: Fast IFGain:Low Trig: Free Run Atten: 6 dB Avg Type: Voltage Avg(Hold:>100/100 Trace [] 24.5 M BμV Mkr1 2.379 976 GHz 45.001 dBµV Mkr1 2.379 976 GHz 45.001 dBµV BμV 1 2 Stop 2.40400 GHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) X Y FUNCTION FUNCTION	9976000000 GHz Trig: Free Run Avg Type: Voltage Trace I 28 a.s. or Avg Hoid:>100/100 Trace I 28 a.s. or Avg Hoid:>100/1000 Trace I 28 a.s. or Avg Hoid:>100	2.379976000000 GHz PN0: Fast Trig: Free Run Avg Type: Voltage Trace Run Avg Type: Voltage Tree Run Avg Type: Voltage Tree Run Tree Run Tree Run Avg Type: Voltage Tree Run Tree Run Tree Run Avg Type: Voltage Tree Run Tree Run Tree Run Avg Type: Voltage Tree Run Tree Run Tree Run Avg Type: Voltage Tree Run Tree Run Tree Run Avg Type: Voltage Tree Run Tree Run Tree Run Tree Run Tree Run Avg Type: Voltage Tree Run Tree Run Tree Run Tree Run Avg Type: Voltage Tree Run Tree Run Avg Type: Voltage Tree Run Tree Run Avg Type: Voltage Tree Run Avg Type: Voltage Tree Run Tree Run Avg Type: Voltage Tree Run Tree Run Avg Type: Voltage Tree Run Avg Type: Voltage Tree Run Tree Run	1 2.379976000000 GHz PN0: Fast IFGain:Low Trig: Free Run Atten: 6 dB Avg Type: Voltage Avg(Hold:>100/100 TRACE TYPE VERTICAL Image: Ref 100.00 dBµV Mkr1 2.379 976 GHz 45.001 dBµV Mkr1 2.379 976 GHz 45.001 dBµV 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Avg Type: Voltage Avg(Hold:>100/100 Mkr1 2.379 976 GHz (CISPR) 1 MHz \$V \$V <td colsp<="" td=""></td>	


(Channel = 0, PEAK)

(Channel = 0, AVG)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

- 6	and the second second			1			um Analyzer	
Marker	02:53:23 AM Jan 22, 2018 TRACE 1 2 3 4 5 6	ALIGN OFF	Av	SENSE:IN	GHz	50 Ω DC		
Select Marker	DET P P N N N N	Hold:>100/100	n Avg	Trig: Free Run Atten: 6 dB	PNO: Fast C IFGain:Low			
1	2.483 500 GHz 43.770 dBµV	Mkr1				0.00 dBµV	Ref 100	div
Norma								
Deit		and the second	al at the second second		2	1		/
Fixed								
Fixed	Stop 2.50000 GHz .000 ms (1001 pts)			V 3.0 MHz	#VB		00 GHz SPR) 1	
			FUNCTION	۲ 43.770 dBµV	500 GHz	MHz × 2.483	SPR) 1	W (C
	.000 ms (1001 pts)	Sweep 1.	FUNCTION	Y		MHz × 2.483	SPR) 1	W (C


(Channel = 39, PEAK)

(Channel = 39, AVG)

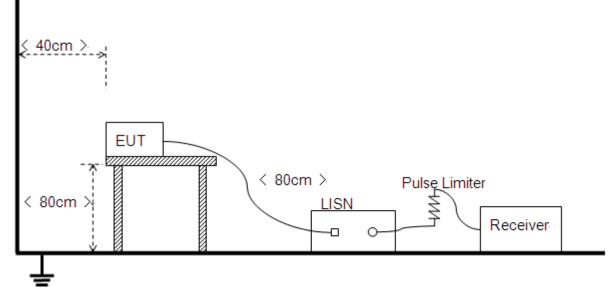
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.7. Conducted Emission

2.7.1. Requirement

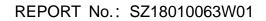
According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)		
(MHz)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
5 - 30	60	50	


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.


2.7.2. Test Description

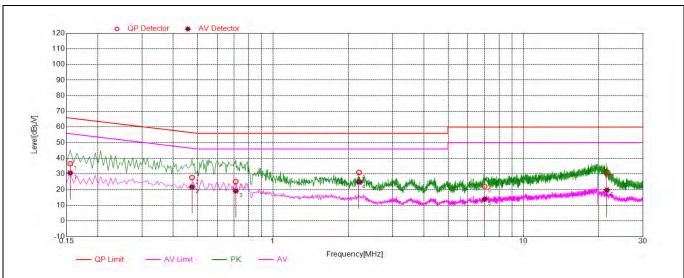
A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

B. Equipments List:

Please refer ANNEX A(1.5).

2.7.3. Test Result


The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

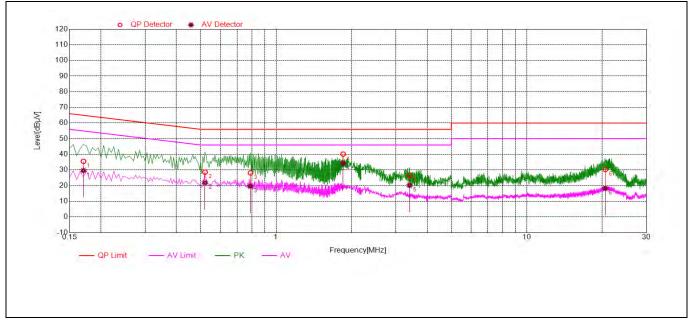
Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

A. Test setup:

The EUT configuration of the emission tests is EUT + Link.

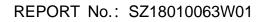
Note: The test voltage is AC 120V/60Hz.

B. Test Plots:



NO.	Fre.	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.16	36.50	30.68	65.73	55.73		PASS
2	0.48	27.75	21.76	56.43	46.43		PASS
3	0.71	25.18	19.21	56.00	46.00	Line	PASS
4	2.20	31.04	24.85	56.00	46.00	Line	PASS
5	7.00	22.12	13.90	60.00	50.00		PASS
6	21.53	31.34	19.72	60.00	50.00		PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn



(Plot B: N Phase)

NO.	Fre.	Emission Level (dBµV)		Limit (Limit (dBµV)		Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average	Power-line	rendret
1	0.17	35.56	29.66	64.95	54.95		PASS
2	0.52	28.64	21.91	56.00	46.00		PASS
3	0.79	28.17	19.65	56.00	46.00	Neutral	PASS
4	1.85	40.17	34.40	56.00	46.00	neutrai	PASS
5	3.41	26.69	20.16	56.00	46.00		PASS
6	20.56	30.32	18.30	60.00	50.00		PASS

2.8. Radiated Emission

2.8.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

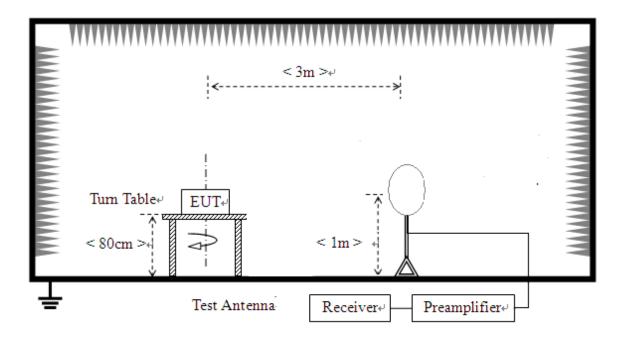
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

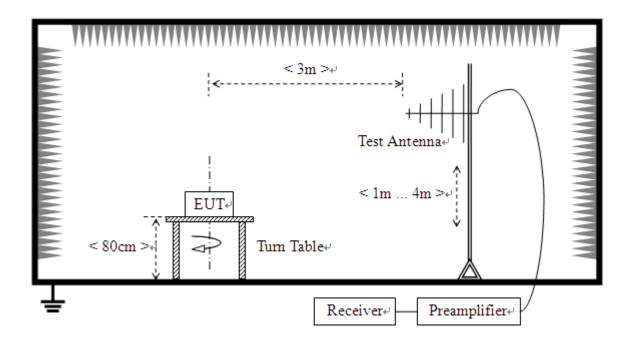
Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- 2. For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

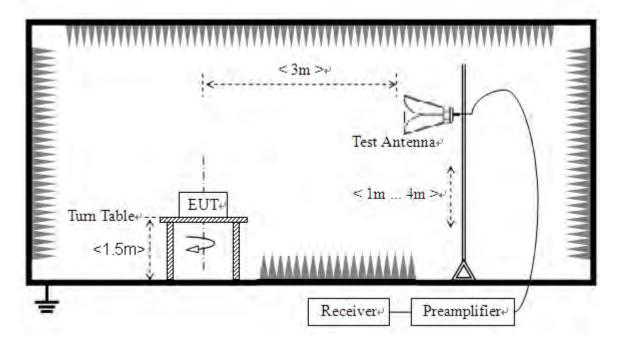



2.8.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10:2013. For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10:2013.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant

emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

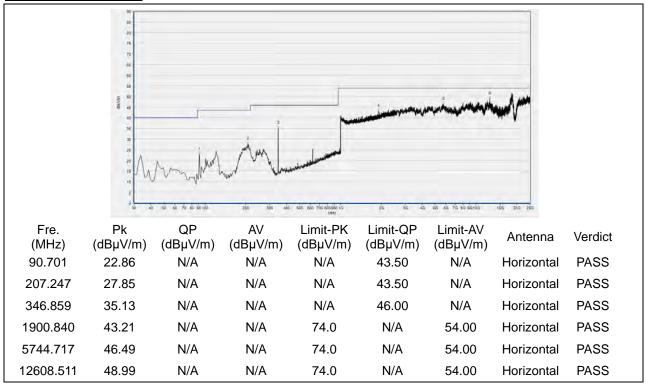
Please refer ANNEX A(1.5).

2.8.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

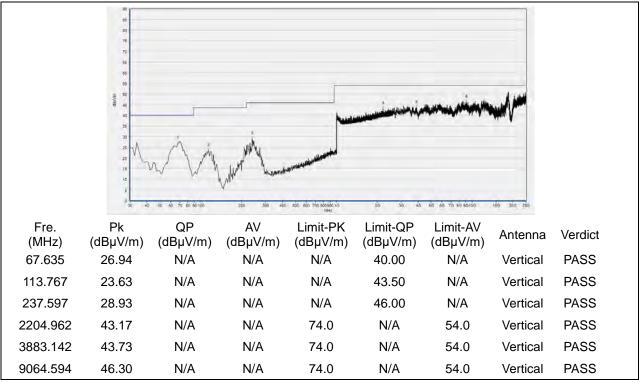
The measurement results are obtained as below:

During the test, the total correction Factor A_T and A_{Factor} were built in test software.


Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

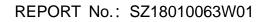
Note2: For the frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

Note3: For the frequency, which started from 25GHz to 40GHz, was pre-scanned and the result which was 10dB lower than the limit was not recorded.

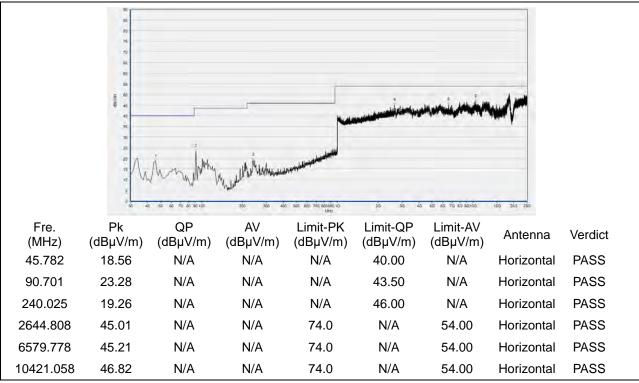


A. Test Plots for the Whole Measurement Frequency Range: <u>Plots for Channel = 0</u>

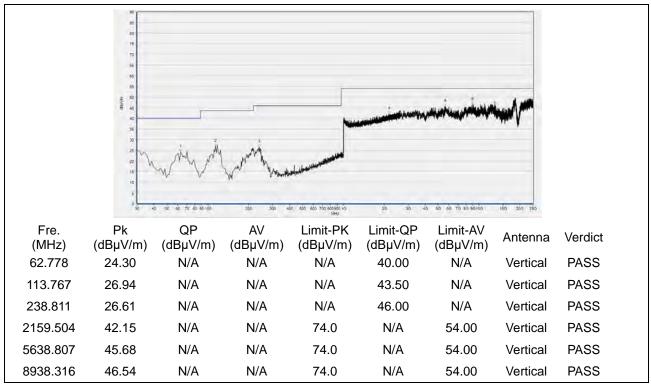
(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525

E-mail: service@morlab.cn



Plot for Channel = 19

(Antenna Horizontal, 30MHz to 25GHz)

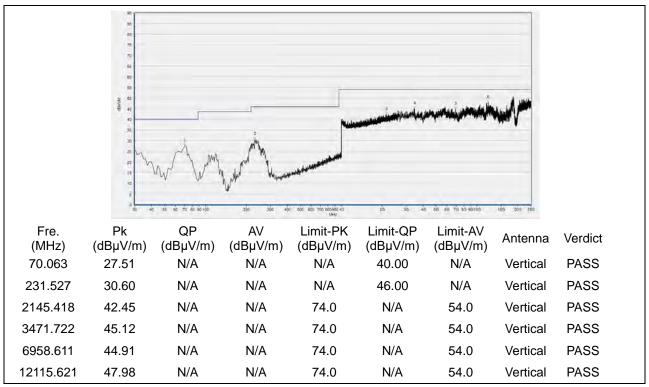


(Antenna Vertical, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn



Plot for Channel = 39

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 8 Http://www.morlab.cn E-mai

Fax: 86-755-36698525 E-mail: service@morlab.cn

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Peak Output Power	±2.22dB
Power spectral density (PSD)	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.			
Department:	Morlab Laboratory			
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang			
	Road, Block 67, BaoAn District, ShenZhen, GuangDong			
	Province, P. R. China			
Responsible Test Lab	Mr. Su Feng			
Manager:	Mi. Su Feng			
Telephone:	+86 755 36698555			
Facsimile:	+86 755 36698525			

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23
Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23
Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23
EXA Signal	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
Analzyer					
RF cable	CB01	RF01	Morlab	N/A	N/A
(30MHz-26GHz)					
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2017.07.13	2018.07.12
LISN	812744	NSLK 8127	Schwarzbeck	2018.05.08	2019.05.07
Pulse Limiter	9391	VTSD	Schwarzbeck	2018.05.08	2019.05.07
(20dB)		9561-D			
Coaxial cable(BNC)	CB01	EMC01	Morlab	NI/A	NI/A
(30MHz-26GHz)	CBUI	ENICOT	INIONAD	N/A	N/A

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal. Due
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY54130016	N9038A	Agilent	2018.05.08	2019.05.07
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2018.05.08	2019.05.07
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.09.13	2018.09.12
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2018.03.03	2019.03.02
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2017.09.13	2018.09.12
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2018.05.08	2019.05.07
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT

_

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China