TEST REPORT

「CT通测检测 TESTING CENTRE TECHNOLOGY

> FCC ID: 2AC6AC66 Product: Mobile Data Terminal Model No.: C66 Additional Model No.: N/A Trade Mark: **CHAINWAY**[®] Report No.: TCT190910E037 Issued Date: Sep. 30, 2019

> > Issued for:

Shenzhen Chainway Information Technology Co., Ltd. 9/F, Building 2, Daqian Industrial Park, Longchang Rd., District 67, Bao'an, Shenzhen, China

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1.	Test Certification	<u>v</u>	<u> </u>	
2.	Test Result Summar	y		4
3.	EUT Description			
4.	General Information.	\sim	\sim	
	4.1. Test environment a	nd mode		8_
	4.2. Test Mode			
	4.3. Description of Supp	ort Units	\sim	14
	4.4. Configuration of Tes	sted System		14
	4.5. Measurement Resul	ts Explanation Exam	ple	14
5.	Facilities and Accred	litations	\sim	15
	5.1. Facilities			15
	5.2. Location			15
	5.3. Measurement Uncer	rtainty	\sim	15
6.	Test Results and Me	asurement Data		16
	6.1. Conducted Output F	ower Measurement		16
	6.2. Peak to Average Ra	tio		17
	6.3. 99% Occupied Band	width and 26dB Ban	dwidth Measureme	ent18
	6.4. Band Edge and Con	ducted Spurious Em	ission Measureme	nt19
	6.5. Field Strength of Sp	urious Radiation Me	asurement	21
	6.6. Frequency Stability	Measurement		24
Ар	pendix A: Photograph	ns of Test Setup		
Ар	pendix B: Photograph	ns of EUT		
Те	st Data: Refer to Appe	endix For LTE Ban	d 2, Appendix F	or LTE Band 4,
	Appendix For	LTE Band 5, App	endix For LTE B	and 7.
	Appendix For	I TF Band 17		·····,
				Page 2 of 26

CT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT190910E037

Product:	Mobile Data Terminal	
Model No.:	C66	0
Additional Model:	N/A	
Trade Mark:	CHAINWAY [®]	
Applicant:	Shenzhen Chainway Information Technology Co., Ltd.	
Address:	9/F, Building 2, Daqian Industrial Park, Longchang Rd., District 67, Bao'an, Shenzhen, China	
Manufacturer:	Shenzhen Chainway Information Technology Co., Ltd.	
Address:	9/F, Building 2, Daqian Industrial Park, Longchang Rd., District 67, Bao'an, Shenzhen, China	
Date of Test:	Sep. 11, 2019 – Sep. 29, 2019	
Applicable Standards:	FCC CFR Title 47 Part 2 FCC CFR Title 47 Part22 FCC CFR Title 47 Part24 FCC CFR Title 47 Part27	

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Brews Xu

Tomsin

Brens Ju

Reviewed By:

Beryl Zhao

Approved By:

Date: Sep. 29, 2019

Page 3 of 26

Requirement	CFR 47 Section	Result
Conducted Output Power	§2.1046; §22.913; §24.232(c); §27.50(d); §27.50(c); §27.50(b);	PASS
Peak-to-Average Ratio	§2.1046; §24.232(d) §27.50(d); §27.50(c); §27.50(b);	PASS
Effective Radiated Power	§2.1046; §22.913; §24.232(c); §27.50(d); §27.50(c); §27.50(b);	PASS
Equivalent Isotropic Radiated Power	§2.1046; §22.913; §24.232(c); §27.50(d); §27.50(c); §27.50(b);	PASS
Occupied Bandwidth	§2.1049; §24.238(b); §27.53;	PASS
Band Edge	§2.1051; §22.917(a); §27.53(h); §27.53(c); §27.53(g); §24.238(a);	PASS
Conducted Spurious Emission	§2.1051; §22.917(a); §27.53(h); §27.53(g); §27.53(c); §24.238(a);	PASS
Field Strength of Spurious Radiation	§2.1053; §22.917(a); §27.53(g) ; §27.53(c); §27.53(h); §24.238(a);	PASS
Frequency Stability for Temperature & Voltage	§2.1055;§22.355; §27.54; §24.235;	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 26

3. EUT Description

Product:	Mobile Data Terminal	Ċ
Model No.:	C66	
Additional Model:	N/A	
Trade Mark:	CHAINWAY®	
Tx Frequency:	LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 17: 704 MHz ~ 716 MHz	
Rx Frequency:	LTE Band 2: 1930MHz ~ 1990 MHz LTE Band 4: 2110 MHz ~ 2155 MHz LTE Band 5: 869 MHz ~ 894 MHz LTE Band 7: 2620 MHz ~ 2690 MHz LTE Band 17: 734 MHz ~ 746 MHz	
Bandwidth:	LTE Band 2: 1.4MHz /3MHz /5MHz /10MHz /15MHz /20MHz LTE Band 4: 1.4MHz /3MHz /5MHz /10MHz /15MHz /20MHz LTE Band 5: 1.4MHz /3MHz /5MHz /10MHz LTE Band 7: 5MHz /10MHz/15MHz /20MHz LTE Band 17: 5MHz /10MHz	
Maximum Output Power to Antenna:	LTE Band 2: 23.77dBm LTE Band 4: 23.73dBm LTE Band 5: 23.84dBm LTE Band 7: 24.19dBm LTE Band 17: 24.17dBm	
99% Occupied Bandwidth:	LTE Band 2: 17M8G7D LTE Band 4: 17M8G7D LTE Band 5: 8M95G7D LTE Band 7: 17M9G7D LTE Band 17: 8M94G7D	
Type of Modulation:	QPSK/16QAM	
Antenna Type:	Internal Antenna	
Antenna Gain:	LTE Band 2: 0.87dBi LTE Band 4: 1.25dBi LTE Band 5: 0.46dBi LTE Band 7: 1.23dBi LTE Band 17: 0.18dBi	
Power Supply:	Rechargeable Li-ion Battery DC 3.8V	
AC adapter:	Adapter Information: MODEL: DBS15Q INPUT: AC 100-240V, 50/60Hz, 0.5A OUTPUT: DC 5V, 3A / 9V, 2A / 12V, 1.5A	

Page 5 of 26

			Page 6 of 26
Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com

		Page
 _	 	

4M47W7D

8M94W7D

	13M4G7D	0.303	13M4W7D
	17M8G7D	0.315	17M8W7D
5	QI	PSK	1
	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)
	1M08G7D	0.261	1M08W7D
	2M69G7D	0.266	2M68W7D

0.269

0.264

	Emission	Maximum EIRP(W)	Emission	Maximum EIRP(W)
LTE Band 5	QI	PSK	16Q	AM
20	17M8G7D	0.315	17M8W7D	0.280
15	13M4G7D	0.303	13M4W7D	0.288
10	8M95G7D	0.310	8M92W7D	0.283
5	4M48G7D	0.308	4M47W7D	0.242
3	2M69G7D	0.297	2M68W7D	0.243
1.4	1M08G7D	0.305	1M08W7D	0.249
	(99%OBW)		(99%OBW)	

BW(MHz)	Emission Designator	Maximum EIRP(W)	Emission Designator	Maximum EIRP(W)	
LTE Band 4	C	QPSK	160	AM	
20	17M8G7D 0.277 17M8W7D		0.242		
15	13M4G7D	0.261	13M4W7D	0.239	
10	8M93G7D	0.283	8M92W7D	0.245	
5	4M47G7D	0.267	4M47W7D	0.221	
3	2M69G7D	0.264	2M68W7D	0.218	
1.4	1M08G7D	8G7D 0.291 1M08W7D 0.244 9G7D 0.264 2M68W7D 0.218 7G7D 0.267 4M47W7D 0.221 3G7D 0.283 8M92W7D 0.245 4C7D 0.261 12M4W7D 0.220			

mission Designator							
LTE Band 2	C	QPSK	16QAM				
BW(MHz)	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)	Maximum EIRP(W)			
1.4	1M08G7D	0.291	1M08W7D	0.244			
3	2M69G7D	0.264	2M68W7D	0.218			
5	4M47G7D	0.267	4M47W7D	0.221			
10	8M93G7D	0.283	8M92W7D	0.245			
15	13M4G7D	0.261	13M4W7D	0.239			

LTE Band 7		QPSK	16QAM		
BW(MHz)	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)	Maximum EIRP(W)	
5 4M47G7D		0.330	4M47W7D	0.266	
10	8M94G7D	0.343	8M92W7D	0.302	
15	13M4G7D	0.317	13M4W7D	0.310	
20	17M9G7D	0.348	17M8W7D	0.290	
LTE Band 17	Q	QPSK 16QAM		6QAM	
BW(MHz)	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)	Maximum EIRP(W)	

Report No.: TCT190910E037

0.218

0.234

0.223

0.243

TCT 通测检测 TESTING CENTRE TECHNOLOGY

BW(MHz)

1.4

3

5

10

4M47G7D

8M95G7D

5	5	4M47G7D	0.272	4M48\	N7D	0.208	
1	0	8M94G7D	0.264	8M93\	N7D	0.250	
							X

Operating Enviro	onment:				
Temperature:		24.0 °C			
Humidity:		54 % R	н		Se la compañía de la
Atmospheric P	ressure:	1010 m	bar		
Fest Mode: Operation mod	le:	Keep th with mo	e EUT in con dulation	tinuous tra	ansmitting
norizontal and vertica by: having the EUT c X, Y & Z) and consid nterconnecting cable norizontal and vertica ollowing pages.	al polarities were perfo ontinuously working, i dered typical configura es, rotating the turntab al polarizations. The e	ormed. During the orecommed. During the new set of	he test, each en operating mode vorst position, m enna height from case are shown	nission was s, rotated a nanipulating n 1m to 4m n in Test Re	s maximized bout all 3 axis in both esults of the

-	escription Operation F	requency				
	LTE Band 2(1.4MHz)	LTE Band 2(3MHz)			
	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
	18607	1850.7	18615	1851.5		
	18900	1880	18900	1880		
	19193	1909.3	19185	1908.5		
	LTE Band 2	(5MHz)	LTE Ba	nd 2(10MHz)		
	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
	18625	1852.5	18650	1855		
	18900	1880	18900	1880		
	19175	1907.5	19150	1905		
	LTE Band 2(15MHz)	LTE Ba	nd 2(20MHz)		
	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
	18675	1857.5	18700	1860		
	18900	1880	18900	1880		
	19125	1902.5	19100	1900		
)	No.)			
	LTE Band 4(1.4MHz)	LTE Ba	and 4(3MHz)		
	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
	19957	1710.7	19965	1711.5		
	20175	1732.5	20175	1732.5		
	20393	1754.3	20385	1753.5		
	LTE Band 4	(5MHz)	LTE Band 4(10MHz)			
	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
	19975	1712.5	20000	1715		
	20175	1732.5	20175	1732.5		
	20375	1752.5	20350	1750		
	LTE Band 4(15MHz)	LTE Ba	nd 4(20MHz)		
	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
	20025	1717.5	20050	1720		
)	20175	1732.5	20175	1732.5		
	00005	17/7 5	20300	1745		
	20325	1747.5				

21375 2562.5 21350 2560.0 MHz

LTE Band 17(10MHz)

Frequency (MHz)

709

710

711

Channel

23780

23790

23800

LTE Band	7(5MHz)	LTE Band 7(10MHz)			
Channel	Channel Frequency (MHz)		Frequency (MHz)		
20775	20775 2502.5 MHz		2505.0 MHz		
21100	21100 2535		2535		
21425	2567.5 MHz	21400	2565.0 MHz		
LTE Band	7(15MHz)	LTE Band 7(20MHz)			
Channel	Frequency (MHz)	Channel	Frequency (MHz)		
20825					
20025	2507.5	20850	2510.0 MHz		
21100	2507.5 2535	20850 21100	2510.0 MHz 2535		

LTE Band 8	5(1.4MHz)	LTE Band 5(3MHz)		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
20407	824.7	20415	825.5	
20525	836.5	20525	836.5	
20643	848.3	20635	847.5	
LTE Band	5(5MHz)	LTE Band 5(10MHz)		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
20425	826.5	20450	829	
20525	836.5	20525	836.5	
20625	846.5	20600	844	

LTE Band 17(5MHz)

Frequency (MHz)

706.5

710

713.5

Channel

23755

23790

23825

Report No.: TCT190910E037

Page 10 of 26

4.2. Test Mode

All modes and data rates and positions were investigated. Test modes are chosen to be reported as the worst case configuration below:

	Test Mode	
Band	Radiated TCs	Conducted TCs
LTE Band 2	QPSK Link (1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz / 20MHz)	16QAM Link (1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz / 20MHz)
LTE Band 4	QPSK Link (1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz / 20MHz)	16QAM Link (1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz / 20MHz)
LTE Band 5	QPSK Link (1.4MHz / 3MHz / 5MHz / 10MHz)	16QAM Link (1.4MHz / 3MHz / 5MHz / 10MHz)
LTE Band 7	QPSK Link (5MHz / 10MHz / 15MHz / 20MHz)	16QAM Link (5MHz / 10MHz / 15MHz / 20MHz)
LTE Band 17	QPSK Link (5MHz / 10MHz)	16QAM Link (5MHz / 10MHz)

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas License Digital Systems v03 with maximum output power. Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Page 11 of 26

T Report No.: TCT190910E037 Bandwidth (MHz) Modulation RB # Test Channel **Test Items** Band Full 1.4 15 20 QPSK 16QAM М Н 3 5 10 1 Half L 2 v v ۷ ۷ v v v ٧ v ۷ v v v v Max. Output 4 v ۷ ۷ ۷ v v ۷ ۷ ۷ v v v v ٧ Power 5 v v v v -v v v v v v v v 7 _ -۷ v v v v v v v v v v v -17 _ v ۷ -۷ ۷ v v v v v v 2 v v v v v v v v v v v v v ν Peak-to-Average v 4 v v v v v v v v v v v v v Ratio 5 ۷ ۷ ۷ ۷ --۷ ۷ ۷ ۷ v ۷ ۷ ۷ 7 -v v v v v v v v v v v v 17 -v v _ v v v v v v v v 26dB and 99% 2 v v ۷ ۷ v ۷ v v ۷ ۷ ۷ ۷ v ۷ Bandwidth 4 v v v v ۷ ۷ ۷ ۷ ۷ v v v v ۷ 5 v 2 v v v v v v v v v v v 4 7 -۷ v v v v v ۷ ٧ ۷ v v ۷ 17 -v v -v v v ۷ v v v v RB # Bandwidth (MHz) Modulation **Test Channel Test Items** Band 20 5 QPSK 1.4 3 10 15 16QAM 1 Half Full L Μ н -2 v ۷ ۷ ٧ v v v v v v v v v Conducted 4 v v v v v v v v v v v v v -Band Edge 5 ۷ ۷ v v v ۷ ۷ v ۷ ۷ v 7 --۷ v v ۷ v v ۷ v v v v 17 -v v -v v v v v v v 2 v v v v v v v v v -v v v Conducted 4 v ۷ ۷ v v ۷ v v ۷ -v ۷ v Spurious ł. 5 v ۷ ۷ ۷ v ۷ ۷ --۷ ۷ v Emission 7 ۷ v v v v v v v v v ---17 --v v v v _ v v v -v 4 2 v --_ v ۷ v -v v v Frequency 4 -----v v v v v v v Stability _ -5 ۷ --v ۷ ۷ -v v v 7 -<u>.</u> 2 _ v -4 v ۷ v _ ۷ v v 17 2 _ v -_ 2 v v v 4 _ v v v

Page 12 of 26

	TESTING CEN	ITRE TECH	INOLOGY								Rep	ort No	<u>.: TCT1</u>	90910E	<u>=037</u>
E.R.P./ E.I.R.P	. 2	v	v	v	v	V	v	v	v	v	V	v	v	v	v
	4	v	v	v	v		v -	 v	v v	v	v	v v	v	v	Ì
	7	2	-	v	v	v	v	v	v	v	v	v	v	v	V
	17	-	-	v	v	-	-	v	v	v	v	v	v	v	v
Radiated	2	v	-	<u></u>	-	-	-	v	v	v	-	-	v	v	V
Spurious	4	v	-	2 S) -	-	-	v	v	v	-	- (v	v	`
Emission	5	v	-	•	-	-	-	v	v	v	-	-	v	v	`
	12	-	-	v	-	-	-	v	v	v		-	v	v	`
	17	Ú -)	-	v	-	-	<u>5</u>)	v	v	v	()	-	v	v	
Note	1. Ih 2. Th	e mark e mark	. "v " n . "-" m	eans t	that th	is ban	dwidth	tion is o	supporte	or test	ing		Ê)	
													Daga	13 of 2	26

4.3. Description of Support Units

CT 通测检测 TESTING CENTRE TECHNOLOGY

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	1	/	1	1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4. Configuration of Tested System

System Simulator

4.5. Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level. The spectrum analyzer offset is derived from RF cable loss and attenuator factor. Offset = RF cable loss + attenuator factor.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab.

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

 IC - Registration No.: 10668A-1 The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6.1.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wideband Radio Communication Tester	R&S	CMW500	114220	Jul. 29, 2020
RF cable (9kHz-40GHz)	тст	RE-05	N/A	Sep. 08, 2020
Antenna Connector	ТСТ	RFC-02	N/A	Sep. 08, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

	Report No.: TCT190910E03
2. Peak to Average R 2.1. Test Specification	atio
Test Requirement:	FCC part 2.1046; 22.913; 24.232; 27.50(d); 27.50(c); 27.50(b)
Test Method:	FCC KDB 971168 D01v03
Limit:	The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.
Test Setup:	Power Divider System Simulator EUT Spectrum Analyzer
Test Procedure:	 The testing follows FCC KDB 971168 D01v03 Section 5.7.1. The EUT was connected to spectrum analyzer and system simulator via a power divider. Set EUT to transmit at maximum output power. Set the CCDF (Complementary Cumulative Distribution Function) option of the spectrum analyzer. Record the maximum PAPR level associated with a probability of 0.1%.
Test Result:	PASS

6.2.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wideband Radio Communication Tester	R&S	CMW500	114220	Jul. 29, 2020
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020
RF cable (9kHz-40GHz)	тст	RE-05	N/A	Sep. 08, 2020
Antenna Connector	тст	RFC-02	N/A	Sep. 08, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 17 of 26

6.3. 99% Occupied Bandwidth and 26dB Bandwidth Measurement

6.3.1. Test Specification

Test Requirement:	FCC part 27.53(h)(3) and FCC part 27.53(m)(6), FCC part 24.238(b)				
Test Method:	FCC part 2.1049				
Limit:	N/A				
Test Setup:	System Simulator Spectrum Analyzer				
Test Procedure:	 Spectrum Analyzer The testing follows FCC KDB 971168 D01v03 Section 4.2. The EUT was connected to the spectrum analyzer and system simulator via a power divider. The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. The 99% occupied bandwidth were measured, set RBW= 1% of OBW, VBW= 3*RBW, sample detector, trace maximum hold. The 26dB bandwidth were measured, set RBW= 1% of EBW, VBW= 3*RBW, peak detector, trace 				
Test Result:	PASS				

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wideband Radio Communication Tester	R&S	CMW500	114220	Jul. 29, 2020
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020
RF cable (9kHz-40GHz)	тст	RE-05	N/A	Sep. 08, 2020
Antenna Connector	тст	RFC-02	N/A	Sep. 08, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 18 of 26

TCT通测检测 6.4. Band Edge and Conducted Spurious Emission Measurement

1.1. Test Specification	$\left(\begin{array}{c} \\ \\ \end{array} \right)$	(\mathcal{C})	
Test Requirement:	FCC part 27.53(h) FCC part 27.53(m)	, FCC part 27.53(g) ,)(4), FCC part 24.238((a), 22.917(a)
Test Method:	FCC part2.1051	(c)	
_imit:	-13dBm		
Fest Setup:	System Simulator	Power Divider	EUT
Test Procedure:	 The testing follo 6.0. The EUT was consistent simulated. The RF output of analyzer by an The path loss were and measurer The band edges highest RF powers The conducted singlest RF powers The conducted singlest the limited of the transmitter P(Watts) = P(Weatts) =	ws FCC KDB 971168 onnected to the spectro or via a power divider. of EUT was connected RF cable and attenua vas compensated to the nent. of low and high chan vers were measured. spurious emission for e was taken. ental frequency should t line in the operating derived from 43 + 10lo power /) - [43 + 10log(P)] (di e limit line is derived f low the transmitter po	D01v03 Section um analyzer and I to the spectrum ator. he results for inels for the the whole d be excluded frequency band. og(P) dB below B) = [30 + B) = -13dBm. from 55 + ower
Test Result:	PASS		
			Page 19 of 26
Hotline: 400-6611-140 Tel:	86-755-27673339 Fax:	86-755-27673332 http:	://www.tct-lab.com

Page 20 of 26

http://www.tct-lab.com

Fax: 86-755-27673332

6.4.2. Test Instruments

TCT通测检测 TCT通测检测

Hotline: 400-6611-140 Tel: 86-755-27673339

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wideband Radio Communication Tester	R&S	CMW500	114220	Jul. 29, 2020
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2020
RF cable (9kHz-40GHz)	тст	RE-05	N/A	Sep. 08, 2020
Antenna Connector	тст	RFC-02	N/A	Sep. 08, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

J.	3			 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking record of maximum spurious emission. 7. A horn antenna was substituted in place of the EUT and was driven by a signal generator. 8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission. 9. Taking the record of output power at antenna port. 			
С С С Т	est results:		10. Ne 11. Elf An 12. EF 13. Th aga 14. Th the t = P(= [30 = -1 For 10lo	RP (dBm) = tenna Gain RP (dBm) = E e RF fundar ainst the limi e limit line is transmitter p W) - [43 + 1 0 + 10log(P) 3dBm. Band 17, he og(P) dB belo	EIRP - 2.15 nental frequ t line in the o derived fro ower P(Wat Olog(P)] (dB] (dBm) - [43 limit line is ow the trans	- Tx Cable ency should operating free m 43 + 10loo ts) 3 + 10log(P) derived from mitter powe	Loss + Tx d be excluded equency band. g(P) dB below)] (dB) n 55 +
	Ś						

6.5.2. Test Instruments

Radiated Emission Test Site (966)						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
System simulator	R&S	CMU200	111382	Sep. 11, 2020		
Spectrum Analyzer	ROHDE&SCHW ARZ	R&S	FSQ40	Sep. 11, 2020		
Signal Generator	НР	83623B	3614A00396	Sep. 08, 2020		
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 06, 2020		
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 06, 2020		
Broadband Antenna	Schwarzbeck	VULB9163	412	Sep. 06, 2020		
Horn Antenna	Schwarzbeck	BBHA 9120D	1201	Sep. 06, 2020		
Horn Antenna	Schwarzbeck	BBH 9170	582	Sep. 06, 2020		
Dipole Antenna	тст	TCT-RF	N/A	Sep. 08, 2020		
Coax cable (9kHz-40GHz)	тст	RE-high-02	N/A	Sep. 08, 2020		
Coax cable (9kHz-40GHz)	тст	RE-High-04	N/A	Sep. 08, 2020		
Antenna Mast	Keleto	CC-A-4M	N/A	N/A		
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Report No.: TCT190910E037 6.6. Frequency Stability Measurement 6.6.1. Test Specification **Test Requirement:** FCC part 27.54, FCC part 22.355, 24.235 Test Method: FCC Part 2.1055 Limit: ±2.5 ppm **Test Setup:** Thermal Chamber **Test Procedures for Temperature Variation** 1. The testing follows FCC KDB 971168 D01v03 Section 9.0. 2. The EUT was set up in the thermal chamber and connected with the system simulator. 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute. 4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and Test Procedure: the maximum frequency change was recorded within one minute. **Test Procedures for Voltage Variation** 1. The testing follows FCC KDB 971168 D01v03 Section 9.0. 2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator. 3. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT. 4. The variation in frequency was measured for the worst case. PASS Test Result:

Page 24 of 26

6.6.2. Test Instruments

Employment	Manufacturer	Madal	O a stal Niemak as	Oalibration Dura
Equipment	Manufacturer	wodei	Serial Number	Calibration Due
Wideband Radio Communication Tester	R&S	CMW500	114220	Jul. 29, 2020
Programable tempratuce and humidity chamber	JQ	JQ-2000	N/A	Sep. 08, 2020
DC power supply	Kingrang	KR3005K 30V/5A	N/A	Sep. 08, 2020
RF cable (9kHz-40GHz)	тст	RE-04	N/A	Sep. 08, 2020
Antenna Connector	тст	RFC-03	N/A	Sep. 08, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 25 of 26

Hotline: 400-6611-140 Tel: 86-755-27673339 http://www.tct-lab.com Fax: 86-755-27673332

