

TEST REPORT

APPLICANT Shenzhen Chainway Information

Technology Co., Ltd.

PRODUCT NAME: Mobile Data Terminal

MODEL NAME : C6000

BRAND NAME: CHAINWAY

FCC ID : 2AC6AC6000B

STANDARD(S) : 47 CFR Part 22 Subpart H

RECEIPT DATE : 2020-11-20

TEST DATE : 2020-11-30 to 2021-01-11

ISSUE DATE : 2021-01-25

Edited by:

Peng Mi (Rapporteur)

Approved by:

Peng Huarui (Supervisor)

DIRECTORY

1. 1	Technical Information ····································
1.1.	Applicant and Manufacturer Information 3
1.2.	Equipment Under Test (EUT) Description
1.3.	Maximum E.R.P./E.I.R.P. and Emission Designator
1.4.	Test Standards and Results 5
1.5.	Environmental Conditions 6
2. 4	7 CFR Part 2, Part 22H Requirements······· 7
2.1.	Conducted RF Output Power7
2.2.	Peak to Average Ratio 9
2.3.	Occupied Bandwidth10
2.4.	Frequency Stability13
2.5.	Conducted Out of Band Emissions15
2.6.	Band Edge18
	Determining E.R.P. and/or E.I.R.P. from conducted RF output power surements
2.8.	Radiated Out of Band Emissions22
Ann	ex A Test Uncertainty ·······28
Ann	ex B Testing Laboratory Information29

	Change History				
Version Date Reason for change					
1.0	2021-01-25	First edition			

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Shenzhen Chainway Information Technology Co., Ltd.	
Applicant Address:	9/F, Building 2, Daqian Industrial Park, Longchang Rd., District	
	67, Bao'an, Shenzhen, China	
Manufacturer:	Shenzhen Chainway Information Technology Co., Ltd.	
Manufacturar Address	9/F, Building 2, Daqian Industrial Park, Longchang Rd., District	
Manufacturer Address:	67, Bao'an, Shenzhen, China	

1.2. Equipment Under Test (EUT) Description

Product Name:	Mobile Data Terminal		
Serial No.:	(N/A, marked #1 by	y test site)	
Hardware Version:	PCBA-C6000M-62	MB-V20	
Software Version:	H205XOA.C6000_	E3AX.A3.AD10.WVGA.CN.FTM.MV3224.P	
Software version.	1.20200921.ATA		
Modulation Type:	CDMA2000 1xRTT	: QPSK	
Modulation Type:	CDMA2000 1xEVD	OO 0: QPSK,8PSK	
Omerating Francisco Denge	CDMA 2000 BC0	Tx: 824MHz-849MHz	
Operating Frequency Range:	CDIVIA 2000 BC0	Rx: 869MHz-894MHz	
Antenna Type:	Fixed Internal Ante	nna	
Antenna Gain:	CDMA 2000 BC0 -0.8dBi		
	Battery		
	Brand Name:	Hixon	
	Model No.:	J314	
Accessory Information	Serial No.:	(N/A, marked #1 by test site)	
Accessory Information:	Capacity:	4200mAh	
	Rated Voltage:	3.80V	
	Charge Limit:	4.35V	
	Manufacturer:	Hixon(Shenzhen) Technology Limited	

	AC Adapter	
	Brand Name:	ULLPOWER®
	Model No.:	NA010050020
Accessory Information:	Serial No.:	(N/A, marked #1 by test site)
Accessory information.	Rated Output:	5V=2A
	Rated Input:	100-240V~50/60Hz, 0.5A
	Manufacturer:	Shenzhen Shi Ying Yuan Electronics Co.,
		Ltd.

Note 1: SIM 1 and SIM 2 is a chipset unit and tested as a single chipset. The SIM 1 is chosen for test.

Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Maximum E.R.P./E.I.R.P. and Emission Designator

Test Mode Maximum E.R.P./E.I.R.P. (W)		Emission Designator
CDMA2000 BC0	0.241	1M27F9W

1.4. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2, Part 22 for the EUT FCC ID Certification:

No.	Identity	Document Title
1 47 CFR Part 2 (10-1-12 Edition)		Frequency Allocations and Radio Treaty Matters;
1	47 CFR Part 2 (10-1-12 Edition)	General Rules and Regulations
2	47 CFR Part 22 (10-1-12 Edition)	Public Mobile Services

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result	Method determination/ Remark
1	2.1046	Conducted RF Output Power	Dec 27, 2020	Zhou Xiaolong	PASS	No deviation
2	24.232(d)	Peak -Average Ratio	N/A	N/A	N/A _{Note1}	N/A
3	2.1049	Occupied Bandwidth	Dec 11, 2020	Zhou Xiaolong	PASS	No deviation
4	4 2.1055, Frequency 22.355 Stability		Jan 06, 2021	Zhou Xiaolong	PASS	No deviation
5	2.1051, 22.917(a)	Conducted Out of Band Emissions	Dec 11, 2020	Zhou Xiaolong	PASS	No deviation
6	2.1051, 22.917(a)	Band Edge	Dec 11, 2020	Zhou Xiaolong	PASS	No deviation
7	22.913(a)	Transmitter Radiated Power (EIPR/E.R.P.)	Jan 11, 2021	Peng Xuewei	PASS	No deviation
8	2.1051, 22.917(a)	Radiated Out of Band Emissions	Dec 11, 2020	Peng Xuewei	PASS	No deviation

Note 1: This test case does not support CDMA BC 0 band.

Note 2: The tests were performed according to the method of measurements prescribed in KDB971168 D01 v03r01 and ANSI/TIA-603-E-2016.

Note 3: The path loss during the RF test is calibrated to correct the results by the offset setting in the test equipments. The ref offset 23.5dB contains two parts that cable loss 13.5dB and Attenuator 10dB.

Note 3: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 4: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% risk level.

1.5. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

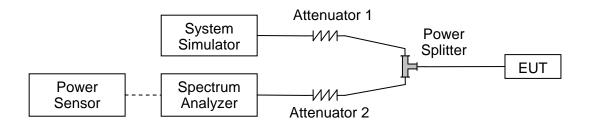
Temperature (°C):	15-35
Relative Humidity (%):	30-60
Atmospheric Pressure (kPa):	86-106

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

2.47 CFR Part 2, Part 22H Requirements


2.1. Conducted RF Output Power

2.1.1. Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

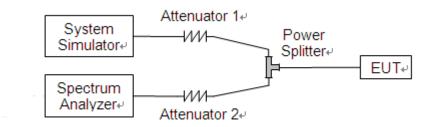
2.1.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.1.3. Test Result

CDMA2000 BC0	Α		
TX Channel	1013	384	777
Frequency (MHz)	824.7	836.52	848.31
1xRTT RC1 SO55	23.65	23.74	23.82
1xRTT RC3 SO55	23.71	23.79	23.86
1xRTT RC3 SO32 (F+SCH)	23.51	23.52	23.64
1xRTT RC3 SO32 (+SCH)	23.46	23.51	23.59
1xEVDO RTAP 153.6Kbps	23.32	23.41	23.65
1xEVDO RETAP 4096Bits	22.54	22.63	22.71


2.2. Peak to Average Ratio

2.2.1. Requirement

According to FCC 24.232(d) the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2.2.2. Test Description

Test Setup:

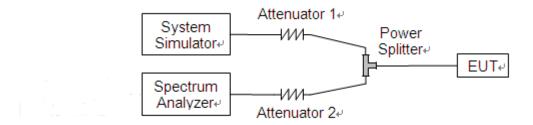
The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.2.3. Test Procedure

- 1 .For GSM/EDGE operating mode:
- a. Set RBW=1MHz, VBW=3MHz, peak detector in spectrum analyzer.
- b. Set EUT in maximum output power, and triggered the bust signal.
- Measured respectively the peak level and mean level, and the deviation was recorded as Peak to Average ratio.
- 2. For UMTS operating mode:
- a. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- b. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.

2.2.4. Test Result

Note: This test case does not support CDMA BC 0 band.


2.3. Occupied Bandwidth

2.3.1. Requirement

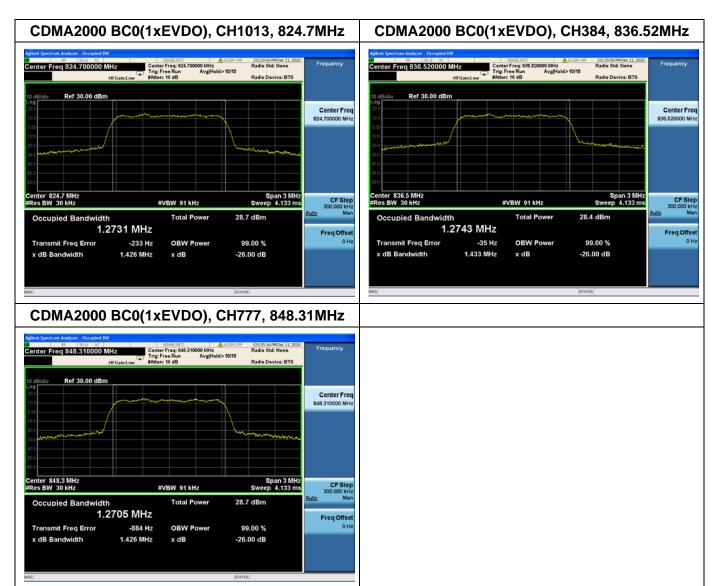
According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. Occupied bandwidth is also known as the 99% emission bandwidth.

2.3.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

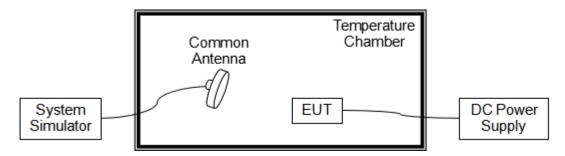
2.3.3. Test Result


	CDMA2000 BC0						
Mode	Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26dB Bandwidth (MHz)			
	1013	824.7	1.28	1.44			
1xRTT	384	836.52	1.28	1.46			
	777	848.31	1.27	1.44			
4 404EV	1013	824.7	1.27	1.43			
1.431xEV	384	836.52	1.27	1.43			
DO Rev 0	777	848.31	1.27	1.43			

CDMA2000 BC0 (1xRTT), CH1013, 824.7MHz CDMA2000 BC0 (1xRTT), CH384, 836.52MHz 02:25:16 PMDec 11, 2 Radio Std: None Ref 30.00 dBm Center Freq 824.700000 MHz Center Freq 836.520000 MHz enter 824.7 MHz Res BW 30 kHz Center 836.5 MHz #Res BW 30 kHz CF Step 300,000 kH Mar CF Step 300.000 kH #VBW 91 kHz #VBW 91 kHz 28.9 dBm 29.0 dBm Occupied Bandwidth Occupied Bandwidth 1.2799 MHz 1.2779 MHz Freq Offset Freq Offse Transmit Freq Error -2.101 kHz OBW Power 99.00 % Transmit Freq Error 119 Hz OBW Power 99.00 % 1.440 MHz x dB -26.00 dB 1.463 MHz x dB -26.00 dB CDMA2000 BC0(1xRTT), CH777, 848.31MHz

2.4. Frequency Stability

2.4.1. Requirement


According to FCC section 22.355 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from-30°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

Note: The operating temperature of EUT is from -20°C to 50°C, which are specified by the applicant.

2.4.2. Test Description

Test Setup:

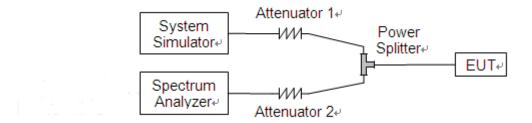
The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

2.4.3. Test Result

The nominal, highest and lowest extreme voltages are separately 3.80V, 4.35V and 3.00V, which are specified by the applicant; the normal temperature here used is 20°C.

CDMA2000 BC0(1xRTT), CH384, 836.52MHz								
	Limit =±2.5ppm							
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result			
100		+20(Ref)	26	0.031				
100		-20	35	0.042				
100		-10	-21	-0.025				
100		0	33	0.039				
100	3.80	+10	-25	-0.030				
100		+20	41	0.049	PASS			
100		+30	31	0.037				
100		+40	62	0.074				
100		+50	25	0.030				
115	4.35	+20	29	0.035				
85	3.23	+20	-13	0.016				

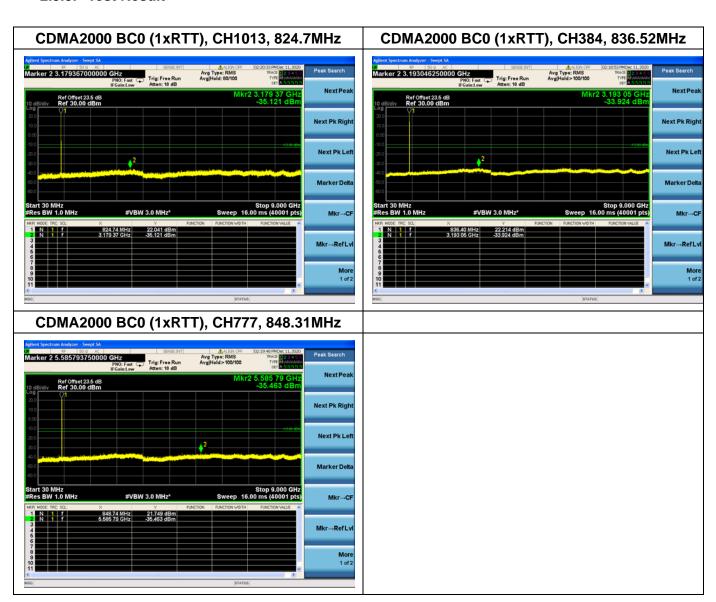
CDMA2000 BC0(1xEVDO), CH384, 836.52MHz						
Limit =±2.5ppm						
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result	
100		+20(Ref)	21	0.025		
100		-20	-23	-0.027		
100	3.80	-10	-53	-0.063		
100		0	38	0.045		
100		+10	-29	-0.035		
100		+20	21	0.025	PASS	
100		+30	61	0.073		
100		+40	17	0.020		
100		+50	33	0.039		
115	4.35	+20	57	0.068		
85	3.23	+20	-29	0.035		


2.5. Conducted Out of Band Emissions

2.5.1. Requirement

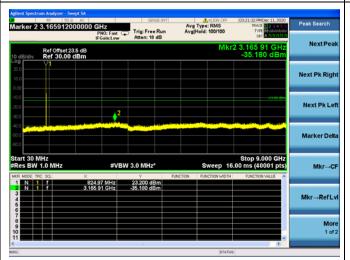
According to FCC section 22.917(a) the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency.

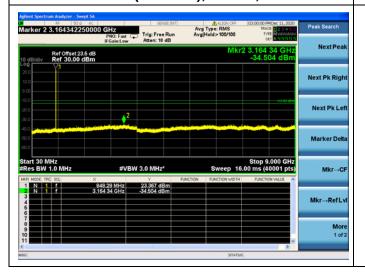
2.5.2. Test Description


Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

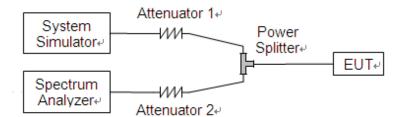
2.5.3. Test Result




CDMA2000 BC0(1xEVDO), CH1013, 824.7MHz

CDMA2000 BC0(1xEVDO), CH384, 836.52MHz

CDMA2000 BC0(1xEVDO), CH777, 848.31MHz

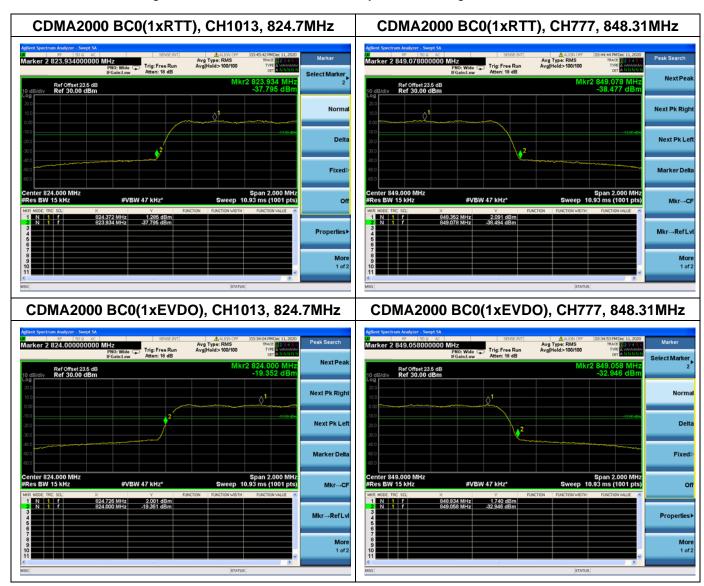

2.6.1. Requirement

2.6. Band Edge

According to FCC section 22.917(b) in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

2.6.2. Test Description

Test Setup:



The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.6.3. Test Result

The lowest and highest channels are tested to verify the band edge emissions.

Tel: 86-755-36698555

Http://www.morlab.cn

2.7. Determining E.R.P. and/or E.I.R.P. from conducted RF output power measurements

2.7.1. Requirement

According to FCC section 22.913, the Effective Radiated Power (E.R.P.) of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

2.7.2. Test Description

The test setups refer to section 2.1.3

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded. Please refer to section 2.1.3 of this report.

The relevant equation for determining the maximum E.R.P. or E.I.R.P. from the measured RF output power is given in Equation (1) as follows:

E.R.P. or E.I.R.P. = $P_{Meas} + G_{T}$

Where:

E.R.P. or E.I.R.P. effective radiated power or equivalent isotropically radiated power, respectively (expressed in the same units as P_{Meas} , e.g., dBm or dBW)

P_{Meas} measured transmitter output power or PSD, in dBm or dBW

G_T gain of the transmitting antenna, in dBd (E.R.P.) or dBi (E.I.R.P.)

For devices utilizing multiple antennas, see ANSI C63.25-2015 6.4 for guidance with respect to determining the effective array transmit antenna gain term to be used in the above equation.

The following equations demonstrate the mathematical relationship between E.R.P. and E.I.R.P.:

a) E.R.P. = E.I.R.P. - 2.15, where E.R.P. and E.I.R.P. are expressed in consistent units.

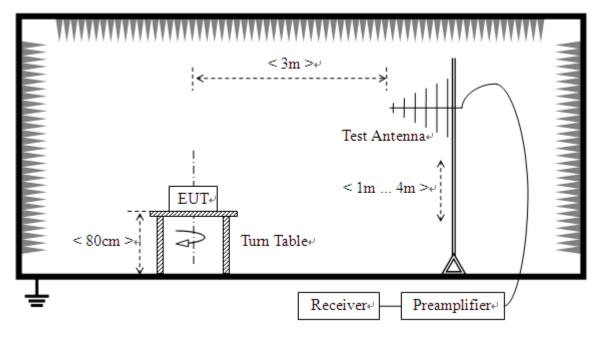
b) E.I.R.P. = E.R.P. + 2.15, where E.R.P. and E.I.R.P. are expressed in consistent units.

2.7.3. Test Result

CDMA2000 BC0								
Dond	Channal	Frequency		Measured E.R.P.		Lim	Limit	
Band	Channel	(MHz)	PCL	dBm	W	dBm	W	Verdict
	1013	824.70	5	20.76	0.119			PASS
1xRTT	384	836.52	5	20.84	0.121	38.5	7	PASS
	777	848.31	5	20.91	0.123			PASS
4vE\/DO	1013	824.70	5	20.37	0.109			PASS
1xEVDO Rev 0	384	836.52	5	20.46	0.111	38.5	7	PASS
	777	848.31	5	20.70	0.117			PASS
N 4 4 0		040.31			0.117			FASS

Note 1: Only the worst data were recorded in this report.

2.8. Radiated Out of Band Emissions

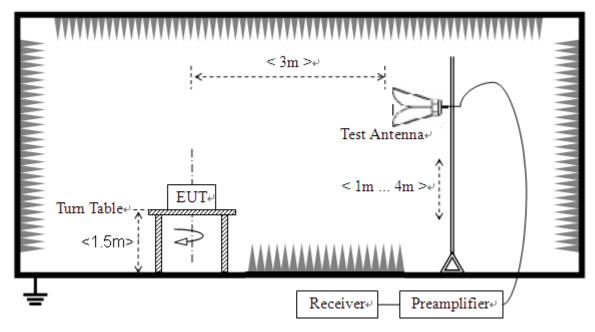

2.8.1. Requirement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency.

2.8.2. Test Description

Test Setup:

1) Below1GHz



Tel: 86-755-36698555

Http://www.morlab.cn

2) Above 1GHz

The EUT is located in a 3m Full-Anechoic Chamber, the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading. A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power, and only the test result of the maximum output power was recorded.

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground and the Turn Table is actuated to turn from 0° to 360° to determine the maximum value of the radiated power. The emission levels at both horizontal and vertical polarizations should be tested. The Filters consists of Notch Filters and High Pass Filter.

Note: When doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.8.3. Test Procedure

KDB 971168 D01v03 Section 5.8 and ANSI/TIA-603-E-2016.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements.

For measurements above 1GHz the resolution bandwidth is set to 1MHz, the video band width is set to 3MHz for peak measurements.

2.8.4. Test Result

REPORT No.: SZ20110290W08

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested to verify the out of band emissions.

The substitution corrections are obtained as described below:

A_{SUBST} = P_{SUBST TX} - P_{SUBST RX} - L_{SUBST CABLES} + G_{SUBST TX ANT}

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

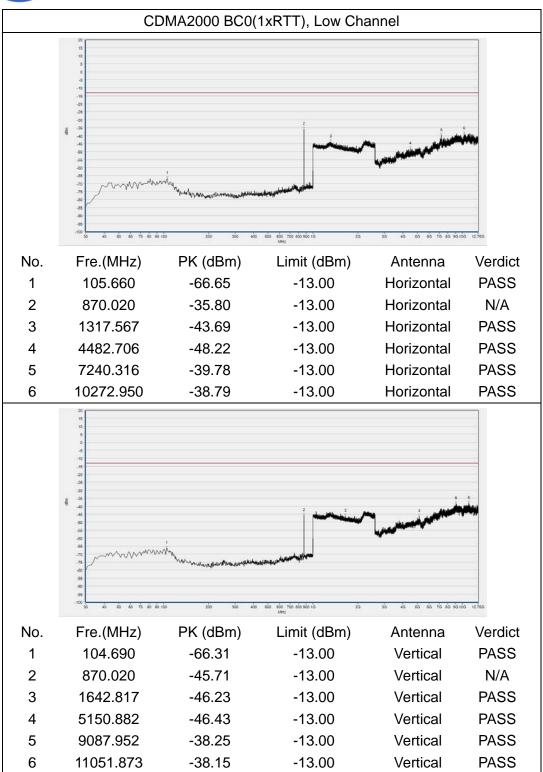
P_{SUBST_TX} is signal generator level,

P_{SUBST RX} is receiver level,

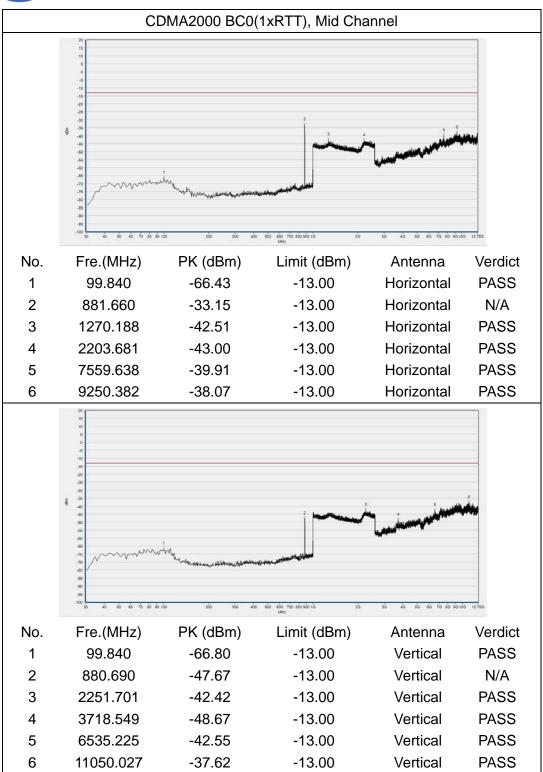
L_{SUBST CABLES} is cable losses including TX cable,

G_{SUBST TX ANT} is substitution antenna gain.

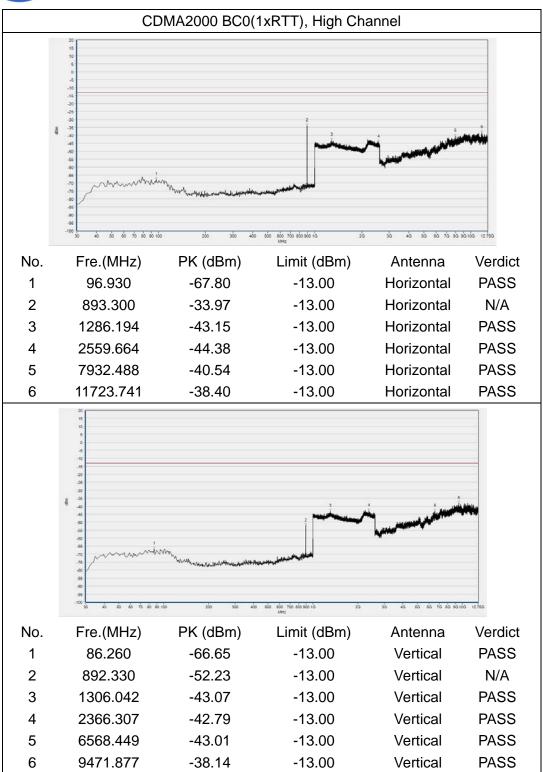
A_{TOT} is total correction factor including cable loss and substitution correction


During the test, the data of A_{TOT} was added in the test spectrum analyze, so spectrum analyze reading is the final values which contain the data of A_{TOT} .

Note1: The power of the EUT transmitting frequency should be ignored.


Note2: All test mode and condition mentioned were considered and evaluated respectively by performing full test, only the worst data were recorded and reported.

Note3: All spurious emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.



Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Output Power	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Radiated Emission	±2.95dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Tel: 86-755-36698555

Http://www.morlab.cn

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory	
	· · · · · · · · · · · · · · · · · · ·	
	FL.3, Building A, FeiYang Science Park, No.8 LongChang	
Laboratory Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong	
	Province, P. R. China	
Telephone:	+86 755 36698555	
Facsimile:	+86 755 36698525	

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory	
	FL.3, Building A, FeiYang Science Park, No.8 LongChang	
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong	
	Province, P. R. China	

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2020.04.15	2021.04.14
Attenuator 1	(N/A.)	10dB	Resnet	2020.04.15	2021.04.14
Attenuator 2	(N/A.)	3dB	Resnet	2020.04.15	2021.04.14
EXA Signal Analzyer	MY51511149	N9020A	Agilent	2020.07.27	2021.07.26
System Simulator	6200995016	MT8820C	Anritsu	2020.01.13	2021.01.12
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Temperature Chamber	(N/A)	HUT705P	CHONGQING HANBA EXPERIMENTAL EQUIPMENT CO.,LTD	2020.03.25	2021.03.24
Computer	T430i	Think Pad	Lenovo	N/A	N/A

Tel: 86-755-36698555

Http://www.morlab.cn

4.2 Radiated Test Equipments

Equipment	Serial No.	Type	Manufacturer	Cal. Date	Cal. Due
Name		-			
System Simulator	152038	CMW500	R&S	2020.01.13	2021.01.12
Receiver	MY54130016	N9038A	Agilent	2020.07.21	2021.07.20
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2019.05.24	2022.05.23
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2019.07.26	2022.07.25
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2019.05.24	2022.05.23
Coaxial cable (N male) (9kHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2020.07.21	2021.07.20
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2020.07.21	2021.07.20
Notch Filter	N/A	WRCG-CDM A2000 BC0	Wainwright	2020.07.21	2021.07.20
Anechoic Chamber	N/A	9m*6m*6m	CRT	2019.07.13	2022.07.12

 END OF REPORT	

Tel: 86-755-36698555

Http://www.morlab.cn