RF TEST REPORT

Report No.: 16070128-FCC-R3
Supersede Report No.: N/A

Applicant	SUPERSONIC INC		
Product Name	5.0" LTE smart phone		
Model No.	SV-150LTE		
	SV-250LTE	E, SV-350LTE,	
Coriol No	SV-155LTE, SV-255LTE,		
Serial No.	SV-355LTE	E, SV-6LTE, SV-16LTE,	
	SV-36LTE,	SC-150LTE	
Test Standard	FCC Part 15.247: 2014, ANSI C63.10: 2013		
Test Date	Feb 04 to Feb 26, 2016		
Issue Date	Feb 26, 2016		
Test Result	Pass Fail		
Equipment complied with the specification			
Equipment did not comply with the specification			
Winnie Zhang David Huang			
Winnie Zhang		David Huang	
Test Engineer		Checked By	

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report No.	16070128-FCC-R3
Page	2 of 56

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report No.	16070128-FCC-R3
Page	3 of 56

This page has been left blank intentionally.

Test Report No.	16070128-FCC-R3
Page	4 of 56

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	-
- . 3.	TEST SITE INFORMATION	
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	9
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	10
6.1	ANTENNA REQUIREMENT	10
6.2	DTS (6 DB&20 DB) CHANNEL BANDWIDTH	11
6.3	MAXIMUM OUTPUT POWER	17
6.4	POWER SPECTRAL DENSITY	21
6.5	BAND-EDGE & UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS	25
6.6	AC POWER LINE CONDUCTED EMISSIONS	33
6.7	RADIATED SPURIOUS EMISSIONS	39
INA	NEX A. TEST INSTRUMENT	4
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	45
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	51
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	55
ANI	NEX E. DECLARATION OF SIMILARITY	56

Test Report No.	16070128-FCC-R3
Page	5 of 56

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16070128-FCC-R3	NONE	Original	Feb 26, 2016

2. Customer information

Applicant Name	SUPERSONIC INC	
Applicant Add	6555 BANDINI BOULEVARD COMMERCE CA 90040-3119 USA	
Manufacturer	NCBC OVERSEA CO., LIMITED	
Manufacturer Add	FLAT/RM A5 9/F SILVERCORP INT'L TOWER 707-713 NATHAN ROAD	
	MONGKOK KLN HONGKONG	

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	718246	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	

Test Report No.	16070128-FCC-R3
Page	6 of 56

4. Equipment under Test (EUT) Information

Description of EUT: 5.0" LTE smart phone

Main Model: SV-150LTE

SV-250LTE, SV-350LTE,

SV-155LTE, SV-255LTE, Serial Model:

SV-355LTE, SV-6LTE, SV-16LTE,

SV-36LTE, SC-150LTE

Date EUT received: Feb 03, 2016

Test Date(s): Feb 04 to Feb 26, 2016

Equipment Category : DTS

GSM850: -1 dBi PCS1900: 0 dBi

UMTS-FDD Band V: -1dBi UMTS-FDD Band II: 0 dBi Bluetooth/BLE: 0 dBi

Antenna Gain: WIFI: 0 dBi

LTE Band 2: 0 dBi LTE Band 4: 0 dBi LTE Band 7: 1 dBi LTE Band 17: -1 dBi

GPS:0 dBi

GSM / GPRS: GMSK EGPRS: GMSK,8PSK

UMTS-FDD: QPSK, 16QAM 802.11b/g/n: DSSS, OFDM

Type of Modulation:

Bluetooth: GFSK, π /4DQPSK, 8DPSK

BLE: GFSK

LTE Band: QPSK, 16QAM

GPS:BPSK

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz RF Operating Frequency (ies):

PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz

Max. Output Power:

Test Report No.	16070128-FCC-R3
Page	7 of 56

UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz

UMTS-FDD Band II TX:1852.4 ~ 1907.6 MHz;

RX: 1932.4 ~ 1987.6 MHz

WIFI:802.11b/g/n(20M): 2412-2472 MHz WIFI:802.11n(40M): 2422-2462 MHz

Bluetooth& BLE: 2402-2480 MHz

LTE Band 2 TX: $1852.5 \sim 1907.5$ MHz; RX: $1932.5 \sim 1987.5$ MHz LTE Band 4 TX: $1712.5 \sim 1752.5$ MHz; RX: $2112.5 \sim 2152.5$ MHz LTE Band 7 TX: $2502.5 \sim 2567.5$ MHz; RX: $2622.5 \sim 2687.5$ MHz LTE Band 17 TX: $706.5 \sim 713.5$ MHz; RX: $736.5 \sim 743.5$ MHz

GPS RX:1575.42 MHz

802.11b: 9.16 dBm

802.11g: 9.11dBm

802.11n(20M): 9.32dBm

802.11n(40M): 8.56dBm

GSM 850: 124CH PCS1900: 299CH

UMTS-FDD Band V: 102CH

UMTS-FDD Band II: 277CH

Number of Channels: WIFI :802.11b/g/n(20M): 13CH

WIFI:802.11n(40M):9CH

Bluetooth: 79CH BLE: 40CH GPS:1CH

Port: Power Port, Earphone Port, USB Port

Adapter:

Model: HJ-0501000B2-US

Input: AC 100-240V; 50/60Hz;0.15A

Output: DC 5.0V,1000mA

Input Power:

Battery:

Model: SV-150LTE Capacity: 2200mAh

Voltage: 4.35V

Trade Name: SHARPER VIEW

Test Report No.	16070128-FCC-R3
Page	8 of 56

GPRS/EGPRS Multi-slot class	8/10/12
-----------------------------	---------

FCC ID: 2AC5R-SV-150LTE

Test Report No.	16070128-FCC-R3
Page	9 of 56

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247 (a)(2)	DTS (6 dB&20 dB) CHANNEL BANDWIDTH	Compliance
§15.247(b)(3)	Conducted Maximum Output Power	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247(d)	Band-Edge & Unwanted Emissions into Non-Restricted Frequency Bands	Compliance
§15.207 (a),	AC Power Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Spurious Emissions & Unwanted Emissions into Restricted Frequency Bands	Compliance

Measurement Uncertainty

Emissions		
Test Item	Description	Uncertainty
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB
-	-	-

Test Report No.	16070128-FCC-R3
Page	10 of 56

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 3 antennas:

A permanently attached PIFA antenna for Bluetooth/BLE/WIFI/GPS, the gain is 0dBi for Bluetooth/BLE, the gain is 0dBi for WIFI, the gain is 0dBi for GPS.

A permanently attached PIFA antenna for GSM/PCS/LTE and UMTS, the gain is -1dBi for GSM850, 0dBi for PCS1900,-1dBi for UMTS-FDD Band V, 0dBi for UMTS-FDD Band II.

A permanently attached PIFA antenna for LTE Band 2/ Band 4/ Band 7/ Band 17, 0dBi for LTE Band 2, 0dBi for Band 4, 1dBi for Band 7,-1dBi for Band 17.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

Test Report No.	16070128-FCC-R3
Page	11 of 56

6.2 DTS (6 dB&20 dB) Channel Bandwidth

Temperature	25°C
Relative Humidity	58%
Atmospheric Pressure	1016mbar
Test date :	Feb 16, 2016
Tested By :	Winnie Zhang

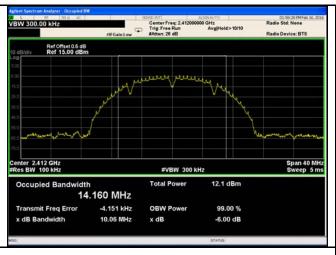
Γ_	Γ		<u> </u>
Spec	Item	Requirement	Applicable
§ 15.247(a)(2)	a)	6dB BW≥ 500kHz; 20dB BW≥ 500kHz;	V
RSS Gen(4.6.1)	b)	99% BW: For FCC reference only; required by IC.	~
Test Setup		Spectrum Analyzer EUT	
	55807	4 D01 DTS MEAS Guidance v03r03, 8.1 DTS bandwidth	
	6dB b	<u>andwidth</u>	
	a) Se	t RBW = 100 kHz.	
	b) Se	t the video bandwidth (VBW) ≥ 3 × RBW.	
	c) Detector = Peak.		
	d) Trace mode = max hold.		
	e) Sweep = auto couple.		
	f) Allow the trace to stabilize.		
	g) Measure the maximum width of the emission that is constrained by the freq		
Test Procedure	uencies associated with the two outermost amplitude points (upper and lower fr		
rest Frocedure	equencies) that are attenuated by 6 dB relative to the maximum level measure		
	d in the fundamental emission.		
	20dB bandwidth		
	C63.10 Occupied Bandwidth (OBW=20dB bandwidth)		
	1. S	et RBW = 1%-5% OBW.	
	2. Set the video bandwidth (VBW) ≥ 3 x RBW.		
	3. Set the span range between 2 times and 5 times of the OBW.		
	4. Sweep time=Auto, Detector=PK, Trace=Max hold.		
	5. O	nce the reference level is established, the equipment is con	ditioned with t
ypical modulating signals to produce the worst-			

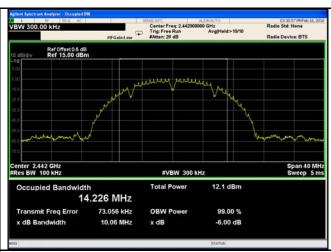
Test Report No.	16070128-FCC-R3
Page	12 of 56

	case (i.e., the widest) bandwidth. Unless otherwise specified for an unlicensed
	wireless device, measure the bandwidth at the 20 dB levels with respect to the
	reference level.
Remark	
Result	Pass

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Measurement result

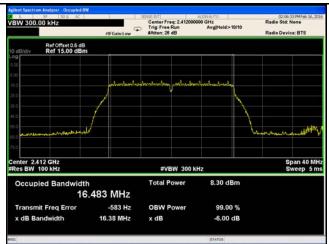

Test mode	СН	Freq (MHz)	6dB Bandwidth (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
	Low	2412	10.06	16.28	≥ 0.5
802.11b	Mid	2442	10.06	16.28	≥ 0.5
	High	2472	10.06	16.29	≥ 0.5
	Low	2412	16.38	19.11	≥ 0.5
802.11g	Mid	2442	16.42	19.18	≥ 0.5
	High	2472	16.41	19.24	≥ 0.5
000 115	Low	2412	17.63	19.50	≥ 0.5
802.11n (20M)	Mid	2442	17.63	19.59	≥ 0.5
	High	2472	17.64	19.57	≥ 0.5
802.11n (40M)	Low	2422	36.39	39.82	≥ 0.5
	Mid	2442	36.36	39.57	≥ 0.5
	High	2462	36.29	39.61	≥ 0.5

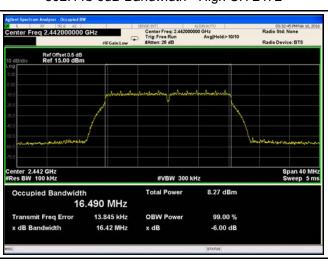


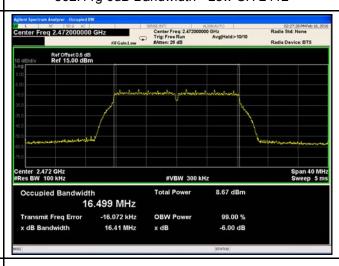
Test Report No.	16070128-FCC-R3
Page	13 of 56

Test Plots

6dB Bandwidth measurement result

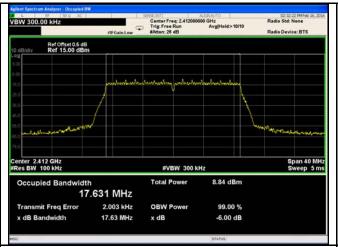


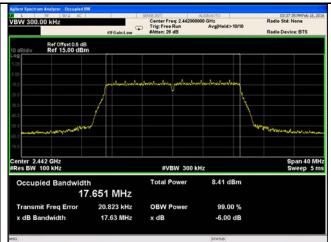

802.11b 6dB Bandwidth - Low CH 2412


802.11b 6dB Bandwidth - Mid CH 2442

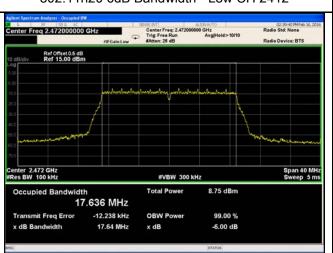
802.11b 6dB Bandwidth - High CH 2472

802.11g 6dB Bandwidth - Low CH 2412

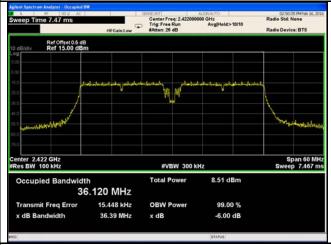


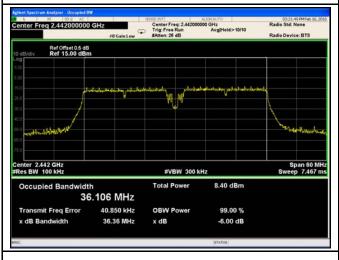

802.11g 6dB Bandwidth - Mid CH 2442

802.11g 6dB Bandwidth - High CH 2472



Test Report No.	16070128-FCC-R3
Page	14 of 56



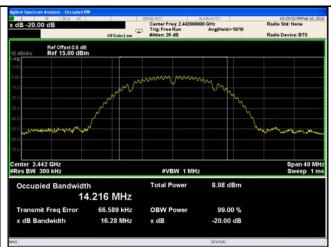

802.11n20 6dB Bandwidth - Low CH 2412

802.11n20 6dB Bandwidth - Mid CH 2442

802.11n20 6dB Bandwidth - High CH 2472

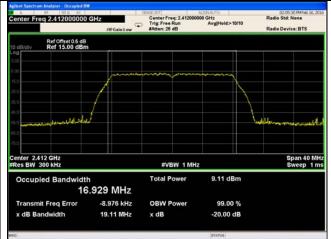
802.11n40 6dB Bandwidth - Low CH 2422

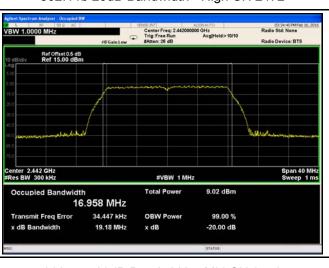
802.11n40 6dB Bandwidth - Mid CH 2442


802.11n40 6dB Bandwidth - High CH 2462

Test Report No.	16070128-FCC-R3
Page	15 of 56

20 dB Bandwidth measurement result

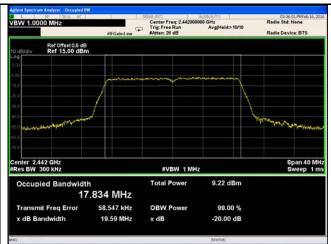



802.11b 20dB Bandwidth - Low CH 2412

802.11b 20dB Bandwidth - Mid CH 2442

802.11b 20dB Bandwidth - High CH 2472

802.11g 20dB Bandwidth - Low CH 2412


802.11g 20dB Bandwidth - Mid CH 2442

802.11g 20dB Bandwidth - High CH 2472

Test Report No.	16070128-FCC-R3
Page	16 of 56



802.11n20 20dB Bandwidth - Low CH 2412

02:41:47 PMFe Radio Std: None Center Freq: 2.472000000 GHz
Trig: Free Run Avg@Hold>10/10 Ref Offset 0.5 dB Ref 15.00 dBm

Span 40 MH Sweep 1 m Center 2,472 GHz Res BW 300 kHz #VBW 1 MHz Total Power 9.51 dBm Occupied Bandwidth 17.869 MHz -19.357 kHz Transmit Freq Error **OBW Power** 99.00 % 19.57 MHz x dB Bandwidth -20,00 dB x dB

802.11n20 20dB Bandwidth - Mid CH 2442

802.11n20 20dB Bandwidth - High CH 2472

802.11n40 20dB Bandwidth - Low CH 2422

802.11n40 20dB Bandwidth - Mid CH 2442

802.11n40 20dB Bandwidth - High CH 2462

Test Report No.	16070128-FCC-R3
Page	17 of 56

6.3 Maximum Output Power

Temperature	25°C		
Relative Humidity	58%		
Atmospheric Pressure	1016mbar		
Test date :	Feb 16, 2016		
Tested By :	Winnie Zhang		

Requirement(s):

Ite	Requirement	Applicable		
m				
a)	FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1 Watt			
b)	FHSS in 5725-5850MHz: ≤ 1 Watt			
c)	For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt.			
d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt			
e)	FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤ 0.25	!!		
	Watt	CONTROL		
f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt	~		
Spectrum Analyzer EUT				
558074 D01 DTS MEAS Guidance v03r03, 9.1.2 Integrated band power method				
Maxim	Maximum output power measurement procedure			
- a) Set span to at least 1.5 times the OBW.				
·				
, and the second				
- d) Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing				
	-	icy bills.)		
, .				
triggering only on full power pulses. The transmitter shall operate at maximum				
	m a) b) c) d) e) f)	a) FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤ 1 Watt b) FHSS in 5725-5850MHz: ≤ 1 Watt c) For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt. d) FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt e) FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤ 0.25 Watt f) DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt 558074 D01 DTS MEAS Guidance v03r03, 9.1.2 Integrated band power me Maximum output power measurement procedure - a) Set span to at least 1.5 times the OBW. - b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz. - c) Set VBW ≥ 3 x RBW. - d) Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to ≤ RBW/2, so that narrowband signals are not lost between frequence e) Sweep time = auto. - f) Detector = RMS (i.e., power averaging), if available. Otherwise, undetector mode. - g) If transmit duty cycle < 98 %, use a sweep trigger with the level state.		

Test Report No.	16070128-FCC-R3
Page	18 of 56

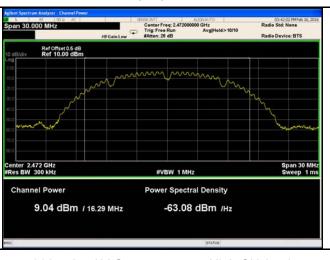
	 power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run". h) Trace average at least 100 traces in power averaging (i.e., RMS) mode. i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
Remark	
Result	Pass Fail

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

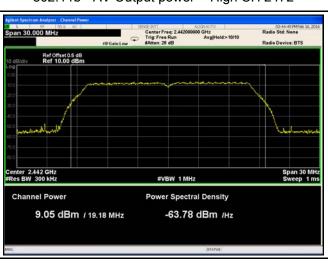
Output Power measurement result

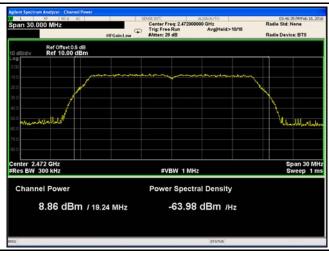
Туре	Test mode	СН	Freq (MHz)	Conducted Power (dBm)	Limit (dBm)	Result
		Low	2412	9.16	30	Pass
	802.11b	Mid	2442	8.67	30	Pass
		High	2472	9.04	30	Pass
	802.11g	Low	2412	9.11	30	Pass
		Mid	2442	9.05	30	Pass
Output		High	2472	8.86	30	Pass
power	802.11n (20M)	Low	2412	9.32	30	Pass
		Mid	2442	8.91	30	Pass
		High	2472	9.18	30	Pass
	802.11n (40M)	Low	2422	8.56	30	Pass
		Mid	2442	8.21	30	Pass
		High	2462	8.32	30	Pass

Test Report No.	16070128-FCC-R3
Page	19 of 56


Test Plots

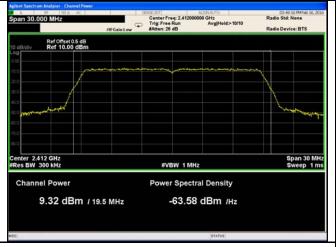
The Average Power


802.11b - AV Output power - Low CH 2412


802.11b - AV Output power - Mid CH 2442

802.11b - AV Output power - High CH 2472

802.11g - AV Output power - Low CH 2412



802.11g - AV Output power - Mid CH 2442

802.11g - AV Output power - High CH 2472

Test Report No.	16070128-FCC-R3
Page	20 of 56

802.11n20 - AV Output power - Low CH 2412

802.11n20 - AV Output power - Mid CH 2442

802.11n20 - AV Output power - High CH 2472

802.11n40 - AV Output power - Low CH 2422

802.11n40 - AV Output power - Mid CH 2442

802.11n40 - AV Output power - High CH 2462

Test Report No.	16070128-FCC-R3
Page	21 of 56

6.4 Power Spectral Density

Temperature	25°C
Relative Humidity	58%
Atmospheric Pressure	1016mbar
Test date :	Feb 16, 2016
Tested By:	Winnie Zhang

Spec	Item	Requirement Applicable			
§15.247(e) a)		The power spectral density conducted from the intentional radiator to the antenna shall not be greater	<u><</u>		
3 : 0:= : : (0)		than 8 dBm in any 3 kHz band during any time			
		interval of continuous transmission.			
Test Setup		Spectrum Analyzer EUT			
Test Procedure	power s	D01 DTS MEAS Guidance v03r03, 10.2 power spectral dense spectral density measurement procedure a) Set analyzer center frequency to DTS channel center frequency to DTS channel center frequency to DTS bandwidth. c) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ 3 × RBW. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum and level within the RBW. j) If measured value exceeds limit, reduce RBW (no less than repeat.	uency.		
Remark					
Result	Pas	ss Fail			

Test Report No.	16070128-FCC-R3
Page	22 of 56

Test Data	Yes

Test Plot Yes (See below)

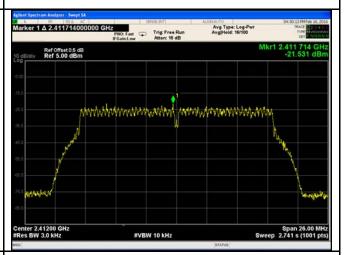
Power Spectral Density measurement result

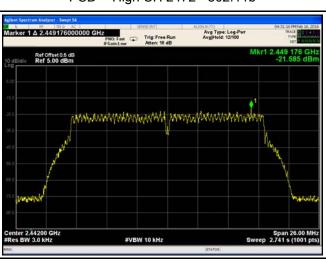
Туре	Test mode	СН	Freq (MHz)	PSD (dBm)	Limit (dBm)	Result
		Low	2412	-17.063	8	Pass
	802.11b	Mid	2442	-15.366	8	Pass
		High	2472	-16.811	8	Pass
		Low	2412	-21.531	8	Pass
	802.11g	Mid	2442	-21.585	8	Pass
PSD		High	2472	-22.240	8	Pass
P3D	802.11n	Low	2412	-22.903	8	Pass
	(20M)	Mid	2442	-22.213	8	Pass
		High	2472	-22.833	8	Pass
	902.115	Low	2422	-24.853	8	Pass
	802.11n	Mid	2442	-24.831	8	Pass
(40M)	High	2462	-24.091	8	Pass	

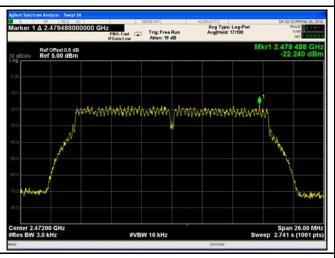
Test Report No.	16070128-FCC-R3
Page	23 of 56

Test Plots

Power Spectral Density measurement result

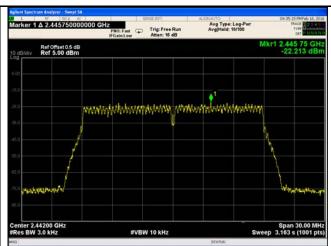



PSD - Low CH 2412 - 802.11b


PSD - Mid CH 2442 - 802.11b

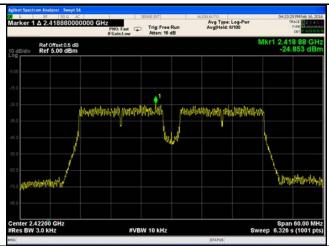
PSD - High CH 2472 - 802.11b

PSD - Low CH 2412 -802.11g


PSD - Mid CH 2442 - 802.11g

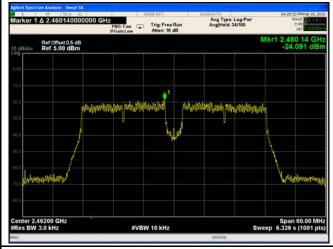
PSD - High CH 2472 - 802.11g

Test Report No.	16070128-FCC-R3
Page	24 of 56



PSD - Low CH 2412 - 802.11n20

PSD - Mid CH 2442 - 802.11n20



PSD - High CH 2472 - 802.11n20

PSD - Low CH 2422 - 802.11n40

PSD - Mid CH 2442 - 802.11n40

PSD - High CH 2462 - 802.11n40

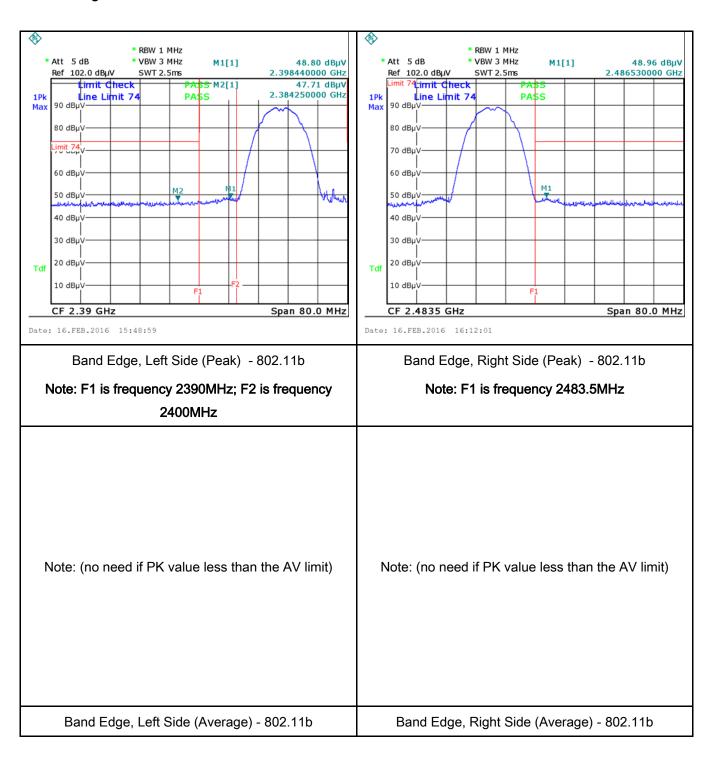
Test Report No.	16070128-FCC-R3
Page	25 of 56

6.5 Band-Edge & Unwanted Emissions into Non-Restricted Frequency Bands

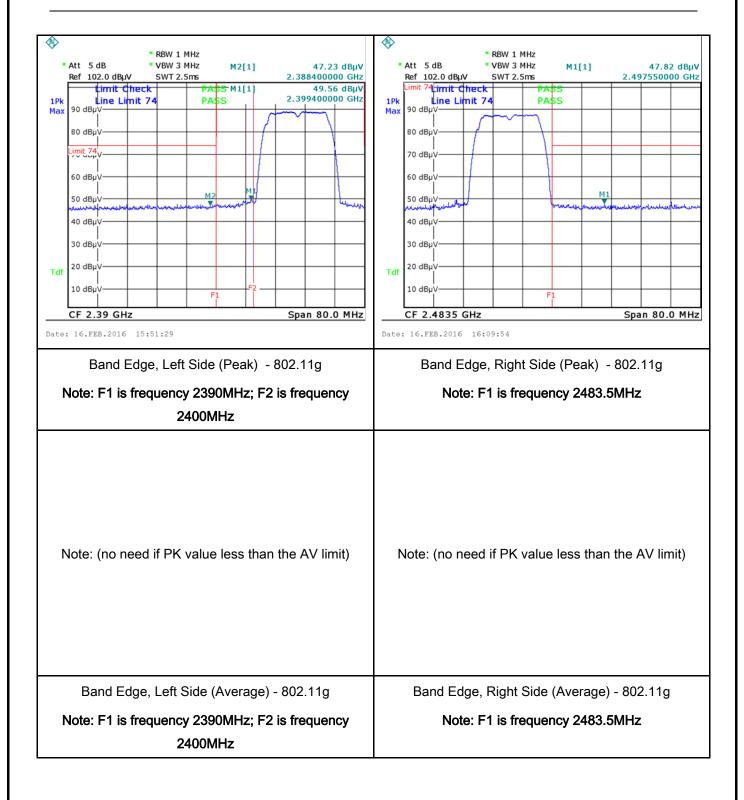
Temperature	25°C
Relative Humidity	58%
Atmospheric Pressure	1016mbar
Test date :	Feb 16, 2016
Tested By :	Winnie Zhang

Requirement(s):

Spec	Item	Requirement	Applicable		
§15.247(d)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.			
Test Setup	Ant. Tower Support Units Turn Table Ground Plane Test Receiver				
Test Procedure	-	 Radiated Method Only 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range. 			

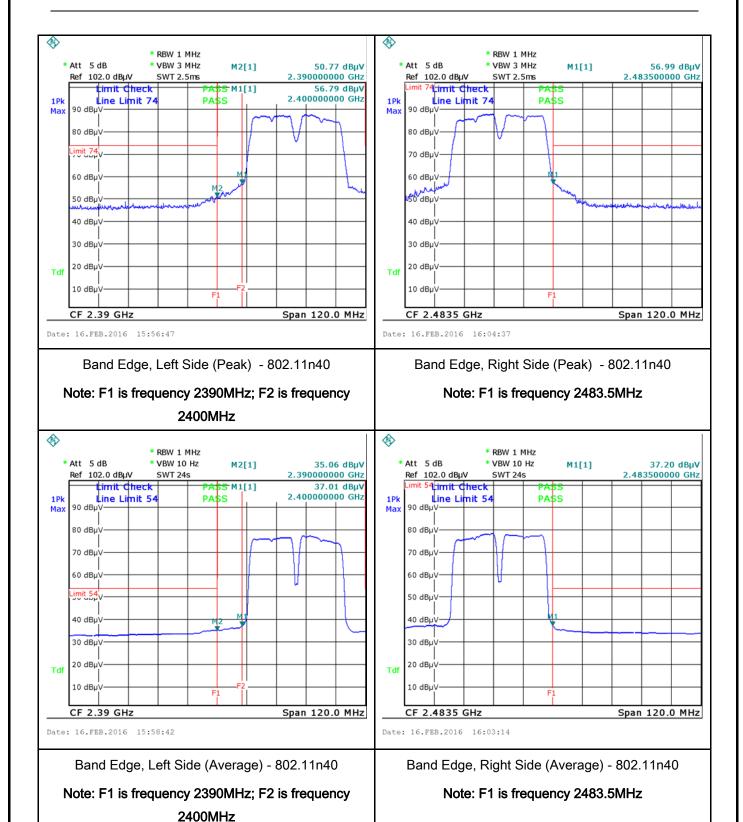

Test Report No.	16070128-FCC-R3	
Page	26 of 56	

	- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a			
	convenient frequency span including 100kHz bandwidth from band edge,			
	check the emission of EUT, if pass then set Spectrum Analyzer as below:			
	a. The resolution bandwidth and video bandwidth of test receiver/spectrum			
	analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.			
	b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and			
	video bandwidth is 3MHz with Peak detection for Peak measurement at			
	frequency above 1GHz.			
	c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the			
	video bandwidth is 10Hz with Peak detection for Average Measurement as below			
	at frequency above 1GHz.			
	- 4. Measure the highest amplitude appearing on spectral display and set it as a			
	reference level. Plot the graph with marking the highest point and edge			
	frequency.			
	S. Repeat above procedures until all measured frequencies were complete.			
Remark				
Result	Pass Fail			
Test Data	Yes N/A			
Test Plot	Yes (See below)			
1 621 LIN	i es (dee pelow)			

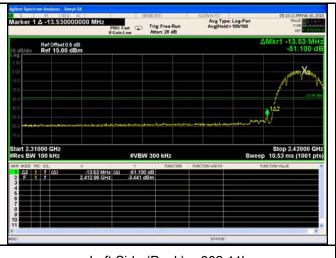

Test Report No.	16070128-FCC-R3
Page	27 of 56

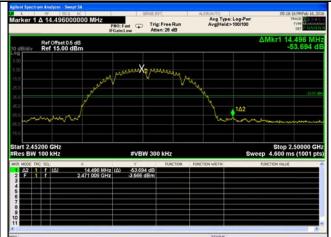
Test Plots Band Edge measurement result

Test Report No.	16070128-FCC-R3
Page	28 of 56

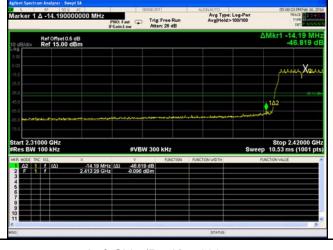


Test Report No.	16070128-FCC-R3
Page	29 of 56


Test Report No.	16070128-FCC-R3
Page	30 of 56

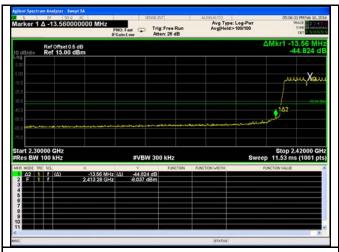


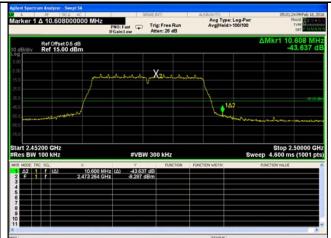
Test Report No.	16070128-FCC-R3
Page	31 of 56


Band Edge measurement result (Conducted measurement)

Left Side (Peak) - 802.11b

Right Side (Peak) - 802.11b


Left Side (Peak) - 802.11g



Right Side (Peak) - 802.11g

Test Report No.	16070128-FCC-R3
Page	32 of 56

Left Side (Peak) - 802.11n20

Right Side (Peak) - 802.11n20

Left Side (Peak) - 802.11n40

Right Side (Peak) - 802.11n40

Test Report No.	16070128-FCC-R3
Page	33 of 56

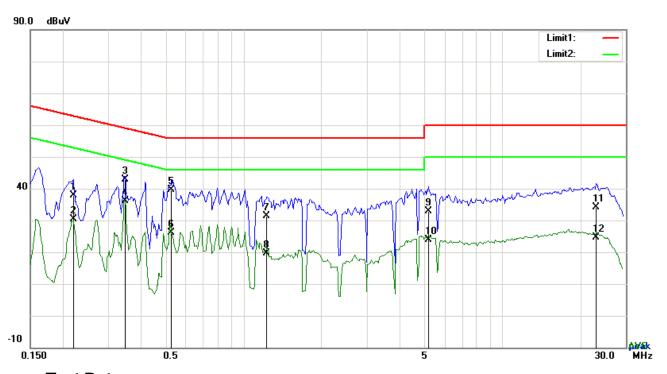
6.6 AC Power Line Conducted Emissions

Temperature	25°C
Relative Humidity	58%
Atmospheric Pressure	1016mbar
Test date :	Feb 16, 2016
Tested By :	Winnie Zhang

Requirement(s):

Spec	Item	Requirement	Applicable		
47CFR§15. 207, RSS210	a)	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu] H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.		Applicable	
(A8.1)		Frequency ranges (MHz)	Limit (Аverage	
		0.15 ~ 0.5	66 – 56	56 – 46	
		0.5 ~ 5	56	46	
		5 ~ 30	60	50	
Test Setup	Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.				
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss 				

Test Report No.	16070128-FCC-R3
Page	34 of 56

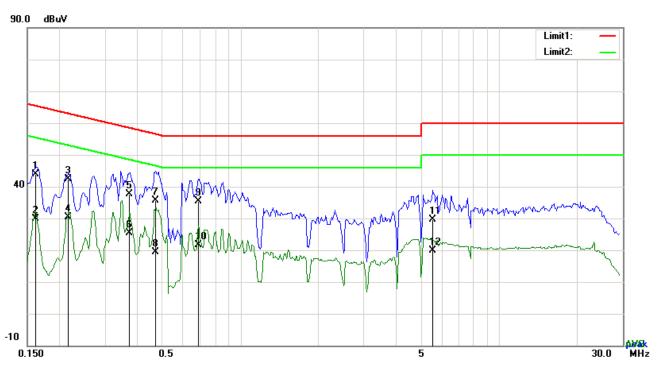

	coaxial cable.							
	4. All other supporting equipment were powered separately from another main supply.							
	5. The EUT was switched on and allowed to warm up to its normal operating condition.							
	6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)							
	over the required frequency range using an EMI test receiver.							
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the							
	selected frequencies and the necessary measurements made with a receiver bandwidth							
	setting of 10 kHz.							
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).							
Remark								
Result	Pass Fail							

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report No.	16070128-FCC-R3
Page	35 of 56

Test Mode:	Transmitting Mode

Test Data

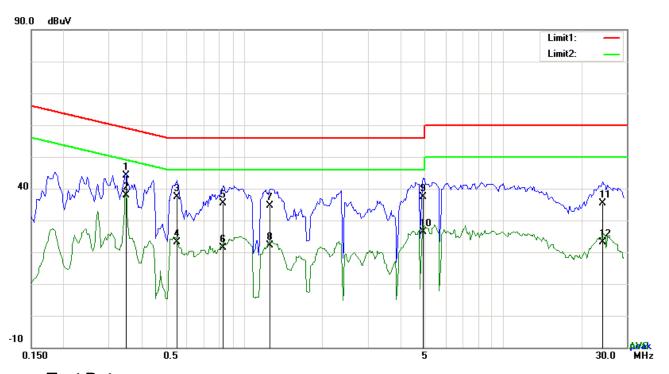

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.2202	24.92	QP	12.94	37.86	62.81	-24.95
2	L1	0.2202	17.40	AVG	12.94	30.34	52.81	-22.47
3	L1	0.3489	30.50	QP	12.46	42.96	58.99	-16.03
4	L1	0.3489	23.77	AVG	12.46	36.23	48.99	-12.76
5	L1	0.5283	27.73	QP	11.87	39.60	56.00	-16.40
6	L1	0.5283	14.19	AVG	11.87	26.06	46.00	-19.94
7	L1	1.2342	20.08	QP	11.40	31.48	56.00	-24.52
8	L1	1.2342	8.30	AVG	11.40	19.70	46.00	-26.30
9	L1	5.1723	21.33	QP	11.46	32.79	60.00	-27.21
10	L1	5.1723	12.34	AVG	11.46	23.80	50.00	-26.20
11	L1	23.1240	19.38	QP	14.69	34.07	60.00	-25.93
12	L1	23.1240	9.96	AVG	14.69	24.65	50.00	-25.35

Test Report No.	16070128-FCC-R3
Page	36 of 56

Test Mode: Transmitting Mode

Test Data

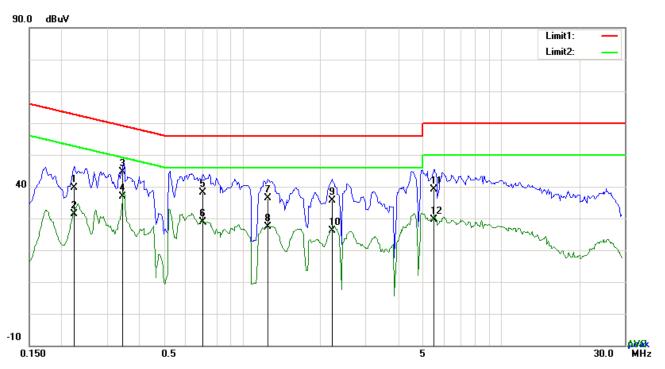

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
4	N.		, , ,	OD	, ,	, , ,	, , ,	, ,
1	N	0.1617	30.63	QP	13.16	43.79	65.38	-21.59
2	N	0.1617	16.74	AVG	13.16	29.90	55.38	-25.48
3	N	0.2163	29.47	QP	12.95	42.42	62.96	-20.54
4	N	0.2163	17.46	AVG	12.95	30.41	52.96	-22.55
5	Ν	0.3723	25.14	QP	12.37	37.51	58.45	-20.94
6	N	0.3723	12.96	AVG	12.37	25.33	48.45	-23.12
7	N	0.4698	23.60	QP	12.01	35.61	56.52	-20.91
8	N	0.4698	7.25	AVG	12.01	19.26	46.52	-27.26
9	N	0.6882	23.76	QP	11.71	35.47	56.00	-20.53
10	N	0.6882	10.00	AVG	11.71	21.71	46.00	-24.29
11	N	5.5116	17.63	QP	12.03	29.66	60.00	-30.34
12	Ν	5.5116	7.89	AVG	12.03	19.92	50.00	-30.08

Test Report No.	16070128-FCC-R3
Page	37 of 56

Test Mode:	Transmitting Mode

Test Data


Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.3489	31.68	QP	12.46	44.14	58.99	-14.85
2	L1	0.3489	25.32	AVG	12.46	37.78	48.99	-11.21
3	L1	0.5478	25.45	QP	11.85	37.30	56.00	-18.70
4	L1	0.5478	11.19	AVG	11.85	23.04	46.00	-22.96
5	L1	0.8286	23.80	QP	11.57	35.37	56.00	-20.63
6	L1	0.8286	9.75	AVG	11.57	21.32	46.00	-24.68
7	L1	1.2498	23.23	QP	11.40	34.63	56.00	-21.37
8	L1	1.2498	10.77	AVG	11.40	22.17	46.00	-23.83
9	L1	4.9071	25.93	QP	11.40	37.33	56.00	-18.67
10	L1	4.9071	15.05	AVG	11.40	26.45	46.00	-19.55
11	L1	24.1887	20.94	QP	14.56	35.50	60.00	-24.50
12	L1	24.1887	8.59	AVG	14.56	23.15	50.00	-26.85

Test Report No.	16070128-FCC-R3
Page	38 of 56

Test Mode:	Transmitting Mode
	_

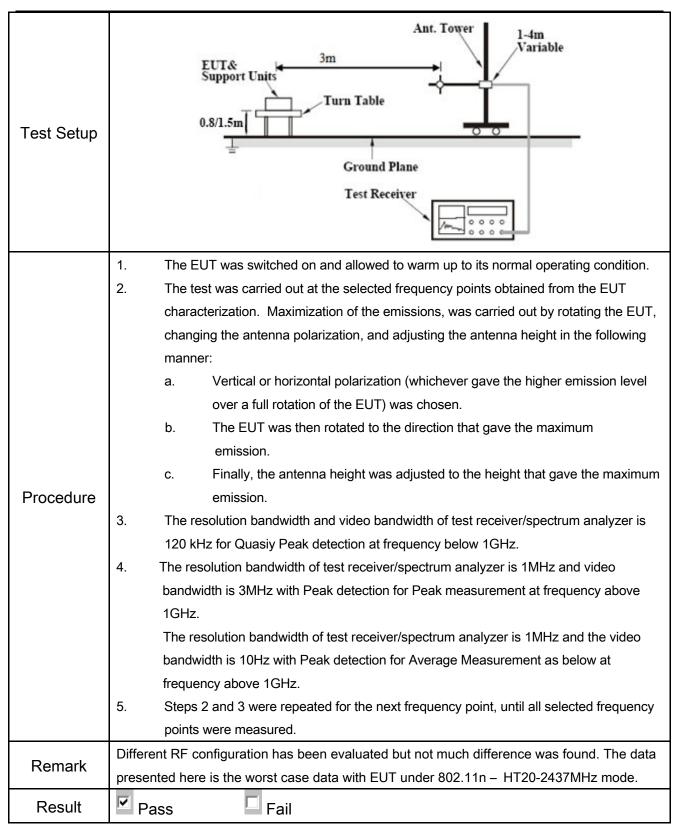
Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBµV)		(dB)	(dBµV)	(dBµV)	(dB)
1	N	0.2241	26.79	QP	12.92	39.71	62.67	-22.96
2	N	0.2241	18.37	AVG	12.92	31.29	52.67	-21.38
3	N	0.3450	32.20	QP	12.48	44.68	59.08	-14.40
4	N	0.3450	24.35	AVG	12.48	36.83	49.08	-12.25
5	N	0.7038	26.37	QP	11.70	38.07	56.00	-17.93
6	N	0.7038	17.22	AVG	11.70	28.92	46.00	-17.08
7	N	1.2537	24.86	QP	11.43	36.29	56.00	-19.71
8	N	1.2537	15.88	AVG	11.43	27.31	46.00	-18.69
9	N	2.2170	24.14	QP	11.55	35.69	56.00	-20.31
10	N	2.2170	14.66	AVG	11.55	26.21	46.00	-19.79
11	N	5.5038	27.08	QP	12.03	39.11	60.00	-20.89
12	N	5.5038	17.58	AVG	12.03	29.61	50.00	-20.39

Test Report No.	16070128-FCC-R3
Page	39 of 56

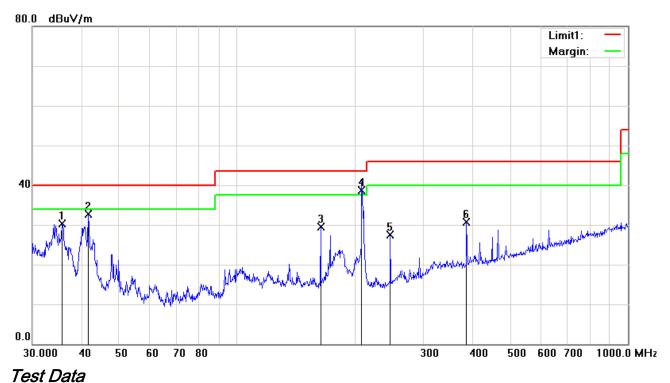
6.7 Radiated Spurious Emissions


Temperature	25°C
Relative Humidity	58%
Atmospheric Pressure	1016mbar
Test date :	Feb 16, 2016
Tested By :	Winnie Zhang

Requirement(s):

Spec	Item	Requirement	Applicable	
	a)	Except higher limit as specified else emissions from the low-power radio exceed the field strength levels spet the level of any unwanted emission the fundamental emission. The tight edges	₹	
	<u>س</u>	Frequency range (MHz)	Field Strength (µV/m)	
		30 - 88	100	
		88 – 216	150	
47CFR§15.		216 960	200	
247(d),		Above 960	500	
RSS210 (A8.5)	b)	For non-restricted band, In any 100 frequency band in which the spread modulated intentional radiator is oppower that is produced by the intentional 20 dB or 30dB below that in the 100 band that contains the highest lever determined by the measurement mused. Attenuation below the general is not required	d spectrum or digitally perating, the radio frequency ational radiator shall be at least 0 kHz bandwidth within the desired power, sethod on output power to be	
	c)	20 dB down 30 or restricted band, emission must a emission limits specified in 15.209	V	

Test Report No.	16070128-FCC-R3
Page	40 of 56



Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	

Test Report No.	16070128-FCC-R3
Page	41 of 56

(Below 1GHz)

ooi Bala

Vertical Polarity Plot @3m

No	P/L	Frequency	Reading	Detec	Correcte	Result	Limit	Margin	Height	Degree
		(MHz)	(dBµV)	tor	d (dB)	(dBµV)	(dBµV)	(dB)		
1	Н	35.7491	34.81	peak	-4.49	30.32	40.00	-9.68	100	259
2	Н	41.7130	41.38	peak	-8.73	32.65	40.00	-7.35	100	0
3	Н	163.7550	38.08	peak	-8.59	29.49	43.50	-14.01	100	0
4	Н	208.5803	47.49	QP	-8.81	38.68	43.50	-4.82	100	0
5	Н	246.8149	36.73	peak	-9.17	27.56	46.00	-18.44	100	0
6	Н	386.6338	35.23	peak	-4.61	30.62	46.00	-15.38	100	0

Test Report No.	16070128-FCC-R3
Page	42 of 56

(Below 1GHz)

Test Data

Horizontal Polarity Plot @3m

No	P/L	Frequency (MHz)	Reading (dBµV)	Detec tor	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Height	Degree
1	V	32.9791	35.31	peak	-2.45	32.86	40.00	-7.14	100	358
2	V	41.7130	41.49	peak	-8.73	32.76	40.00	-7.24	100	29
3	V	57.5939	47.21	peak	-14.08	33.13	40.00	-6.87	100	218
4	V	208.5803	44.59	peak	-8.81	35.78	43.50	-7.72	100	144
5	V	510.0436	36.68	peak	-1.52	35.16	46.00	-10.84	100	355
6	V	627.2738	35.79	peak	0.45	36.24	46.00	-9.76	100	188

Test Report No.	16070128-FCC-R3
Page	43 of 56

Above 1GHz

Test Mode:	Transmitting Mode
------------	-------------------

Low Channel (2412 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4824	38.39	AV	V	34	6.86	31.72	47.53	54	-6.47
4824	38.14	AV	Н	33.8	6.86	31.72	47.08	54	-6.92
4824	46.88	PK	V	34	6.86	31.72	56.02	74	-17.98
4824	46.23	PK	Н	33.8	6.86	31.72	55.17	74	-18.83

Middle Channel (2442 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4884	38.44	AV	V	33.6	6.82	31.82	47.04	54	-6.96
4884	38.21	AV	Н	33.8	6.82	31.82	47.01	54	-6.99
4884	46.93	PK	V	33.6	6.82	31.82	55.53	74	-18.47
4884	46.28	PK	Н	33.8	6.82	31.82	55.08	74	-18.92

High Channel (2472 MHz)

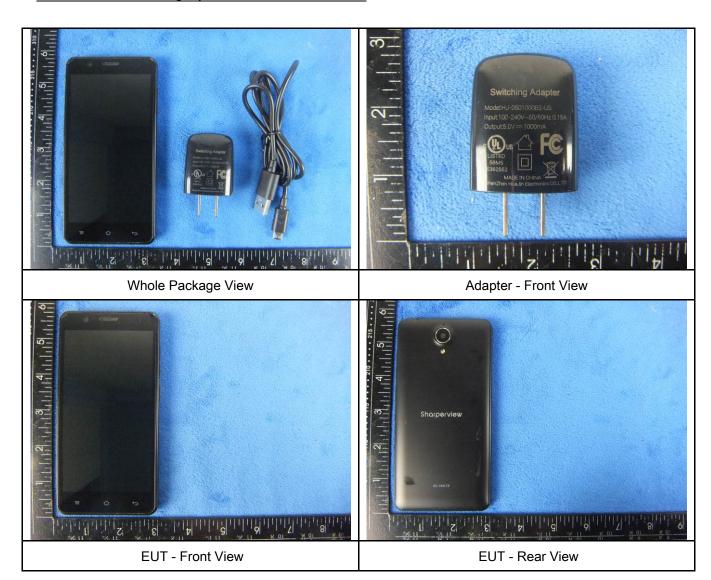
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4944	38.55	AV	V	34.6	6.76	31.92	47.99	54	-6.01
4944	38.29	AV	Η	34.7	6.76	31.92	47.83	54	-6.17
4944	46.73	PK	V	34.6	6.76	31.92	56.17	74	-17.83
4944	46.34	PK	Н	34.7	6.76	31.92	55.88	74	-18.12

Note:

- 1, The testing has been conformed to 10*2462MHz=24,620MHz
- 2, All other emissions more than 30 dB below the limit

Test Report No.	16070128-FCC-R3
Page	44 of 56

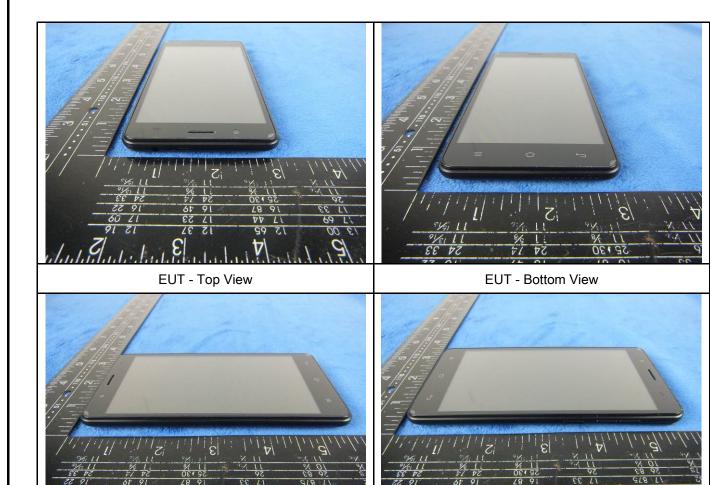
Annex A. TEST INSTRUMENT


Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/17/2015	09/16/2016	<u><</u>
Line Impedance	LI-125A	191106	09/25/2015	09/24/2016	<u> </u>
Line Impedance	LI-125A	191107	09/25/2015	09/24/2016	~
LISN	ISN T800	34373	09/25/2015	09/24/2016	~
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	\
Transient Limiter	LIT-153	531118	09/01/2015	08/31/2016	>
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/17/2015	09/16/2016	~
Power Splitter	1#	1#	09/01/2015	08/31/2016	<u><</u>
DC Power Supply	E3640A	MY40004013	09/17/2015	09/16/2016	<u><</u>
Radiated Emissions					
EMI test receiver	ESL6	100262	09/17/2015	09/16/2016	~
Positioning Controller	UC3000	MF780208282	11/19/2015	11/18/2016	~
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	09/01/2015	08/31/2016	•
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/25/2015	03/24/2016	<u><</u>
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/21/2015	09/20/2016	<u><</u>
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	V
Universal Radio Communication Tester	CMU200	121393	09/25/2015	09/24/2016	V

Test Report No.	16070128-FCC-R3
Page	45 of 56

Annex B. EUT and Test Setup Photographs

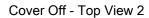
Annex B.i. Photograph: EUT External Photo



EUT - Left View

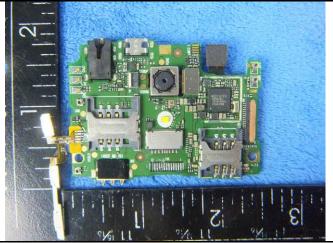
Test Report No.	16070128-FCC-R3	
Page	46 of 56	

EUT - Right View

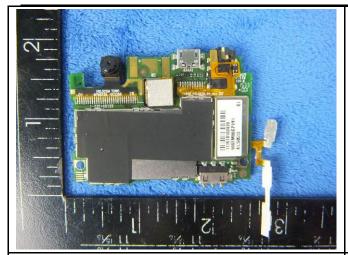

Test Report No.	16070128-FCC-R3
Page	47 of 56

Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View 1



Battery - Rear View


Mainbard with Shielding - Front View

Mainbard without Shielding - Front View

Test Report No.	16070128-FCC-R3
Page	48 of 56

2

Mainbard with Shielding - Rear View

Mainbard without Shielding - Rear View

LCD - Front View

LCD - Rear View

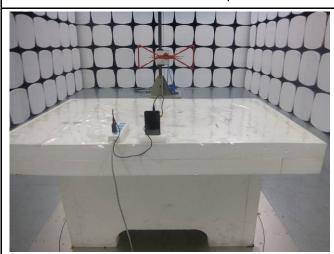
GSM/PCS/UMTS-FDD Antenna View

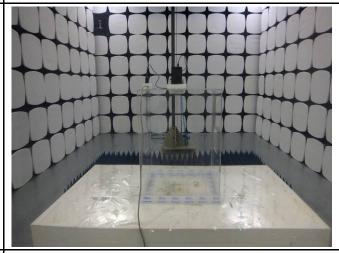
LTE - Antenna View

Test Report No.	16070128-FCC-R3
Page	49 of 56

HSL502M-40-WIFI/GPS/BI	
WIFI/BT/BLE/GPS - Antenna View	

Test Report No.	16070128-FCC-R3
Page	50 of 56

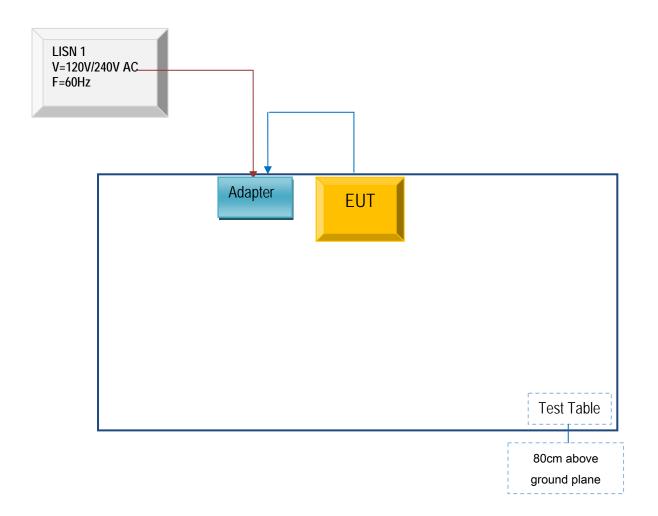

Annex B.iii. Photograph: Test Setup Photo


Conducted Emissions Test Setup Front View

Conducted Emissions Test Setup Side View

Radiated Spurious Emissions Test Setup Below 1GHz

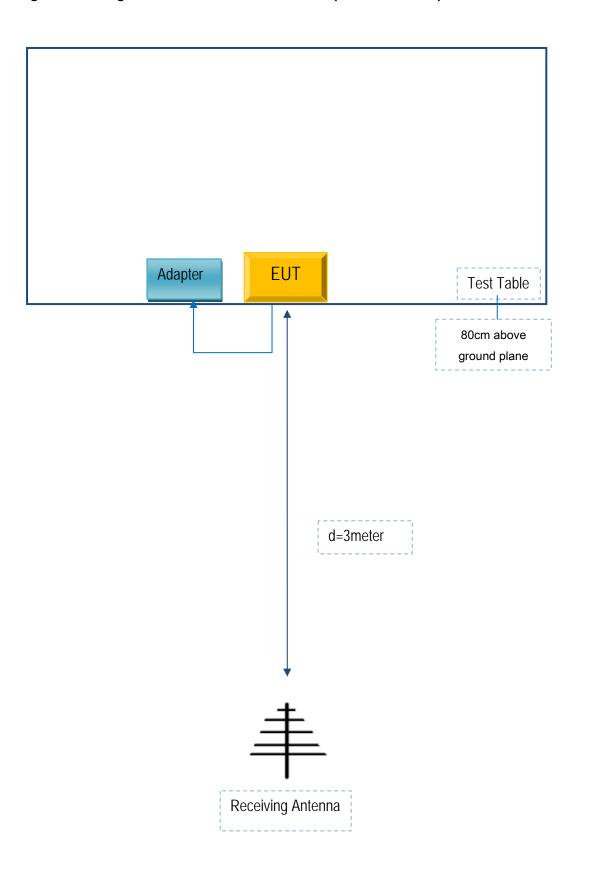
Radiated Spurious Emissions Test Setup Above 1GHz



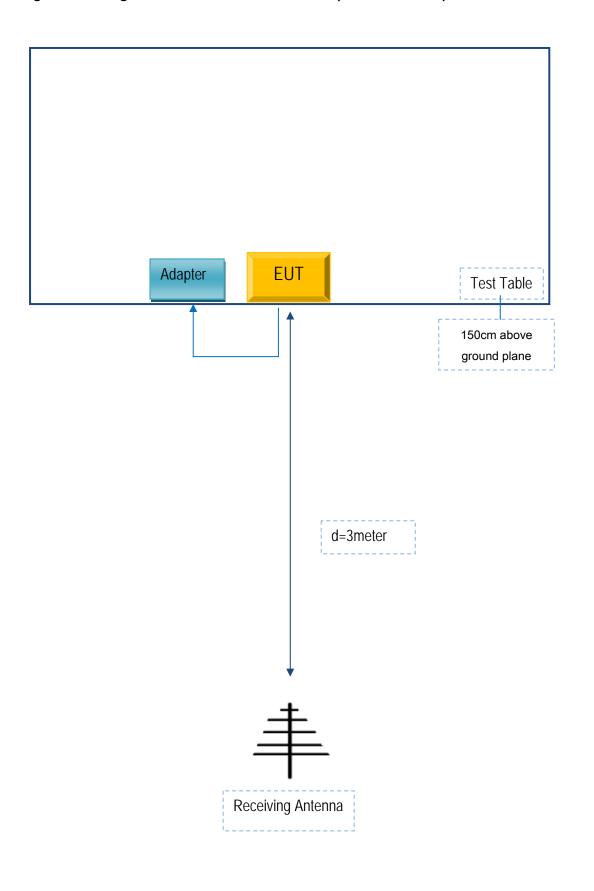
Test Report No.	16070128-FCC-R3
Page	51 of 56

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK


Block Configuration Diagram for AC Line Conducted Emissions

Test Report No.	16070128-FCC-R3
Page	52 of 56


Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report No.	16070128-FCC-R3
Page	53 of 56

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Test Report No.	16070128-FCC-R3
Page	54 of 56

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Model Description		Serial No
SUPERSONIC INC	Adapter	HJ-0501000B2-US	ST22100

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.8m	ST22100

Test Report No.	16070128-FCC-R3
Page	55 of 56

Annex D. User Manual / Block Diagram / Schematics / Partlist

N/A

Test Report No.	16070128-FCC-R3
Page	56 of 56

Annex E. DECLARATION OF SIMILARITY

SUPERSONIC INC

To: SIEMIC ,775 Montague Expressway, Milpitas, CA 95035,USA

Declaration Letter

Dear Sir,

For our business issue and marketing requirement, we would like to list 10 model numbers on the FCC certificates and reports, as following:

Model No.: SV-150LTE, SV-250LTE, SV-350LTE, SV-155LTE, SV-255LTE AND SV-355LTE, SV-6LTE, SV-16LTE, SV-36LTE, SC-150LTE

We declare that, all the model PCB ,Antenna and Appearance shape , accessories are the same . The difference of these is listed as below:

Main Model No	Serial Model No	Difference
SV-150LTE	SV-250LTE, SV-350LTE, SV-155LTE, SV-255LTE, SV-355LTE, SV-6LTE, SV-16LTE, SV-36LTE, SC-150LTE	Different model name

Thank you!

Signature:

Printed name/title: David Gholiani

Address: 6555 BANDINI BOULEVARD COMMERCE CA 90040-3119 USA

Dand Still