



# COMPLIANCE WORLDWIDE INC. TEST REPORT 372-14

In Accordance with the Requirements of FCC PART 15.247, SUBPART C INDUSTRY CANADA RSS 210, ISSUE 8

Low Power License-Exempt Radio Communication Devices Intentional Radiators

Issued to

Forsythe Technologies Worldwide 23924 Victory Blvd. Woodland Hills, CA 91367 (818) 710-8694

for the

Rat Telemetry System
Pressure and Temperature Transceiver
Small Module Set

FCC ID: 2AC4C-AU430001SM IC: 12302A-AU430001SM

Report Issued on August 29, 2014

Tested by

Brian F. Breault

Reviewed by

This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc.







# **Table of Contents**

| 1. Scope                                                        | 3  |
|-----------------------------------------------------------------|----|
| 2 .Product Details                                              |    |
| 2.1 Manufacturer                                                |    |
| 2.3 Serial Number                                               |    |
| 2.4 Description                                                 |    |
| 2.5 Power Source                                                |    |
| 2.6 EMC Modifications                                           |    |
| 3. Product Configuration                                        |    |
| 3.1 Operational Characteristics & Software                      | 3  |
| 3.2 EUT Hardware                                                |    |
| 3.3 EUT Connected Hardware                                      |    |
| 3.4 EUT Cables/Transducers                                      |    |
| 3.5 Support Equipment                                           |    |
| 3.6 Block Diagram                                               | 4  |
| 4. Measurements Parameters                                      |    |
| 4.1 Measurement Equipment Used to Perform Test                  | 4  |
| 4.2 Measurement & Equipment Setup                               |    |
| 4.3 Measurement Procedures                                      |    |
| 4.4 Duty Cycle                                                  |    |
| 4.4 Measurement Uncertainty                                     |    |
| 5. Choice of Equipment for Test Suits                           | 6  |
| 5.1 Choice of Model                                             |    |
| 5.2 Presentation                                                |    |
| 5.3 Choice of Operating Frequencies                             |    |
| 5.4 Modes of Operation                                          |    |
| 6. Measurement Summary                                          |    |
| 7. Measurement Data                                             |    |
| 7.1 Antenna Requirement                                         |    |
| 7.2 Minimum 6 dB Bandwidth                                      |    |
| 7.3 99% Bandwidth                                               |    |
| 7.4 Maximum Peak Conducted Output Power                         |    |
| 7.5 Operation with directional antenna gains greater than 6 dBi | 11 |
| 7.6 Transmitter Spurious Radiated Emissions                     | 12 |
| 7.7 Unwanted Emissions into Non-Restricted Frequency Bands      |    |
| 7.8 Harmonic Emissions in the Restricted Bands of Operation     |    |
| 7.9 Band Edge Measurements                                      | 33 |
| 7.10 Maximum Power Spectral Density                             |    |
| 7.11 Duty Cycle                                                 |    |
| 7.12 Public Exposure to Radio Frequency Energy Levels           |    |
| 8. Test Setup Photographs                                       | 37 |
| 9. Test Site Description                                        | 42 |





#### 1. Scope

This test report certifies that the Forsythe Technologies Worldwide Inc. Rat Telemetry System Pressure and Temperature Transceiver, as tested, meets the FCC Part 15.247, and Industry Canada RSS 210, Issue 8 requirements. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

2. Product Details

**2.1. Manufacturer:** Forsythe Technologies Worldwide Inc.

**2.2. Model Number:** 430001-IMP-XX (XX denotes the parameter being measured)

2.3. Serial Number: N/A

**2.4. Description:** Pressure and Temperature Transceiver

**2.5. Power Source:** 3.6 volt Lithium Battery

Note: For production units, two 1.55 (3.1 VDC total) volt Silver Oxide batteries will be used. The 3.6 volt Lithium battery was installed in the sample unit to provide a long enough runtime to perform the testing. Output amplitude checks were made after each series of tests to ensure the device continued operating

normally.

2.6. EMC Modifications: None

#### 3. Product Configuration

#### 3.1. Operational Characteristics & Software

#### **Operating Instructions for Test**

 The device under test is configured to begin transmitting a modulated signal when it is powered on. To power on the device, a magnet is removed from outside the case. The device transmits at a single frequency of 916.5 MHz.

#### 3.2. EUT Hardware

| Manufacturer                          | Model/Part # / Options Serial Nu        |     | Input<br>Voltage | Frq<br>(Hz) | Description/Function |
|---------------------------------------|-----------------------------------------|-----|------------------|-------------|----------------------|
| Forsythe<br>Technologies<br>Worldwide | Pressure and Temperature<br>Transceiver | N/A | 3.6              | DC          | Small module set     |

#### 3.3. EUT CONNECTED Hardware

| Manufacturer | Model | Serial Number | Description |
|--------------|-------|---------------|-------------|
| None         | N/A   | N/A           |             |





# ACCREDITED CERTIFICATE NUMBER: 1073.01

# 3. Product Configuration continued

#### 3.4. EUT Cables/Transducers

| Manufacturer | Model/Part # | Len.<br>(m) | Shield<br>Y/N | Description/Function |
|--------------|--------------|-------------|---------------|----------------------|
| None         | N/A          |             |               |                      |

# 3.5. Support Equipment

| Manufacturer | Model/Part # Options | Input<br>Voltage | Input<br>Freq | Description/Function |
|--------------|----------------------|------------------|---------------|----------------------|
| None         |                      |                  |               |                      |

#### 3.6. Block Diagram

Pressure and Temperature Transceiver

#### 4. Measurements Parameters

#### 4.1. Measurement Equipment Used to Perform Tests

| Device                                 | Manufacturer    | Model<br>No. | Serial No. | Cal Due   | Cal<br>Interval |
|----------------------------------------|-----------------|--------------|------------|-----------|-----------------|
| EMI Test Receiver, 9kHz - 7GHz         | Rohde & Schwarz | ESR7         | 101156     | 4/4/2015  | 2 yrs           |
| Spectrum Analyzer                      | Rohde & Schwarz | FSV40        | 100899     | 6/6/2015  | 2 yrs           |
| Microwave Preamp                       | Hewlett Packard | 8449B        | 3008A01323 | 6/5/2015  | 2 yrs           |
| Loop Antenna, Passive, 9 kHz to 30 MHz | EMCO            | 6512         | 9309-1139  | 8/28/2014 | 2 yrs           |
| Biconilog Antenna, 30 MHz to 2000 MHz  | Sunol Sciences  | JB1          | A050913    | 5/15/2015 | 2 yrs           |
| Double Ridged Antenna, 1 - 18 GHz      | ETS-Lindgren    | 3117         | 00143292   | 1/14/2015 | 2 yrs           |
| 1.8 to 9.2 GHz Bandpass Filter         | Mini-Circuits   | VHP-16       | 0341       | 2/4/15    | 1 yr            |







#### 4. Measurements Parameters (continued)

#### 4.2. Measurement & Equipment Setup

Test Dates: August 15<sup>th</sup> to 22<sup>th</sup>, 2014

Test Engineer: Brian Breault

Normal Site Temperature (15 - 35°C): 21.7 Relative Humidity (20 -75%RH): 33%

Frequency Range: 30 kHz to 10 GHz

Measurement Distance: 3 Meters

EMI Receiver IF Bandwidth: 9 kHz – 150 kHz to 30 MHz

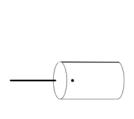
120 kHz – 30 MHz to 1 GHz 1 MHz – Above 1 GHz

EMI Receiver Avg Bandwidth: 30 kHz – 150 kHz to 30 MHz

300 kHz – 30 MHz to 1 GHz 3 MHz – Above 1 GHz

Detector Function: Peak, QP - 150 kHz to 1 GHz

Peak, Avg - Above 1 GHz Unless otherwise specified.


#### 4.3. Measurement Procedures

Test measurements were made in accordance FCC Part 15.247, IC RSS-210 Annex II: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5850 MHz, and 24.0 - 24.25 GHz.

The test procedures used to perform the measurements for this report are detailed in ANSI C63.10-2009.

In addition, the measurements were performed with the device in three orthogonal positions in accordance with ANSI C63.10-2009, sections 5.10.1, 6.3.2b, 6.4.4.1c, 6.5.4.1c, and 6.6.4.1c. In order to determine the three orthogonal positions on the cylindrically shaped device, a dot was placed at the top (antenna end) of the device opposite the antenna. This was designated the front of the device.

Three orthogonal positions:



X – Left "side" down Front toward Antenna at 0° azimuth



Y – Bottom down
. Front toward Antenna
at 0° azimuth



Z – Front up Bottom toward Antenna at 0° azimuth





#### 4. Measurements Parameters

#### 4.4. Duty Cycle

The device under test was configured to run continuously at a duty cycle greater than 99%. The methodology used to determine the duty cycle is detailed in section 7.11.

#### 4.5. Measurement Uncertainty

The following uncertainties are expressed for an expansion/coverage factor of K=2.

| RF Frequency                     | ± 1x10 <sup>-8</sup> |
|----------------------------------|----------------------|
| Radiated Emission of Transmitter | ± 4.55 dB            |
| Radiated Emission of Receiver    | ± 4.55 dB            |
| Temperature                      | ± 0.91° C            |
| Humidity                         | ± 5%                 |

### 5. Choice of Equipment for Test Suits

#### 5.1 Choice of Model

This test report is based on the test sample supplied by the manufacturer and is reported by the manufacturer to be equivalent to the production units.

#### 5.2 Presentation

This test sample was tested complete with all required ancillary equipment. Refer to Section 3 of this report for product equipment configuration.

#### 5.3 Choice of Operating Frequencies

The Forsythe Technologies Worldwide Inc. Rat Telemetry System Pressure and Temperature Transceiver, as tested, utilizes a single channel at 916.5 MHz.

#### **5.4 Modes of Operation**

The Forsythe Technologies Worldwide Inc. Rat Telemetry System Pressure and Temperature Transceiver transmitter module was configured for a single mode of operation only. This test mode configured the transmitter to operate at a duty cycle greater than 99%.





Issue Date: 8/29/2014

# **6. Measurement Summary**

| Test Requirement                                            | FCC<br>Rule<br>Reference    | IC Rule<br>Reference      | Test<br>Report<br>Section | Result          |
|-------------------------------------------------------------|-----------------------------|---------------------------|---------------------------|-----------------|
| Antenna Requirement                                         | 15.203                      | RSS-GEN<br>7.1.2          | 7.1                       | Compliant       |
| Minimum 6 dB Bandwidth                                      | 15.247 (a) (2)              | RSS-210<br>A8.2           | 7.2                       | Compliant       |
| 99% Bandwidth                                               | N/A                         | RSS-GEN<br>4.6.1          | 7.3                       | Compliant       |
| Maximum Peak Conducted Output Power                         | 15.247 (b) (1)              | RSS-210<br>A8.4 (4)       | 7.4                       | Compliant       |
| Operation with directional antenna gains greater than 6 dBi | 15.247 (b) (4)              | RSS-GEN<br>7.1.2          | 7.5                       | Compliant       |
| Spurious Radiated Emissions                                 | 15.247 (d)                  | RSS-GEN<br>4.9            | 7.6                       | Compliant       |
| Unwanted Emissions into Non-<br>Restricted Bands            | 15.247 (d)                  | RSS-210<br>A8.5           | 7.7                       | Compliant       |
| Harmonic Emissions in the Restricted Bands of Operation     | 15.247 (d)                  | RSS-210<br>A8.9           | 7.8                       | Compliant       |
| Lower and Upper Band Edge                                   | 15.247 (d)                  | RSS-210<br>A8.5           | 7.9                       | Compliant       |
| Maximum Power Spectral Density                              | 15.247(e)                   |                           | 7.10                      | Compliant       |
| Duty Cycle                                                  | ANSI C63.10,<br>§ 5.10.5    |                           | 7.11                      | Noted           |
| Conducted Emissions                                         | 15.207                      | RSS-GEN                   |                           | Not<br>Required |
| Public Exposure to Radio<br>Frequency Energy Levels         | 15.247(i)<br>1.1307 (b) (1) | RSS-GEN<br>5.5<br>RSS-102 | 7.12                      | Compliant       |





Issue Date: 8/29/2014

#### 7. Measurement Data

#### 7.1. Antenna Requirement (15.203, RSS GEN 7.1.2)

Requirement: An intentional radiator shall be designed to ensure that no antenna

other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.

Conclusion: The transmitter module utilizes a soldered in place whip antenna.

The antenna is not user replaceable in a normal configuration and use.

#### 7.2. Minimum 6 dB Bandwidth

Requirement: (15.247 (a) (2), RSS 210 A8.2(a))

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The

minimum 6 dB bandwidth shall be at least 500 kHz.

Procedure: This test was performed in accordance with the procedure detailed in

ANSI C63.10:2009, section 6.9.1: Occupied bandwidth testing.

Conclusion: The device under test meets the minimum 500 kHz 6 dB bandwidth

requirement.

Measurement Results - Minimum 6 dB Bandwidth

| Frequency<br>(MHz) | -6 dB<br>Bandwidth<br>(kHz) | Minimum<br>-6 dB<br>Bandwidth (kHz) | Result    |
|--------------------|-----------------------------|-------------------------------------|-----------|
| 916.5              | 564                         | > 500                               | Compliant |







Issue Date: 8/29/2014

#### 7. Measurement Data (continued)

#### 7.3. 99% Bandwidth (RSS 210)

Requirement: When an occupied bandwidth value is not specified in the applicable

RSS, the transmitted signal bandwidth to be reported is to be its 99%

emission bandwidth, as calculated or measured.

The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall

be set to 3 times the resolution bandwidth.

Procedure: This test was performed utilizing the automated 99% bandwidth function

of the spectrum analyzer.

Conclusion: Compliant, for informational purposes only.

#### Measurement Results - 99% Bandwidth

| Channel   | 99% Power |
|-----------|-----------|
| Frequency | Bandwidth |
| (MHz)     | (MHz)     |
| 916.5     | 1.179     |







Issue Date: 8/29/2014

#### 7. Measurement Data (continued)

#### 7.4. Maximum Peak Conducted Output Power

Requirement: (15.247 (b) (3))

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1

Watt.

Procedure: This test was performed in accordance with the procedure detailed in

ANSI C63.10:2006, section 6.10.2.1 using a spectrum analyzer

resolution bandwidth that is greater than the DUT 6 dB bandwidth.

Test Note<sup>1</sup>: The device under test does not facilitate conducted power

measurements. Peak field strength measurements were taken and the results were then converted to units of power using the following

formula:

$$P = \frac{(E \times d)^2}{(30 \times G)}$$

P = the power in Watts (power has been converted to milliwatts in the table).

E = the measured maximum field in V/m

G = the numeric gain of the transmitting antenna over an isotropic radiator.

d = the distance in meters of the field strength measurement.

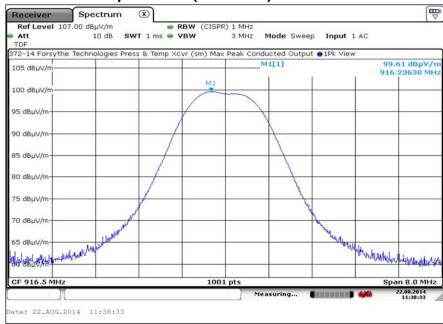
<sup>1</sup> ANSI C63.10, section 7.8.2 Calculation of the peak output power of the EUT

Conclusion: The device under test meets the required maximum peak conducted output power level of 1 Watt.

Measurement Results – Maximum Peak Conducted Output Power

| Freq.  | Peak Field<br>Strength | Distance | Antenna<br>Gain <sup>1</sup> |           | Measured<br>Output<br>Power | Output<br>Power<br>Limit | Result    |
|--------|------------------------|----------|------------------------------|-----------|-----------------------------|--------------------------|-----------|
| (MHz)  | (dBµV/m)               | (m)      | (dBi)                        | (numeric) | (mW)                        | (mW)                     |           |
| 916.50 | 99.61                  | 3.0      | -2.00                        | 0.631     | 4.35                        | 1000.0                   | Compliant |

<sup>&</sup>lt;sup>1</sup> Provided by the product manufacturer.








#### 7. Measurement Data (continued)

#### 7.4. Maximum Peak Conducted Output Power (continued)



#### 7.5. Operation with directional antenna gains greater than 6 dBi (15.247 (b)(4))

Requirement: If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of FCC Part 15.247, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

> Systems operating in the 2400 - 2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Conclusion:

The fixed antenna has a gain of -2.0 dBi. An adjustment in the peak power output of the DUT related to antenna gain was not necessary.







#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (30 kHz to 1 GHz)

Requirement: (15.209) The Emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency Range (MHz) | Distance<br>(Meters) | Limit<br>(dBµV/m)¹ |
|-----------------------|----------------------|--------------------|
| 0.009 to 0.490        | 3                    | 128.5 to 93.8      |
| 0.490 to 1.705        | 3                    | 73.8 to 63.0       |
| 1.705 to 30           | 3                    | 69.5               |
| 30 to 88              | 3                    | 40.0               |
| 88 to 216             | 3                    | 43.5               |
| 216 to 960            | 3                    | 46.0               |
| >960                  | 3                    | 54.0               |

<sup>&</sup>lt;sup>1</sup>Measurements in the 9 to 90 kHz, 110 to 490 kHz and above 1000 MHz ranges employ an average detector. Otherwise a quasi-peak detector is used.

Procedure:

This test was performed in accordance with the procedure detailed in ANSI C63.10:2009, section 6.3: Radiated emissions testing—general requirements and FCC 47 CFR Part 15.209: Radiated Emission Limits; General Requirements.

Test measurements were made in accordance with ANSI C63.4-2009, Standard Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronics Equipment in the Range of 9 kHz to 40 GHz.

Test Note:

The measurements were performed with the device in three orthogonal positions in accordance with ANSI C63.10-2009, sections 5.10.1, 6.3.2b, 6.4.4.1c, 6.5.4.1c, and 6.6.4.1c. Reference section 4.3 of this report for additional information.

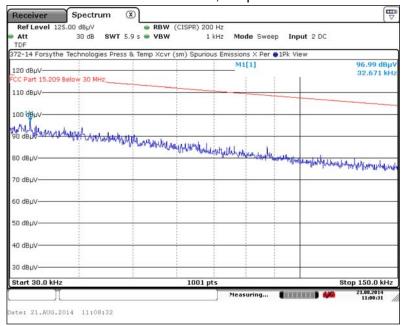
Conclusion:

The Emissions from the DUT did not exceed the field strength levels specified in the above table.





Issue Date: 8/29/2014


#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

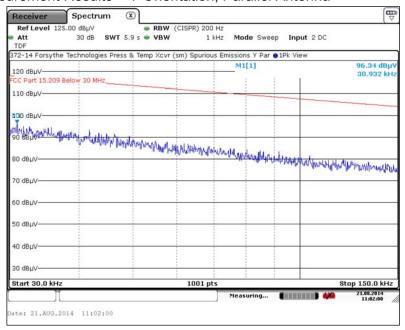
7.6.1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results Measurement Results – X Orientation, Parallel Antenna



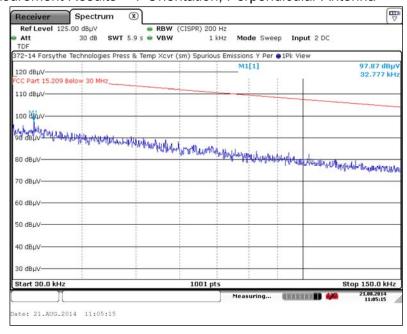
#### Measurement Results – X Orientation, Perpendicular Antenna








Issue Date: 8/29/2014


#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

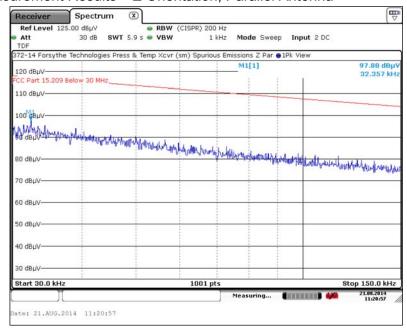
7.6.2. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results Measurement Results – Y Orientation, Parallel Antenna



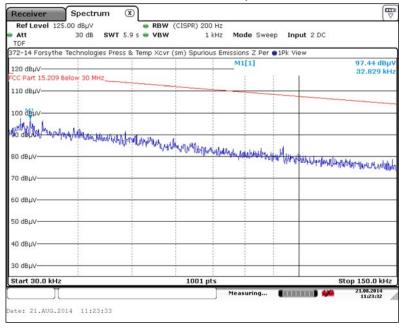
#### Measurement Results - Y Orientation, Perpendicular Antenna








Issue Date: 8/29/2014


#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

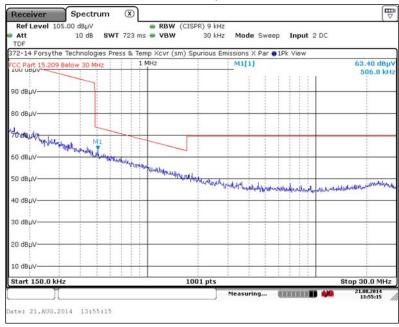
7.6.3. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results Measurement Results – Z Orientation, Parallel Antenna



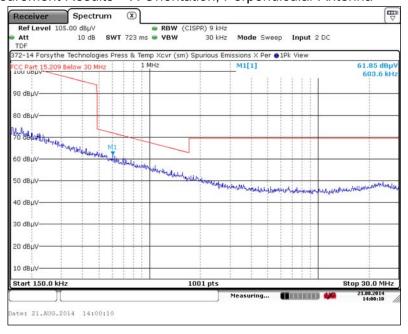
# Measurement Results – Z Orientation, Perpendicular Antenna








Issue Date: 8/29/2014


#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

7.6.4. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results Measurement Results – X Orientation, Parallel Antenna



#### Measurement Results - X Orientation, Perpendicular Antenna








Issue Date: 8/29/2014


#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

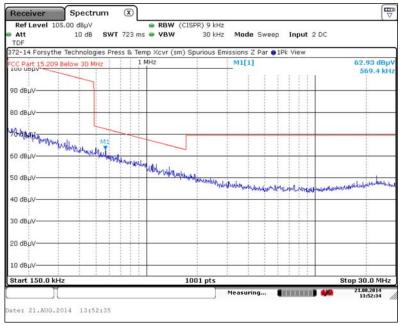
7.6.5. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results Measurement Results – Y Orientation, Parallel Antenna



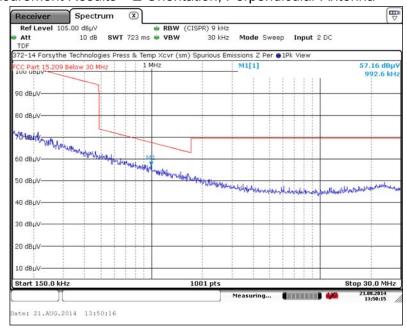
#### Measurement Results - Y Orientation, Perpendicular Antenna








Issue Date: 8/29/2014


#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

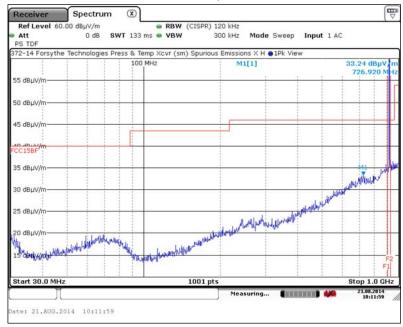
7.6.6. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results Measurement Results – Z Orientation, Parallel Antenna



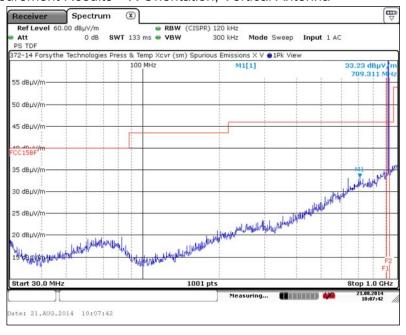
#### Measurement Results – Z Orientation, Perpendicular Antenna








Issue Date: 8/29/2014


#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

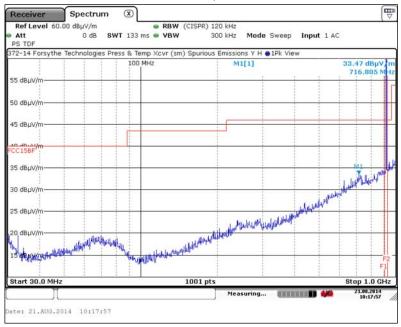
7.6.7. Spurious Radiated Emissions (30 kHz – 1 GHz) Test Results Measurement Results – X Orientation, Horizontal Antenna



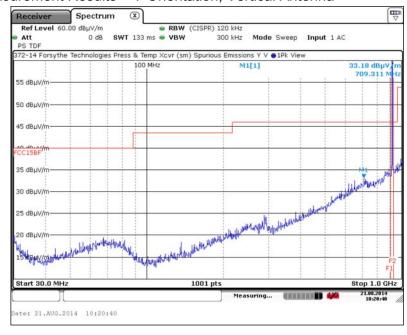
#### Measurement Results – X Orientation, Vertical Antenna











#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

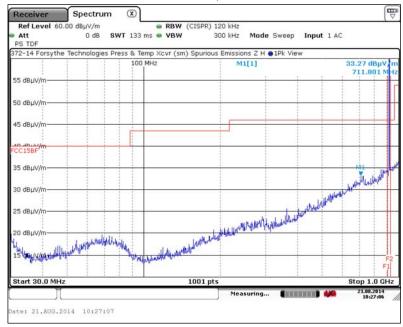
7.6.8. Spurious Radiated Emissions (30 kHz – 1 GHz) Test Results Measurement Results – Y Orientation, Horizontal Antenna



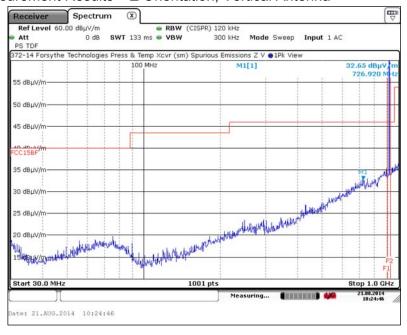
#### Measurement Results – Y Orientation, Vertical Antenna








Issue Date: 8/29/2014


#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

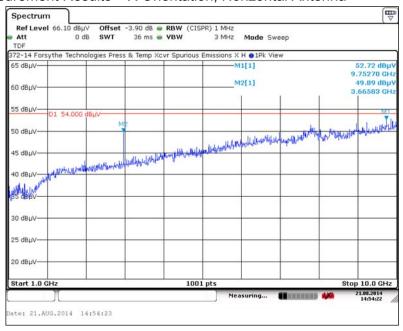
7.6.9. Spurious Radiated Emissions (30 kHz – 1 GHz) Test Results Measurement Results – Z Orientation, Horizontal Antenna



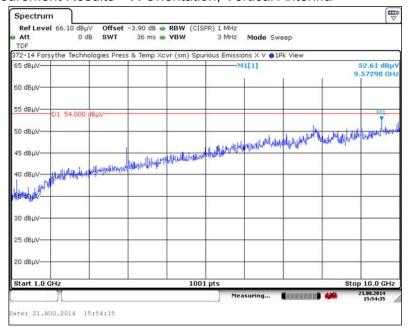
#### Measurement Results – Z Orientation, Vertical Antenna








Issue Date: 8/29/2014


#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

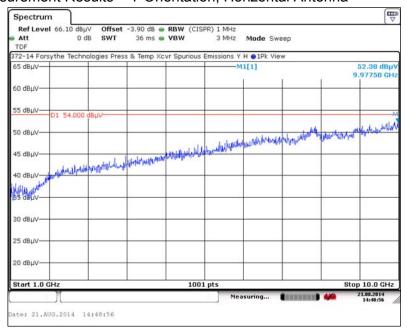
7.6.10. Spurious Radiated Emissions (1 GHz – 10 GHz) Test Results Measurement Results – X Orientation, Horizontal Antenna



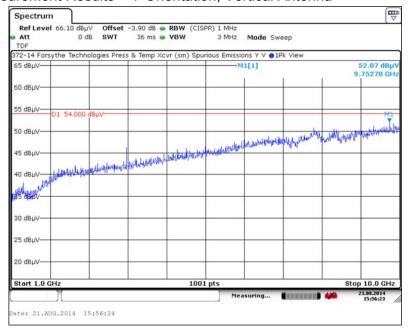
#### Measurement Results – X Orientation, Vertical Antenna











#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

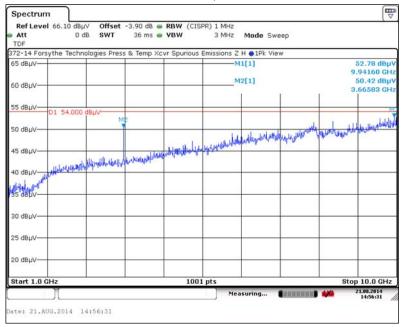
7.6.11. Spurious Radiated Emissions (1 GHz – 10 GHz) Test Results Measurement Results – Y Orientation, Horizontal Antenna



#### Measurement Results - Y Orientation, Vertical Antenna











#### 7. Measurement Data (continued)

#### 7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

7.6.12. Spurious Radiated Emissions (1 GHz – 10 GHz) Test Results Measurement Results – Z Orientation, Horizontal Antenna



#### Measurement Results – Z Orientation, Vertical Antenna





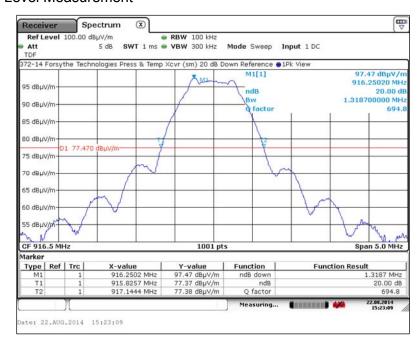




#### 7. Measurement Data (continued)

#### 7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).


Procedure: The procedure detailed in publication 558074 D01 - DTS Measurement

Guidance v03r02, June 5, 2014, section 11: *Emissions in non-restricted frequency bands* was used to perform the following measurements.

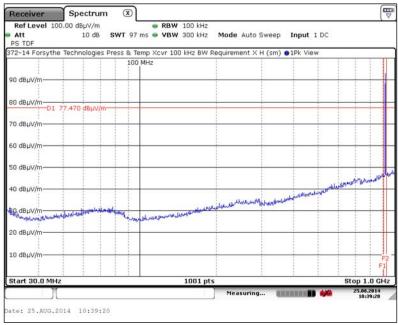
Test Note: The reference level measurement represent the worst case DUT

orientation, turntable azimuth and receive antenna polarity.

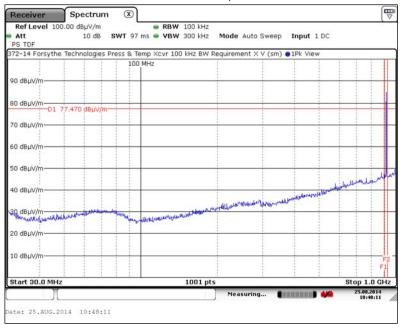
#### Reference Level Measurement








Issue Date: 8/29/2014


#### 7. Measurement Data (continued)

#### 7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

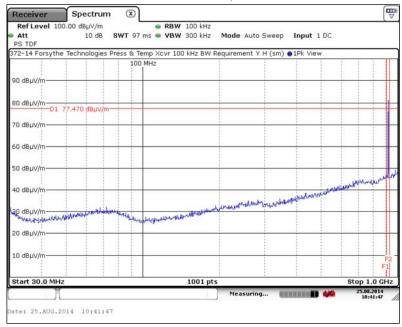
7.7.1. 30 MHz to 1000 MHz - X Orientation, Horizontal



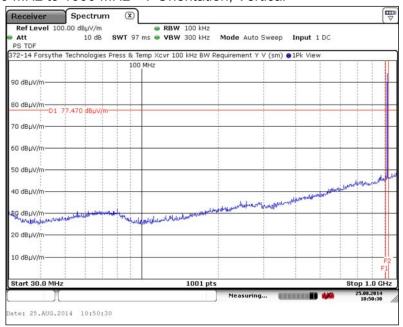
#### 7.7.2. 30 MHz to 1000 MHz - X Orientation, Vertical











#### 7. Measurement Data (continued)

#### 7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

7.7.3. 30 MHz to 1000 MHz - Y Orientation, Horizontal



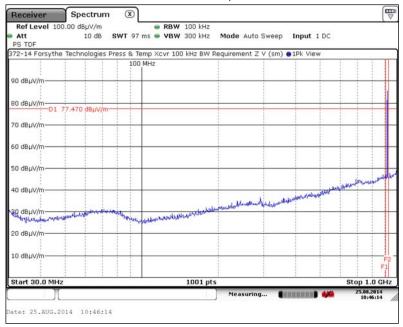
#### 7.7.4. 30 MHz to 1000 MHz - Y Orientation, Vertical











#### 7. Measurement Data (continued)

#### 7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

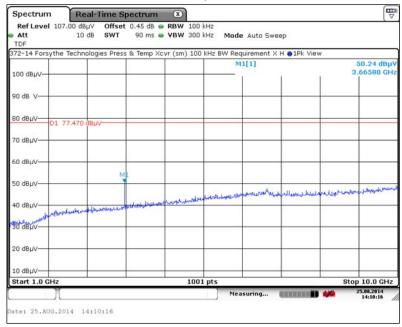
7.7.5. 30 MHz to 1000 MHz - Z Orientation, Horizontal



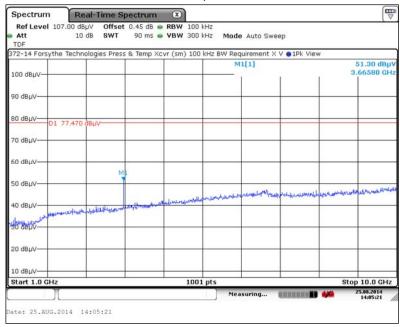
#### 7.7.6. 30 MHz to 1000 MHz - Z Orientation, Vertical











#### 7. Measurement Data (continued)

#### 7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

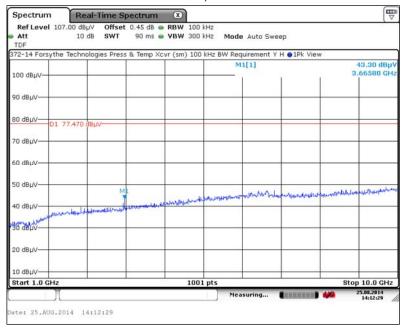
#### 7.7.7. 1 GHz to 10 GHz - X Orientation, Horizontal



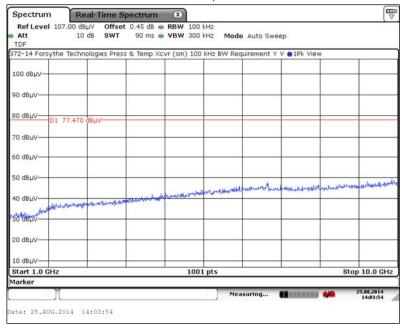
#### 7.7.5. 1 GHz to 10 GHz - X Orientation, Vertical











#### 7. Measurement Data (continued)

#### 7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

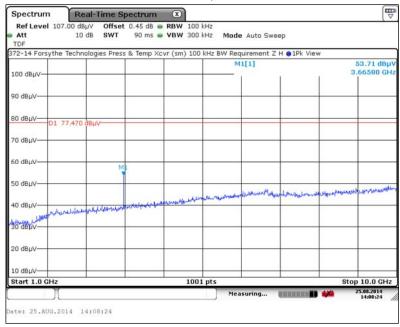
7.7.9. 1 GHz to 10 GHz - Y Orientation, Horizontal



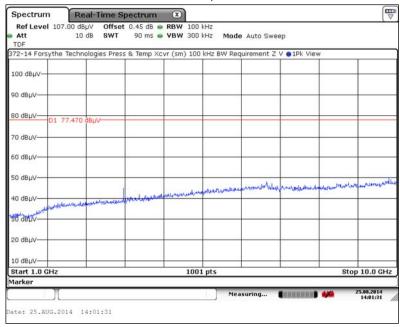
#### 7.7.10. 1 GHz to 10 GHz - Y Orientation, Vertical











#### 7. Measurement Data (continued)

#### 7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

7.7.11. 1 GHz to 10 GHz - Z Orientation, Horizontal



#### 7.7.12. 1 GHz to 10 GHz - Z Orientation, Vertical







# 7. Measurement Data (continued)

# 7.8. Harmonic Emissions in the Restricted Bands of Operation

Measurement Results - Harmonic Emissions

| Freq.<br>(MHz) | Measured Field<br>Strength<br>(dBµV/m) |         | Duty<br>Cycle<br>CF | Adjusted<br>Average<br>Field Strn. | ge (dBµV/m) (dBµV/m) Antenna<br>Polarity<br>(H/V/ |         | _      |         | Result |           |
|----------------|----------------------------------------|---------|---------------------|------------------------------------|---------------------------------------------------|---------|--------|---------|--------|-----------|
|                | Peak                                   | Average | (dB) <sup>1</sup>   | (dBµV/m) <sup>1</sup>              | Peak                                              | Average | Peak   | Average |        |           |
| 2749.5         | 48.35                                  | 35.51   | 0.00                | 35.51                              | 74.00                                             | 54.00   | -25.65 | -18.49  | Н      | Compliant |
| 3666.0         | 55.39                                  | 50.58   | 0.00                | 50.58                              | 74.00                                             | 54.00   | -18.61 | -3.42   | Н      | Compliant |
| 4582.5         | 50.25                                  | 37.33   | 0.00                | 37.33                              | 74.00                                             | 54.00   | -23.75 | -16.67  | Н      | Compliant |
| 7332.0         | 53.69                                  | 40.03   | 0.00                | 40.03                              | 74.00                                             | 54.00   | -20.31 | -13.97  | V      | Compliant |
| 8248.5         | 54.31                                  | 40.60   | 0.00                | 40.60                              | 74.00                                             | 54.00   | -19.69 | -13.40  | Н      | Compliant |
| 9165.0         | 55.44                                  | 42.20   | 0.00                | 42.20                              | 74.00                                             | 54.00   | -18.56 | -11.80  | V      | Compliant |

<sup>&</sup>lt;sup>1</sup> Duty cycle correction factors were not used because the duty cycle is 100%.





Issue Date: 8/29/2014

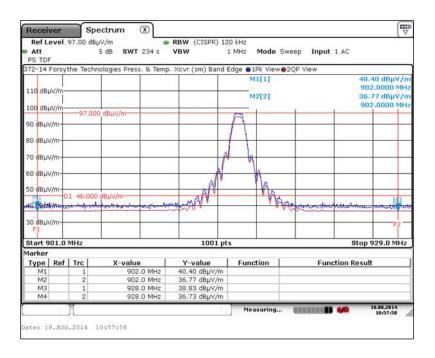
#### 7. Measurement Data (continued)

#### 7.9. Band Edge Measurements (15.247 d))

Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section

15.205(c)).

Procedure: ANSI C63.10:2009, section 6.9.2: Band-edge testing was referenced for


this measurement.

Test Notes: For additional out of band measurements, reference section 7.7 of this

test report.

Measurement Results - Lower and Upper Band Edges

| Band Edge | Field | Strength   | FCC Part | 15.209 Limit | Ma       |            |           |
|-----------|-------|------------|----------|--------------|----------|------------|-----------|
| Frequency | (dB   | βμV/m)     | (dBµV/m) |              | (dBµV/m) |            | Result    |
| (MHz)     | Peak  | Quasi-Peak | Peak     | Quasi-Peak   | Peak     | Quasi-Peak |           |
| 902       | 40.40 | 36.77      | 66.00    | 46.00        | -25.60   | -9.23      | Compliant |
| 928       | 38.83 | 36.73      | 66.00    | 46.00        | -27.17   | -9.27      | Compliant |









#### 7. Measurement Data (continued)

#### 7.10. Maximum Power Spectral Density (15.247(e))

Requirement: For digitally modulated systems, the power spectral density conducted

from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous

transmission.

Procedure: FCC OET 558074 D01, DTS Measurement Guidance v03r02, June 5,

2014, section 10.2: Method PKPSD (peak PSD) was referenced for this

measurement.

Test Note: Reference section 7.4 of this report for the method used to convert the


field strength measurement to power.

Conclusion: The DUT meets the required power spectral density.

#### Measurement Results – Power Spectral Density

| Frequency | Radiated<br>Peak PSD | Distance | Antenna<br>Gain <sup>1</sup> |           | Power S<br>Dens |       |
|-----------|----------------------|----------|------------------------------|-----------|-----------------|-------|
| (MHz)     | (dBµV/m)             | Meters   | (dBi)                        | (numeric) | (mW)            | (dBm) |
| 916.50    | 86.72                | 3.0      | -2.00                        | 0.631     | 0.22            | -6.5  |

| Frequency | Measured<br>Frequency | Power<br>Spectral<br>Density | Limit | Margin | Result    |
|-----------|-----------------------|------------------------------|-------|--------|-----------|
| (MHz)     | (MHz)                 | (dBm)                        | (dBm) | (dB)   |           |
| 916.50    | 916.3811              | -6.51                        | 8     | -14.51 | Compliant |





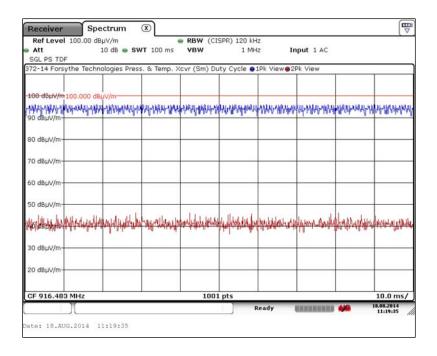


#### 7. Measurement Data (continued)

#### 7.11. Duty Cycle Calculations (ANSI C63.10-2009, Section 7.5)

Requirement: When the average value of the pulsed emissions from a DUT must be determined, the average can be found by measuring the peak pulse amplitude and determining the duty cycle correction factor of the pulse modulation. The duty cycle correction factor  $\delta$  may be expressed in dB as in the following equation:

$$\delta$$
 (dB) =  $20_{logdB}$  ( $\delta$ )


This correction factor can then be applied to the peak pulse amplitude to find the average emission. This correction is applied for all emissions including the fundamental and harmonics.

Test Notes:

- 1. The DUT duty cycle under normal operating conditions was at or near 100%.
- 2. The lower trace on the plot is the analyzer noise floor (transmitter off).

#### Duty Cycle for the Device as Tested

| Channel<br>Frequency<br>(MHz) | Total Time<br>On per 100<br>ms Period<br>(ms) | Percentage<br>of Time On<br>per 100 ms<br>Period<br>(Fraction) | Duty Cycle<br>Correction<br>Factor<br>(dB) | Maximum<br>Allowed<br>Duty Cycle<br>Correction<br>Factor (dB) | Applied<br>Duty Cycle |
|-------------------------------|-----------------------------------------------|----------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|-----------------------|
| 916.50                        | 100.000                                       | 1                                                              | 0.000                                      | -20                                                           | 0.000                 |









#### 7. Measurement Data (continued)

# 7.12. Public Exposure to Radio Frequency Energy Levels (15.247(i) (1.1307 (b)(1)) RSS-GEN 5.5, RSS 102)

Requirement: Systems operating under the provisions of this section shall be

operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. Devices are subject to the radio frequency radiation exposure requirements specified in 47CFR 1.1307(b), FCC 47 CFR 2.1091 and 47 CFR 2.1093, as appropriate. All equipment shall be considered to

operate in a "general population/uncontrolled" environment.

Procedure: The power density is calculated from the peak field strength and device antenna gain:

$$PD = \frac{OP + AG}{(4 \times \pi \times d^2)}$$

| PD Power Density    | mW/cm <sup>2</sup> |
|---------------------|--------------------|
| OP DUT Output Power | dBm                |
| AG DUT Antenna Gain | dBi                |
| d MPE Distance      | cm                 |

Conclusion: The device under test is meets radio frequency radiation exposure requirements specified in 47CFR 1.1307(b), § 2.1091 and § 2.1093.

#### Power Calculated from Peak Field Strength

| Frequency | Peak Field<br>Strength | Distance | Antenna<br>Gain <sup>1</sup> | Measured<br>Output<br>Power |  |
|-----------|------------------------|----------|------------------------------|-----------------------------|--|
| (MHz)     | (dBµV/m)               | (m)      | (dBi)                        | (mW)                        |  |
| 916.50    | 99.61                  | 3.0      | -2.0                         | 4.35                        |  |

<sup>&</sup>lt;sup>1</sup> Data provided by product manufacturer.

#### **Power Density**

| Freq.  | MPE<br>Distance<br>(cm) | DUT<br>Output<br>Power<br>(dBm) | DUT<br>Antenna<br>Gain | Power      | Density    | Limit<br>(mW/cm2) | Result    |
|--------|-------------------------|---------------------------------|------------------------|------------|------------|-------------------|-----------|
| rieq.  |                         |                                 | (dBi)                  | (mW/cm2)   | (W/m2)     | ,                 | Result    |
|        | (1)                     | (2)                             | (3)                    | (4)        |            | (5)               |           |
| 916.50 | 20.0                    | 6.38                            | -2.0                   | 0.00054557 | 0.00545571 | 1                 | Compliant |

- Reference CFR 2.1093(b): For purposes of this section, a portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user.
- 2. Taken from column 5 of the first table and converted to dBm.
- 3. Data supplied by the client.
- 4. Power density is calculated from field strength measurement and antenna gain.
- 5. Reference CFR 1.1310, Table 1: Limits for Maximum Permissible Exposure (MPE), Section (B): Limits for General Population/Uncontrolled Exposure.





Issue Date: 8/29/2014

# 8. Test Setup Photographs

8.1. Radiated Emissions - Front:







Issue Date: 8/29/2014

# 8. Test Setup Photographs

8.2. Radiated Emissions Rear - Below 30 MHz







Issue Date: 8/29/2014

# 8. Test Setup Photographs

8.3. Radiated Emissions Rear – 30 MHz to 1 GHz





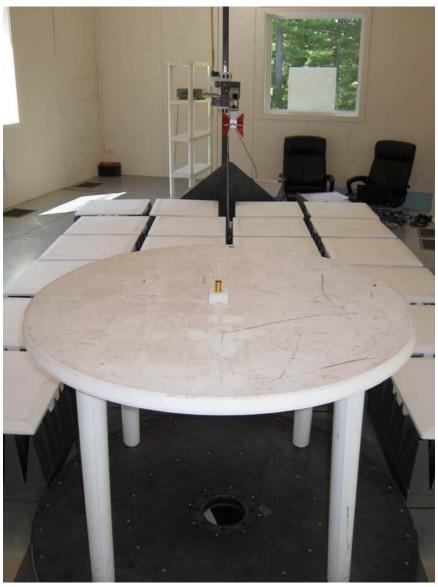


Issue Date: 8/29/2014

# 8. Test Setup Photographs

8.4. Radiated Emissions Front - Above 1 GHz








Issue Date: 8/29/2014

# 8. Test Setup Photographs

8.4. Radiated Emissions Rear - Above 1 GHz







Issue Date: 8/29/2014

#### 9. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with Federal Communications Commission (FCC), Industry Canada, and Voluntary Control Council Interference (VCCI) standards. A description of the test sites is on file with the FCC (registration number 96392), Industry Canada (file number IC 3023A-1), and VCCI (Member number 3168), Registration numbers C-3673, G-167, R-3305 & T-1809.

Compliance Worldwide is also designated as a Phase 1 CAB under APEC-MRA (US0132) for Australia/New Zealand AS/NZS CISPR 22, Chinese-Taipei (Taiwan) BSMI CNS 13438 and Korea (RRA) KN 22.

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16' x 20' x 12' ferrite tile chamber and uses one of the walls for the vertical ground plane required by EN 55022.

Both sites are designed to test products or systems 1.5 meters W x 1.5 meters L x  $^2$  2.0 meters H, floor standing or table top.