

COMPLIANCE WORLDWIDE INC. **TEST REPORT 373-14**

In Accordance with the Requirements of FCC PART 15.247, SUBPART C **INDUSTRY CANADA RSS 210, ISSUE 8**

Low Power License-Exempt Radio Communication Devices Intentional Radiators

> Issued to Forsythe Technologies Worldwide 23924 Victory Blvd. Woodland Hills, CA 91367 (818) 710-8694

> > for the

Rat Telemetry System Pressure and Temperature Transceiver Large Module Set

> FCC ID: 2AC4C-AU430001LG IC: 12302A-AU430001LG

> Report Issued on August 29, 2014

Tested by

Brian F. Breault

Reviewed by

This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc.

Table of Contents

1. Scope	3
2 Product Details	3
2.1 Manufacturer	3
2.3 Serial Number	
2.4 Description	
2.5 Power Source	
2.6 EMC Modifications	
3. Product Configuration	
3.1 Operational Characteristics & Software	3
3.2 EUT Hardware	
3.3 EUT Connected Hardware	
3.4 EUT Cables/Transducers	
3.5 Support Equipment	
3.6 Block Diagram	
4. Measurements Parameters	4
4.1 Measurement Equipment Used to Perform Test	4
4.2 Measurement & Equipment Setup	
4.3 Measurement Procedures	5
4.4 Duty Cycle	
4.4 Measurement Uncertainty	
5. Choice of Equipment for Test Suits	
5.1 Choice of Model	
5.2 Presentation	
5.3 Choice of Operating Frequencies	
5.4 Modes of Operation	
6. Measurement Summary	
7. Measurement Data	
7.1 Antenna Requirement	
7.2 Minimum 6 dB Bandwidth	
7.3 99% Bandwidth	
7.4 Maximum Peak Conducted Output Power	. 10
7.5 Operation with directional antenna gains greater than 6 dBi	. 11
7.6 Transmitter Spurious Radiated Emissions	.12
7.7 Unwanted Emissions into Non-Restricted Frequency Bands	
7.8 Harmonic Emissions in the Restricted Bands of Operation	. 32
7.9 Band Edge Measurements	.33
7.10 Maximum Power Spectral Density	
7.11 Duty Cycle	. 35
7.12 Public Exposure to Radio Frequency Energy Levels	. 36
8. Test Setup Photographs	
9. Test Site Description	

1. Scope

This test report certifies that the Forsythe Technologies Worldwide Inc. Rat Telemetry System Pressure and Temperature Transceiver, as tested, meets the FCC Part 15.247, and Industry Canada RSS 210, Issue 8 requirements. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

2. Product Details

- **2.1. Manufacturer:** Forsythe Technologies Worldwide Inc.
- **2.2. Model Number:** 430001-IMP-XX (XX denotes the parameter being measured)
- 2.3. Serial Number: N/A
- 2.4. Description: Pressure and Temperature Transceiver
- 2.5. Power Source:
- 3.6 volt Lithium Battery
 - Note: For production units, two 1.55 (3.1 VDC total) volt Silver Oxide batteries will be used. The 3.6 volt Lithium battery was installed in the sample unit to provide a long enough runtime to perform the testing. Output amplitude checks were made after each series of tests to ensure the device continued operating normally.

2.6. EMC Modifications: None

3. Product Configuration

3.1. Operational Characteristics & Software

Operating Instructions for Test

• The device under test is configured to begin transmitting a modulated signal when it is powered on. To power on the device, a magnet is removed from outside the case. The device transmits at a single frequency of 916.5 MHz.

3.2. EUT Hardware

Manufacturer	Model/Part # / Options	Serial Number	Input Voltage	Frq (Hz)	Description/Function
Forsythe Technologies Worldwide	Pressure and Temperature Transceiver	N/A	3.6	DC	Large module set

3.3. EUT CONNECTED Hardware

Manufacturer	Model	Serial Number	Description
None	N/A	N/A	

3. Product Configuration continued

3.4. EUT Cables/Transducers

Manufacturer	Model/Part #	Len. (m)	Shield Y/N	Description/Function
None	N/A			

3.5. Support Equipment

Manufacturer	Model/Part # Options	Input Voltage	Input Freq	Description/Function
None				

3.6. Block Diagram

Pressure and
Temperature
Transceiver

4. Measurements Parameters

4.1. Measurement Equipment Used to Perform Tests

Device	Manufacturer	Model No.	Serial No.	Cal Due	Cal Interval
EMI Test Receiver, 9kHz - 7GHz	Rohde & Schwarz	ESR7	101156	4/4/2015	2 yrs
Spectrum Analyzer	Rohde & Schwarz	FSV40	100899	6/6/2015	2 yrs
Microwave Preamp	Hewlett Packard	8449B	3008A01323	6/5/2015	2 yrs
Loop Antenna, Passive, 9 kHz to 30 MHz	EMCO	6512	9309-1139	8/28/2014	2 yrs
Biconilog Antenna, 30 MHz to 2000 MHz	Sunol Sciences	JB1	A050913	5/15/2015	2 yrs
Double Ridged Antenna, 1 - 18 GHz	ETS-Lindgren	3117	00143292	1/14/2015	2 yrs
1.8 to 9.2 GHz Bandpass Filter	Mini-Circuits	VHP-16	0341	2/4/15	1 yr

4. Measurements Parameters (continued)

4.2. Measurement & Equipment Setup

Test Dates:	August 15 th to 22 th , 2014
Test Engineer:	Brian Breault
Normal Site Temperature (15 - 35°C):	21.7
Relative Humidity (20 -75%RH):	33%
Frequency Range:	30 kHz to 10 GHz
Measurement Distance:	3 Meters
EMI Receiver IF Bandwidth:	9 kHz – 150 kHz to 30 MHz 120 kHz– 30 MHz to 1 GHz 1 MHz – Above 1 GHz
EMI Receiver Avg Bandwidth:	30 kHz – 150 kHz to 30 MHz 300 kHz– 30 MHz to 1 GHz 3 MHz – Above 1 GHz
Detector Function:	Peak, QP - 150 kHz to 1 GHz Peak, Avg- Above 1 GHz Unless otherwise specified.

4.3. Measurement Procedures

Test measurements were made in accordance FCC Part 15.247, IC RSS-210 Annex II: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5850 MHz, and 24.0 - 24.25 GHz.

The test procedures used to perform the measurements for this report are detailed in ANSI C63.10-2009.

In addition, the measurements were performed with the device in three orthogonal positions in accordance with ANSI C63.10-2009, sections 5.10.1, 6.3.2b, 6.4.4.1c, 6.5.4.1c, and 6.6.4.1c. In order to determine the three orthogonal positions on the cylindrically shaped device, a dot was placed at the top (antenna end) of the device opposite the antenna. This was designated the front of the device.

Three orthogonal positions:

X – Left "side" down Front toward Antenna at 0° azimuth

Y – Bottom down . Front toward Antenna at 0° azimuth

Z – Front up Bottom toward Antenna at 0° azimuth

4. Measurements Parameters

4.4. Duty Cycle

The device under test was configured to run continuously at a duty cycle greater than 99%. The methodology used to determine the duty cycle is detailed in section 7.11.

4.5. Measurement Uncertainty

The following uncertainties are expressed for an expansion/coverage factor of K=2.

RF Frequency	± 1x10 ⁻⁸
Radiated Emission of Transmitter	± 4.55 dB
Radiated Emission of Receiver	± 4.55 dB
Temperature	± 0.91° C
Humidity	± 5%

5. Choice of Equipment for Test Suits

5.1 Choice of Model

This test report is based on the test sample supplied by the manufacturer and is reported by the manufacturer to be equivalent to the production units.

5.2 Presentation

This test sample was tested complete with all required ancillary equipment. Refer to Section 3 of this report for product equipment configuration.

5.3 Choice of Operating Frequencies

The Forsythe Technologies Worldwide Inc. Rat Telemetry System Pressure and Temperature Transceiver, as tested, utilizes a single channel at 916.5 MHz.

5.4 Modes of Operation

The Forsythe Technologies Worldwide Inc. Rat Telemetry System Pressure and Temperature Transceiver transmitter module was configured for a single mode of operation only. This test mode configured the transmitter to operate at a duty cycle greater than 99%.

Issue Date: 8/29/2014

6. Measurement Summary

Test Requirement	FCC Rule Reference	IC Rule Reference	Test Report Section	Result
Antenna Requirement	15.203	RSS-GEN 7.1.2	7.1	Compliant
Minimum 6 dB Bandwidth	15.247 (a) (2)	RSS-210 A8.2	7.2	Compliant
99% Bandwidth	N/A	RSS-GEN 4.6.1	7.3	Compliant
Maximum Peak Conducted Output Power	15.247 (b) (1)	RSS-210 A8.4 (4)	7.4	Compliant
Operation with directional antenna gains greater than 6 dBi	15.247 (b) (4)	RSS-GEN 7.1.2	7.5	Compliant
Spurious Radiated Emissions	15.247 (d)	RSS-GEN 4.9	7.6	Compliant
Unwanted Emissions into Non- Restricted Bands	15.247 (d)	RSS-210 A8.5	7.7	Compliant
Harmonic Emissions in the Restricted Bands of Operation	15.247 (d)	RSS-210 A8.9	7.8	Compliant
Lower and Upper Band Edge	15.247 (d)	RSS-210 A8.5	7.9	Compliant
Maximum Power Spectral Density	15.247(e)		7.10	Compliant
Duty Cycle	ANSI C63.10, § 5.10.5		7.11	Noted
Conducted Emissions	15.207	RSS-GEN		Not Required
Public Exposure to Radio Frequency Energy Levels	15.247(i) 1.1307 (b) (1)	RSS-GEN 5.5 RSS-102	7.12	Compliant

7. Measurement Data

7.1. Antenna Requirement (15.203, RSS GEN 7.1.2)

- Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.
- Conclusion: The transmitter module utilizes a soldered in place whip antenna. The antenna is not user replaceable in a normal configuration and use.

7.2. Minimum 6 dB Bandwidth

Requirement: (15.247 (a) (2), RSS 210 A8.2(a))

Measurement Results - Minimum 6 dB Bandwidth

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

- Procedure: This test was performed in accordance with the procedure detailed in ANSI C63.10:2009, section 6.9.1: Occupied bandwidth testing.
- Conclusion: The device under test meets the minimum 500 kHz 6 dB bandwidth requirement.

Frequency (MHz)	-6 dB Bandwidth (kHz)	Minimum -6 dB Bandwidth (kHz)	Result
916.5	769.2	> 500	Compliant

Page 8 of 42

Test Number 373-14

7. Measurement Data (continued)

7.3. 99% Bandwidth (RSS 210)

Requirement: When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth.

- Procedure: This test was performed utilizing the automated 99% bandwidth function of the spectrum analyzer.
- Conclusion: Compliant, for informational purposes only.

Measurement Results - 99% Bandwidth

Channel Frequency (MHz)	99% Power Bandwidth (MHz)
916.5	1.209

7. Measurement Data (continued)

7.4. Maximum Peak Conducted Output Power

Requirement: (15.247 (b) (3))

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

- Procedure: This test was performed in accordance with the procedure detailed in ANSI C63.10:2006, section 6.10.2.1 using a spectrum analyzer resolution bandwidth that is greater than the DUT 6 dB bandwidth.
- Test Note¹: The device under test does not facilitate conducted power measurements. Peak field strength measurements were taken and the results were then converted to units of power using the following formula:

$$P = \frac{(E \times d)^2}{(30 \times G)}$$

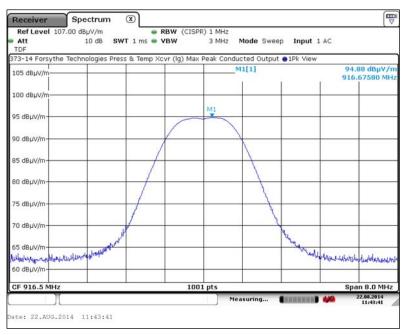
- P = the power in Watts (power has been converted to milliwatts in the table).
- E = the measured maximum field in V/m
- G = the numeric gain of the transmitting antenna over an isotropic radiator.
- d = the distance in meters of the field strength measurement.

¹ ANSI C63.10, section 7.8.2 Calculation of the peak output power of the EUT

Conclusion: The device under test meets the required maximum peak conducted output power level of 1 Watt.

Measurement Results – Maximum Peak Conducted Output Power

Freq.	Peak Field Strength	Distance	Antenna Gain ¹		Measured Output Power	Output Power Limit	Result
(MHz)	(dBµV/m)	(m)	(dBi)	(numeric)	(mW)	(mW)	
916.50	94.88	3.0	-2.00	0.631	1.46	1000.0	Compliant


¹ Provided by the product manufacturer.

7. Measurement Data (continued)

7.4. Maximum Peak Conducted Output Power (continued)

7.5. Operation with directional antenna gains greater than 6 dBi (15.247 (b)(4))

Requirement: If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of FCC Part 15.247, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400 – 2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Conclusion: The fixed antenna has a gain of -2.0 dBi. An adjustment in the peak power output of the DUT related to antenna gain was not necessary.

Test Number 373-14

7. Measurement Data (continued)

7.6. Transmitter Spurious Radiated Emissions (30 kHz to 1 GHz)

Requirement: (15.209) The Emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency Range (MHz)	Distance (Meters)	Limit (dBµV/m) ¹
0.009 to 0.490	3	128.5 to 93.8
0.490 to 1.705	3	73.8 to 63.0
1.705 to 30	3	69.5
30 to 88	3	40.0
88 to 216	3	43.5
216 to 960	3	46.0
>960	3	54.0

¹Measurements in the 9 to 90 kHz, 110 to 490 kHz and above 1000 MHz ranges employ an average detector. Otherwise a quasi-peak detector is used.

Procedure: This test was performed in accordance with the procedure detailed in ANSI C63.10:2009, section 6.3: Radiated emissions testing—general requirements and FCC 47 CFR Part 15.209: Radiated Emission Limits; General Requirements.

Test measurements were made in accordance with ANSI C63.4-2009, Standard Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronics Equipment in the Range of 9 kHz to 40 GHz.

- Test Note: The measurements were performed with the device in three orthogonal positions in accordance with ANSI C63.10-2009, sections 5.10.1, 6.3.2b, 6.4.4.1c, 6.5.4.1c, and 6.6.4.1c. Reference section 4.3 of this report for additional information.
- Conclusion: The Emissions from the DUT did not exceed the field strength levels specified in the above table.

7. Measurement Data (continued)

7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

7.6.1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results Measurement Results – X Orientation, Parallel Antenna

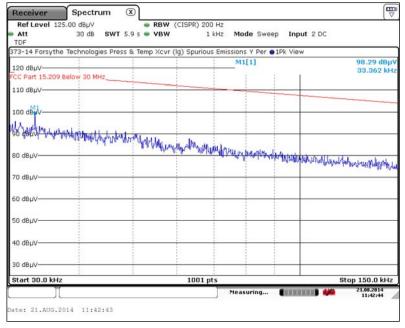
Receiver	Spectrun	n 🗴				1 1 1 1 1
Ref Level 12			RBW (CISPR)			
TDF	30 dB \$	SWT 5.9 s 🖷 🛚	VBW	1 kHz Mode S	weep Input 2	DC
373-14 Forsyth	e Technologies	Press & Temp	Xovr (lg) Spuri	ous Emissions X P	ar 🔵 1Pk View	
120 dBµV	Bolow 20 MHz			M1[1]	1.1	97.32 dBµ 32.671 kH
110 dBµV	- Color Color					
100 dBuV						
Mr. Shillons	ماحالموه					ahumidwich-inglegypointhic
90 0BHA-40-10	an namha da	photo And and	Make hand about	lu.		
80 dBµV			A adv Mr. M.	and the the second	all will be wanted	Autoritari
						w.manalace. Indahed hapappe
70 dBµV				1		
70 dBµV						
70 dBµV						
70 dBµV						
70 dBµV 60 dBµV 50 dBµV						
70 dBµV						
70 dBµV 60 dBµV 50 dBµV						
70 dBµV 60 dBµV 50 dBµV 40 dBµV	2		1001	pts		Stop 150.0 kHz
70 dBµV 60 dBµV 50 dBµV 40 dBµV 30 dBµV	z		1001	pts Measuring		

Measurement Results – X Orientation, Perpendicular Antenna

Ref Level 125.00 dBµV Att 30 dB	SWT 5.9	s . VBW	(CISPR) 200 1		Sweep	Input	2 DC	
TDF 373-14 Forsythe Technolog	ies Press &	Temp Xovr	(la) Souriou	s Emissions X	Per e1	Pk View		
120 dBuV			()	M1[1	-			96.45 dBµ 30.684 kH
CC Part 15.209 Below 30 M	Hz			1 1	1	Ē		30.084 Kr
110 dBµV								
100 dBµV						_		
Alman								
WHEN THE MAKE A LET								
an and an and and and and and and and an	MINAN	100 reader to	the all as here as					
80 GBMV- THUR AND	umushi halu	withinghis	ni walantan w	andwarkeyew	newhork	the de the	All de la la carda de la	
зо qenn	ramoshili forliga	1981 wan gleb	nkuullaluu	andaardopper	nputhappilap	torbe they	ull when have	handardan
30 авдунда Андала 80 авцу	anoshii foyiya	1938 printer of hill	ntrallany	mahaantaataa	npartar	the the second	ud/ishirgherish	handautan
90 авруши (нинон 80 авру 70 авру 60 авру	umuth fi fayi (a	1936 production of the	ni waliondarwa	andaarhypey	พระสุขาร์สุ	toron of the	ud/ichicographi	luw Hundpentren
70 dbµv	anoly) for the	nol way by	ntrodonia	muhantuusu	พระ _{สถ} ารรู	the the the	advishunders)	handardan
60 dBµV	unstral fraile	1981 innershi	ni walendar wa	nnhaantiyek.	พระสูงให้	tor the top of top of the top of top o	udytechnarydgythd	umhudoutin
70 авµv	unsid halu	nstring by	ni walandara	mhanlifiky	nra ^{ta} uta	toru Mar	ndy waydy w	lown deuten
60 dBµV	unc.vii h-riu	nal word of	ainalladarra	Marthe .	utur galak	4004149q	adhinnadhan	www.weitenten
60 dBµV	an.J/II h-rla	nel hand	1001 p		utra and a	the second se		top 150.0 kH

Issue Date: 8/29/2014

7. Measurement Data (continued)


7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

7.6.2. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results

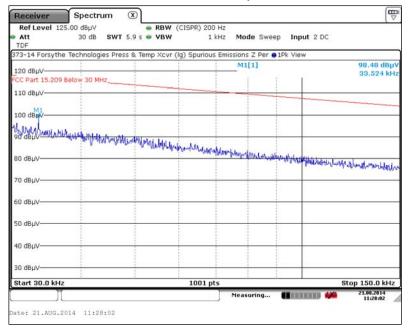
Measurement Results - Y Orientation, Parallel Antenna

	x)	Receiver Spectrum
RBW (CISPR) 200 Hz VBW 1 kHz Mode Sweep Input 2 DC		Ref Level 125.00 dBµV Att 30 dB TDF
p Xcvr (lg) Spurious Emissions Y Par	& Temp Xcvr (Ig) Spurio	
M1[1] 99.07 32.30		120 dBµV
		110 dBµV
		100 Buv
haden presidente and a second and a second and a second product of the second product of		White white and the form the
Martine work martine was a served a	manuflyablyablyablable	
and a second of the second of the second of the second second of the second sec		80 0BhA
		70 dBµV
	3 E)	
		60 dBµV
		60 dBµV
		50 dBµV
1001 pts Stop 150.0	1001	50 dBµV

Measurement Results – Y Orientation, Perpendicular Antenna

Issue Date: 8/29/2014

7. Measurement Data (continued)


7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

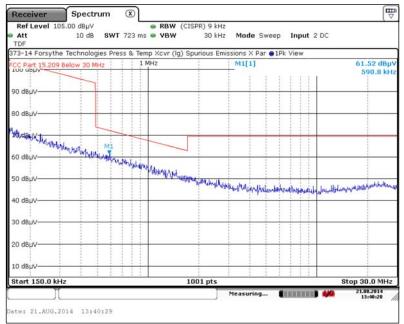
7.6.3. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results

Measurement Results – Z Orientation, Parallel Antenna

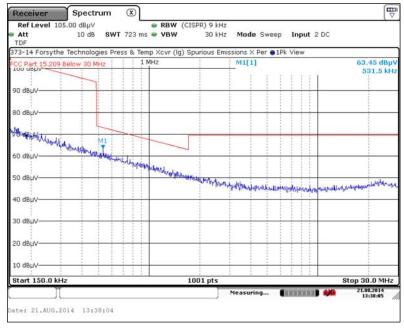
Receiver Spectre	um 🗵				("
Ref Level 125.00 dBµV		W (CISPR) 200 Hz			<u></u>
Att 30 dB	SWT 5.9 s 🖷 VE	SW 1 kHz	Mode Sweep	Input 2 DC	
373-14 Forsythe Technolog	es Press & Temp Xo	ovr (lg) Spurious Em	issions Z Par e1P	k View	
120 dBµV			M1[1]		94.95 dBµ
CC Part 15.209 Below 30 Mi	łz	- 8	1 1	Ē	33.201 kH
110 dBuV-				_	
100 dBµV				_	
MANALANN L.					
90 dBuy	who who office the dealer de			_	
1.4.0		was the for Multimerian	akt a state in	C	
	1		"D'IV BALLANSBOATIN	A 14 A 14	
80 dBµV			-na watch wodily	Hallow Markender	application and
80 dBµV				Water Martin Martin Martin	al-an-bahadwaran-an-
планилани и правити и 80 двруги —			- m m Anorth	thementation and a	abelistations and a
80 dBµV			- nor she water	theologinga-antinon-welder	abertantenanten
70 dBµV				udalay jaratisti sola solayi	abelit for the section of the
70 dBµv				unan an	afelt helenen and a
60 dBµV				uning and a second a	al-llot-values-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a
70 dBµV				unin unin unin unin unin unin unin unin	al-livineturnenten
70 авµv				under Hartinander	APAN Antonia and an
70 dBµV					
70 авµv		1001 pts			հին/սեպնարկակո 150.0 kHz 21.02.014

Measurement Results – Z Orientation, Perpendicular Antenna

ACCREDITED CERTIFICATE NUMBER: 1073.01 Issue Date: 8/29/2014


Test Number 373-14

7. Measurement Data (continued)

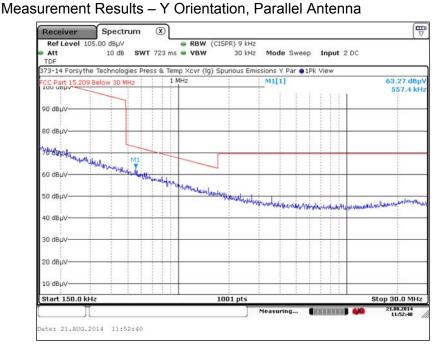

7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

7.6.4. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results

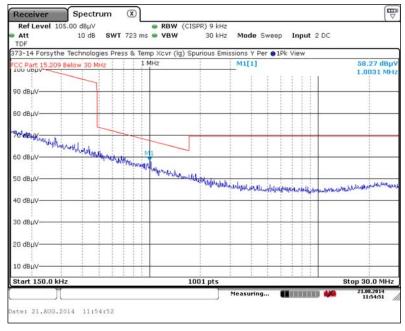
Measurement Results – X Orientation, Parallel Antenna

Measurement Results - X Orientation, Perpendicular Antenna

Page 16 of 42


ECCREDITED CERTIFICATE NUMBER: 1073.01 Issue Date: 8/29/2014

Test Number 373-14


7. Measurement Data (continued)

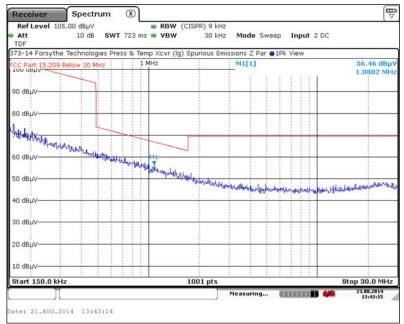
7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

7.6.5. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results

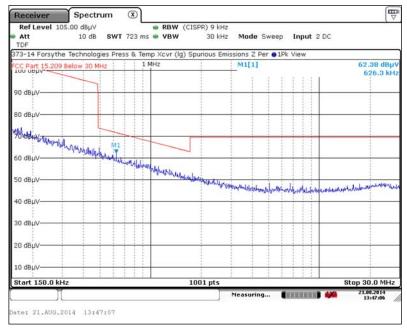
Measurement Results - Y Orientation, Perpendicular Antenna

Page 17 of 42

ACCREDITED CERTIFICATE NUMBER: 1672.01 Issue Date: 8/29/2014


Test Number 373-14

7. Measurement Data (continued)


7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

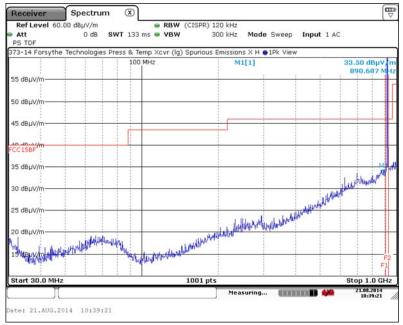
7.6.6. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results

Measurement Results – Z Orientation, Parallel Antenna

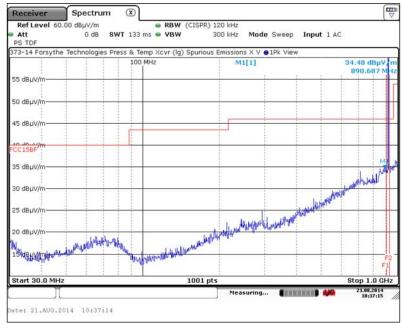
Measurement Results – Z Orientation, Perpendicular Antenna

Page 18 of 42

ACCREDITED CERTIFICATE NUMBER: 1073.01 Issue Date: 8/29/2014


Test Number 373-14

7. Measurement Data (continued)


7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

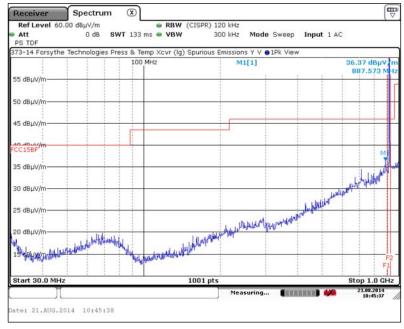
7.6.7. Spurious Radiated Emissions (30 kHz - 1 GHz) Test Results

Measurement Results – X Orientation, Horizontal Antenna

Measurement Results - X Orientation, Vertical Antenna

Page 19 of 42

7. Measurement Data (continued)


7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

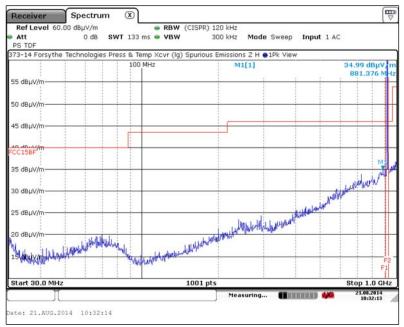
7.6.8. Spurious Radiated Emissions (30 kHz - 1 GHz) Test Results

Measurement Results – Y Orientation, Horizontal Antenna

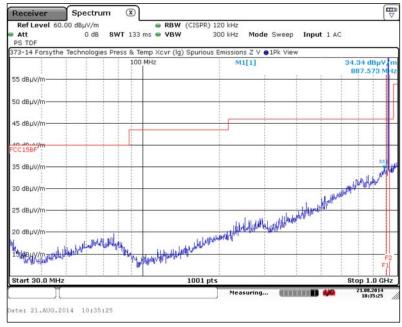
Measurement Results - Y Orientation, Vertical Antenna

Page 20 of 42

ACCREDITED CERTIFICATE NUMBER: 1073.01 Issue Date: 8/29/2014


Test Number 373-14

7. Measurement Data (continued)


7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

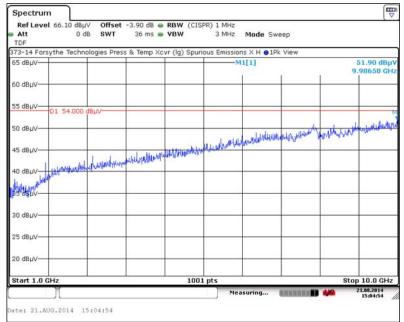
7.6.9. Spurious Radiated Emissions (30 kHz - 1 GHz) Test Results

Measurement Results – Z Orientation, Horizontal Antenna

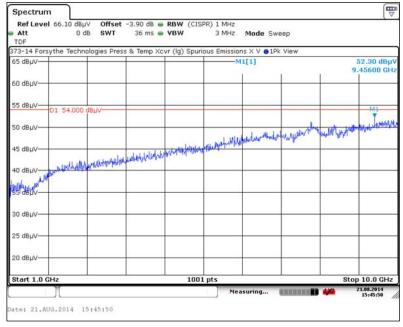
Measurement Results - Z Orientation, Vertical Antenna

Page 21 of 42

ACCREDITED CENTRICATE NUMBER: 1673.01 Issue Date: 8/29/2014


Test Number 373-14

7. Measurement Data (continued)


7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

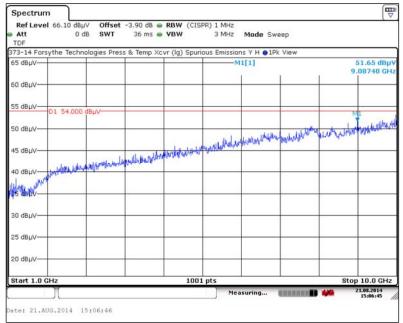
7.6.10. Spurious Radiated Emissions (1 GHz – 10 GHz) Test Results

Measurement Results – X Orientation, Horizontal Antenna

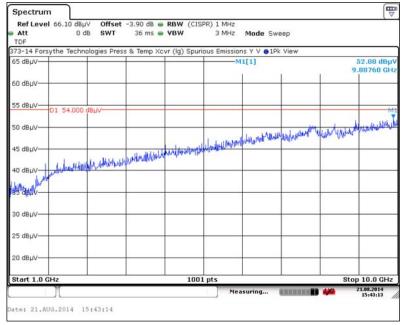
Measurement Results - X Orientation, Vertical Antenna

Page 22 of 42

ACCREDITED CERTIFICATE NUMBER: 1672.01 Issue Date: 8/29/2014


Test Number 373-14

7. Measurement Data (continued)


7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

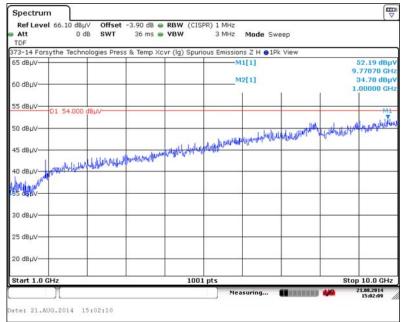
7.6.11. Spurious Radiated Emissions (1 GHz – 10 GHz) Test Results

Measurement Results - Y Orientation, Horizontal Antenna

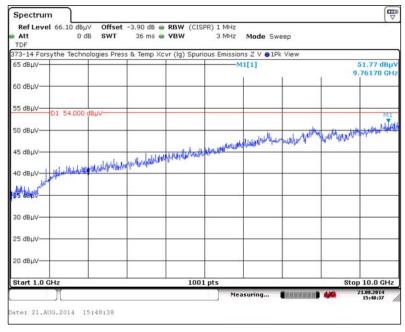
Measurement Results - Y Orientation, Vertical Antenna

Page 23 of 42

ACCREDITED CERTIFICATE NUMBER: 107.01 Issue Date: 8/29/2014


Test Number 373-14

7. Measurement Data (continued)

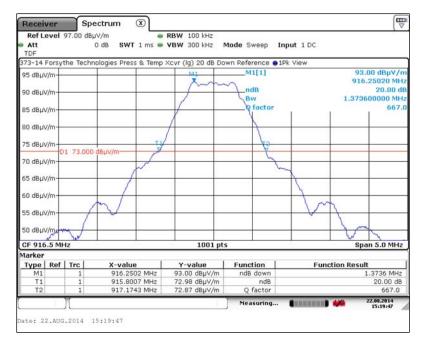

7.6. Transmitter Spurious Radiated Emissions (150 kHz to 26 GHz)

7.6.12. Spurious Radiated Emissions (1 GHz – 10 GHz) Test Results

Measurement Results – Z Orientation, Horizontal Antenna

Measurement Results - Z Orientation, Vertical Antenna

Page 24 of 42

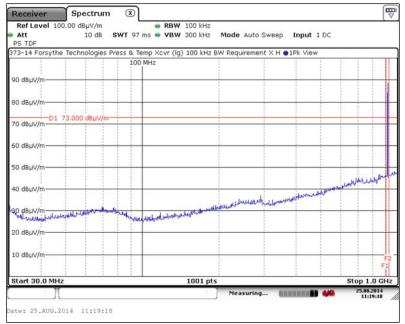

Issue Date: 8/29/2014

7. Measurement Data (continued)

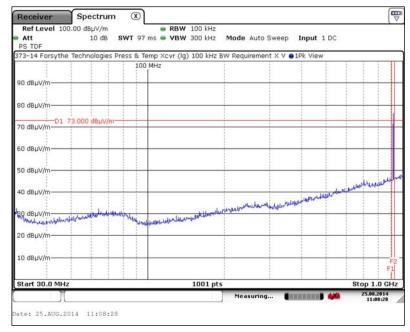
7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

- Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
- Procedure: The procedure detailed in publication 558074 D01 DTS Measurement Guidance v03r02, June 5, 2014, section 11: *Emissions in non-restricted frequency bands* was used to perform the following measurements.
- Test Note: The reference level measurement represent the worst case DUT orientation, turntable azimuth and receive antenna polarity.

Reference Level Measurement


Test Number 373-14

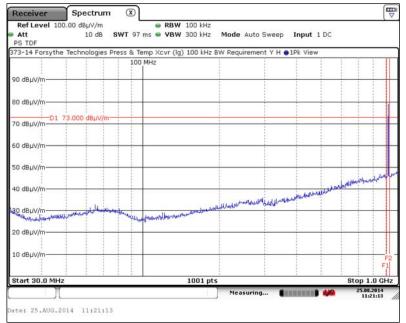
Issue Date: 8/29/2014


7. Measurement Data (continued)

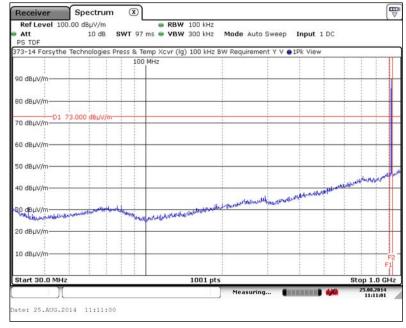
7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

7.7.1. 30 MHz to 1000 MHz - X Orientation, Horizontal

7.7.2. 30 MHz to 1000 MHz - X Orientation, Vertical


Test Number 373-14

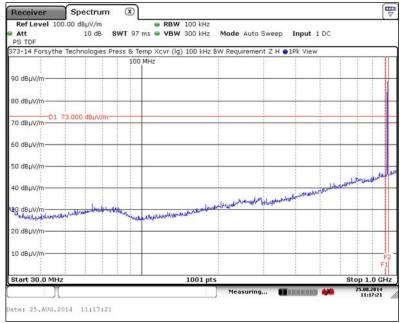
Issue Date: 8/29/2014


7. Measurement Data (continued)

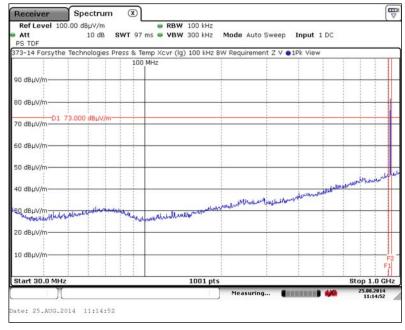
7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

7.7.3. 30 MHz to 1000 MHz - Y Orientation, Horizontal

7.7.4. 30 MHz to 1000 MHz - Y Orientation, Vertical


Test Number 373-14

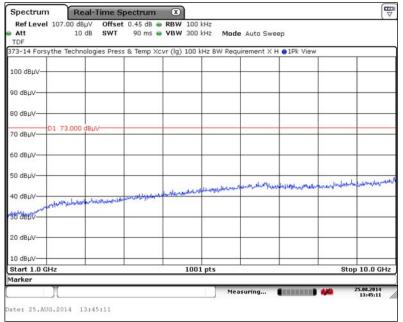
Issue Date: 8/29/2014


7. Measurement Data (continued)

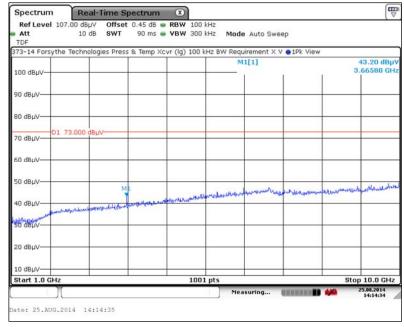
7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

7.7.5. 30 MHz to 1000 MHz - Z Orientation, Horizontal

7.7.6. 30 MHz to 1000 MHz - Z Orientation, Vertical


Test Number 373-14

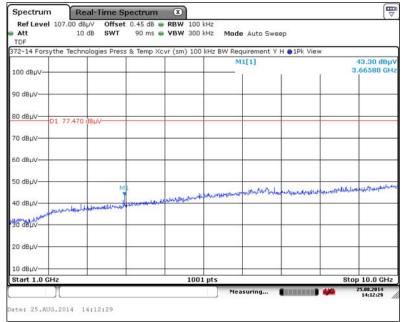
Issue Date: 8/29/2014


7. Measurement Data (continued)

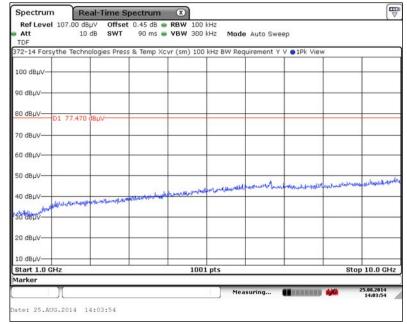
7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

7.7.7. 1 GHz to 10 GHz - X Orientation, Horizontal

7.7.5. 1 GHz to 10 GHz - X Orientation, Vertical


Test Number 373-14

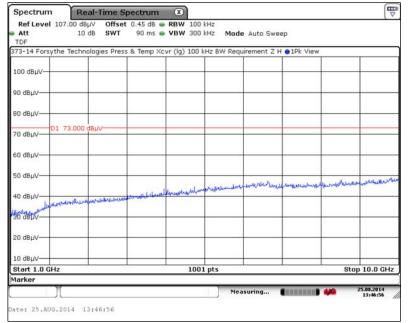
Issue Date: 8/29/2014

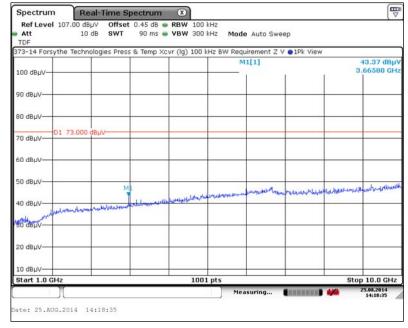

7. Measurement Data (continued)

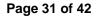
7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

7.7.9. 1 GHz to 10 GHz - Y Orientation, Horizontal

7.7.10. 1 GHz to 10 GHz - Y Orientation, Vertical




7. Measurement Data (continued)


7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

7.7.11. 1 GHz to 10 GHz - Z Orientation, Horizontal

7.7.12. 1 GHz to 10 GHz - Z Orientation, Vertical

Test Number 373-14

7. Measurement Data (continued)

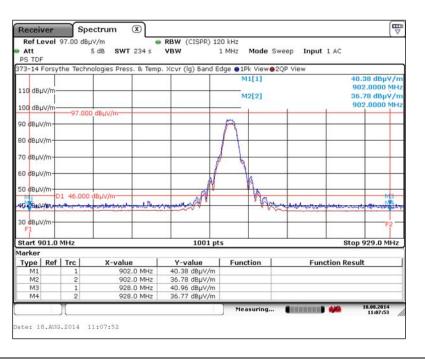
7.8. Harmonic Emissions in the Restricted Bands of Operation

Measurement Results – Harmonic Emissions

Freq. (MHz)	Measured Field Strength (dBµV/m)		Duty Cycle CF (dB) ¹	Adjusted Average Field Strn. (dBµV/m) ¹	Limit (dBµV/m)			argin µV/m)	Antenna Polarity (H/V)	Result
	Peak	Average	(UD)	(uoµv/iii)	Peak	Average	Peak	Average		
2749.5	47.45	34.13	0.00	34.13	74.00	54.00	-26.55	-19.87	Н	Compliant
3666.0	49.56	36.85	0.00	36.85	74.00	54.00	-24.44	-17.15	Н	Compliant
4582.5	51.51	38.56	0.00	38.56	74.00	54.00	-22.49	-15.44	Н	Compliant
7332.0	53.90	40.41	0.00	40.41	74.00	54.00	-20.10	-13.59	Н	Compliant
8248.5	55.13	40.85	0.00	40.85	74.00	54.00	-18.87	-13.15	V	Compliant
9165.0	56.17	42.59	0.00	42.59	74.00	54.00	-17.83	-11.41	V	Compliant

¹ Duty cycle correction factors were not used because the duty cycle is 100%.

Issue Date: 8/29/2014


7. Measurement Data (continued)

7.9. Band Edge Measurements (15.247 d))

- Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
- Procedure: ANSI C63.10:2009, section 6.9.2: Band-edge testing was referenced for this measurement.
- Test Notes: For additional out of band measurements, reference section 7.7 of this test report.

Band Edge	Field Strength (dBµV/m)		FCC Part	15.209 Limit	Ma	argin	
Frequency			(dBµV/m)		(dBµV/m)		Result
(MHz)	Peak	Quasi-Peak	Peak	Quasi-Peak	Peak	Quasi-Peak	
902	40.38	36.78	66.00	46.00	-25.62	-9.22	Compliant
928	40.96	36.77	66.00	46.00	-25.04	-9.23	Compliant

Measurement Results - Lower and Upper Band Edges

7. Measurement Data (continued)

7.10. Maximum Power Spectral Density (15.247(e))

- Requirement: For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
- Procedure: FCC OET 558074 D01, DTS Measurement Guidance v03r02, June 5, 2014, section 10.2: Method PKPSD (peak PSD) was referenced for this measurement.
- Test Note: Reference section 7.4 of this report for the method used to convert the field strength measurement to power.
- Conclusion: The DUT meets the required power spectral density.

Measurement Results – Power Spectral Density

Frequency	Radiated Peak PSD	Distance	Antenna Gain ¹		Power Spectral Density	
(MHz)	(dBµV/m)	Meters	(dBi)	(numeric)	(mW)	(dBm)
916.50	80.40	3.0	-2.00	0.631	0.05	-12.8

Frequency	Measured Frequency	Power Spectral Density	Limit	Margin	Result
(MHz)	(MHz)	(dBm)	(dBm)	(dB)	
916.50	916.4330	-12.83	8	-20.83	Compliant

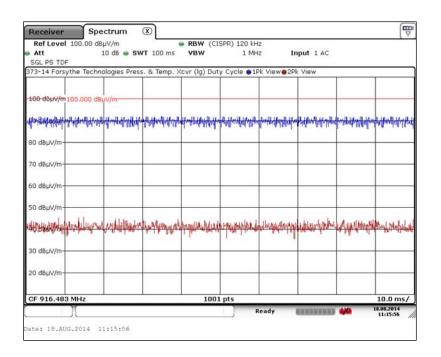
Page 34 of 42

Issue Date: 8/29/2014

7. Measurement Data (continued)

7.11. Duty Cycle Calculations (ANSI C63.10-2009, Section 7.5)

Requirement: When the average value of the pulsed emissions from a DUT must be determined, the average can be found by measuring the peak pulse amplitude and determining the duty cycle correction factor of the pulse modulation. The duty cycle correction factor δ may be expressed in dB as in the following equation:


$$\delta$$
 (dB) = 20_{logdB} (δ)

This correction factor can then be applied to the peak pulse amplitude to find the average emission. This correction is applied for all emissions including the fundamental and harmonics.

- Test Notes: 1. The DUT duty cycle under normal operating conditions was at or near 100%.
 - 2. The lower trace on the plot is the analyzer noise floor (transmitter off).

Duty Cycle for the Device as Tested

Channel Frequency (MHz)	Total Time On per 100 ms Period (ms)	Percentage of Time On per 100 ms Period (Fraction)	Duty Cycle Correction Factor (dB)	Maximum Allowed Duty Cycle Correction Factor (dB)	Applied Duty Cycle
916.50	100.000	1	0.000	-20	0.000

Test Number 373-14

7. Measurement Data (continued)

7.12. Public Exposure to Radio Frequency Energy Levels (15.247(i) (1.1307 (b)(1)) RSS-GEN 5.5, RSS 102)

- Requirement: Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. Devices are subject to the radio frequency radiation exposure requirements specified in 47CFR 1.1307(b), FCC 47 CFR 2.1091 and 47 CFR 2.1093, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment.
- Procedure: The power density is calculated from the peak field strength and device antenna gain:

$$PD = \frac{OP + AG}{(4 \times \pi \times d^2)}$$

PD Power Density OP DUT Output Power AG DUT Antenna Gain d MPE Distance mW/cm² dBm dBi cm

Conclusion: The device under test is meets radio frequency radiation exposure requirements specified in 47CFR 1.1307(b), § 2.1091 and § 2.1093.

Power Calculated from Peak Field Strength

Frequency	Peak Field Strength	Distance	Antenna Gain ¹	Measured Output Power
(MHz)	(dBµV/m)	(m)	(dBi)	(mW)
916.50	94.88	3.0	-2.0	1.46

¹ Data provided by product manufacturer.

Power Density

Freq.	MPE Distance (cm)	DUT Output Power (dBm)	DUT Antenna Gain (dBi)	Power Density		Limit (mW/cm2)	Result
				(mW/cm2)	(W/m2)	、 ,	Reguit
	(1)	(2)	(3)	(4)		(5)	
916.50	20.0	1.65	-2.0	0.00018359	0.00183591	1	Compliant

- 1. Reference CFR 2.1093(b): For purposes of this section, a portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user.
- 2. Taken from column 5 of the first table and converted to dBm.
- 3. Data supplied by the client.
- 4. Power density is calculated from field strength measurement and antenna gain.
- 5. Reference CFR 1.1310, Table 1: Limits for Maximum Permissible Exposure (MPE), Section (B): Limits for General Population/Uncontrolled Exposure.

Issue Date: 8/29/2014

8. Test Setup Photographs

8.1. Radiated Emissions - Front:

Page 37 of 42

8. Test Setup Photographs

8.2. Radiated Emissions Rear - Below 30 MHz

Page 38 of 42

8. Test Setup Photographs

8.3. Radiated Emissions Rear - 30 MHz to 1 GHz

8. Test Setup Photographs

8.4. Radiated Emissions Front - Above 1 GHz

Page 40 of 42

8. Test Setup Photographs

8.4. Radiated Emissions Rear - Above 1 GHz

Page 41 of 42

Compliance Worldwide, Inc. - 357 Main Street - Sandown, NH 03873 (603) 887 3903 Fax 887 6445 http://www.cw-inc.com

Issue Date: 8/29/2014

9. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with Federal Communications Commission (FCC), Industry Canada, and Voluntary Control Council Interference (VCCI) standards. A description of the test sites is on file with the FCC (registration number 96392), Industry Canada (file number IC 3023A-1), and VCCI (Member number 3168), Registration numbers C-3673, G-167, R-3305 & T-1809.

Compliance Worldwide is also designated as a Phase 1 CAB under APEC-MRA (US0132) for Australia/New Zealand AS/NZS CISPR 22, Chinese-Taipei (Taiwan) BSMI CNS 13438 and Korea (RRA) KN 22.

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16' x 20' x 12' ferrite tile chamber and uses one of the walls for the vertical ground plane required by EN 55022.

Both sites are designed to test products or systems 1.5 meters W x 1.5 meters L x 2.0 meters H, floor standing or table top.

Page 42 of 42