



# COMPLIANCE WORLDWIDE INC. **TEST REPORT 386-14R1**

In Accordance with the Requirements of FCC PART 15.247, SUBPART C **INDUSTRY CANADA RSS 210, ISSUE 8** 

Low Power License-Exempt Radio Communication Devices Intentional Radiators

> Issued to Forsythe Technologies Worldwide 23924 Victory Blvd. Woodland Hills, CA 91367 (818) 710-8694

> > for the

**Rat Telemetry System Transceiver Base Station** (Rodent Access Point)

FCC ID: 2AC4C-AP430001REC IC: 12302A-AP430001REC

Report Issued on September 17, 2014

Tested by

Brian F. Breault

Reviewed by

This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc.





# Table of Contents

| 1. Scope                                                        |      |
|-----------------------------------------------------------------|------|
| 2 .Product Details                                              | 3    |
| 2.1 Manufacturer                                                | 3    |
| 2.3 Serial Number                                               | 3    |
| 2.4 Description                                                 | 3    |
| 2.5 Power Source                                                | 3    |
| 2.6 Hardware Revision                                           | 3    |
| 2.7 EMC Modifications                                           | 3    |
| 3. Product Configuration                                        | 3    |
| 3.1 Operational Characteristics & Software                      | 3    |
| 3.2 EUT Hardware                                                | 3    |
| 3.3 EUT Connected Hardware                                      | 3    |
| 3.4 EUT Cables/Transducers                                      |      |
| 3.5 Support Equipment                                           |      |
| 3.6 Block Diagram                                               |      |
| 4. Measurements Parameters                                      | 4    |
| 4.1 Measurement Equipment Used to Perform Test                  | 4    |
| 4.2 Measurement & Equipment Setup                               |      |
| 4.3 Measurement Procedures                                      | 5    |
| 4.4 Duty Cycle                                                  | 5    |
| 4.4 Measurement Uncertainty                                     | 5    |
| 5. Choice of Equipment for Test Suits                           | 6    |
| 5.1 Choice of Model                                             | 6    |
| 5.2 Presentation                                                |      |
| 5.3 Choice of Operating Frequencies                             |      |
| 5.4 Modes of Operation                                          |      |
| 6. Measurement Summary                                          |      |
| 7. Measurement Data                                             |      |
| 7.1 Antenna Requirement                                         |      |
| 7.2 Minimum 6 dB Bandwidth                                      | 8    |
| 7.3 99% Bandwidth                                               |      |
| 7.4 Maximum Peak Conducted Output Power                         |      |
| 7.5 Operation with directional antenna gains greater than 6 dBi | . 11 |
| 7.6 Transmitter Spurious Radiated Emissions                     | . 12 |
| 7.7 Unwanted Emissions into Non-Restricted Frequency Bands      |      |
| 7.8 Harmonic Emissions in the Restricted Bands of Operation     | . 19 |
| 7.9 Band Edge Measurements                                      |      |
| 7.10 Peak Power Spectral Density                                |      |
| 7.11 Duty Cycle                                                 | .23  |
| 7.12 Conducted Emissions                                        | .24  |
| 7.13 Public Exposure to Radio Frequency Energy Levels           | .26  |
| 8. Test Images                                                  |      |
| 9. Test Site Description                                        |      |
|                                                                 |      |





## 1. Scope

This test report certifies that the Forsythe Technologies Worldwide Inc. Rat Telemetry System Transceiver Base Station (Rodent Access Point), as tested, meets the FCC Part 15.247, and Industry Canada RSS 210, Issue 8 requirements. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

<u>Revision R1:</u> Added conducted emissions data, test images and test equipment. Revised the Table of Contents.

## 2. Product Details

- **2.1. Manufacturer:** Forsythe Technologies Worldwide Inc.
- 2.2. Model Number: Transceiver Base Station
- 2.3. Serial Number: N/A
- 2.4. Description: Transceiver Base Station
- 2.5. Power Source: 5 volts (USB input)
- 2.6. Hardware Revision: 2.1
- **2.7. EMC Modifications:**  $33\Omega$  Resistor added in parallel with L9 to reduce output.

## 3. Product Configuration

### 3.1. Operational Characteristics & Software

### **Operating Instructions for Test**

• For measurement purposes, the device under test is configured to begin transmitting a modulated signal when it is powered on. To power on the device, 5 volts is applied to the USB input.

### 3.2. EUT Hardware

| Manufacturer                          | Model/Part # / Options   | Serial Number | Input<br>Voltage | Frq<br>(Hz) | Description/Function |
|---------------------------------------|--------------------------|---------------|------------------|-------------|----------------------|
| Forsythe<br>Technologies<br>Worldwide | Transceiver Base Station | N/A           | 5.0              | DC          |                      |

### 3.3. EUT CONNECTED Hardware

| Manufacturer Model |          | Serial Number | Description                                                    |
|--------------------|----------|---------------|----------------------------------------------------------------|
| L-com              | HG908PCR | N/A           | Antenna with integrated cable used with the device under test. |
| Toshiba            | A105     | X620896       | Laptop for providing 5 volts to the device under test          |

#### 3.4. EUT Cables/Transducers

| Manufactu | irer | Model/Part # | Len.<br>(m) | Shield<br>Y/N | Description/Function     |
|-----------|------|--------------|-------------|---------------|--------------------------|
| Hyperlin  | K    | CA-195RW     | 4 ft.       | Y             | Integrated antenna cable |
| Foxconr   |      | 10043601     | 5 ft.       | Y             | USB                      |

### Page 3 of 34







Issue Date: 9/17/2014

# 3. Product Configuration continued

# 3.5. Support Equipment

| Manufacturer | Model/Part # Options | Input<br>Voltage | Input<br>Freq | Description/Function |
|--------------|----------------------|------------------|---------------|----------------------|
| None         |                      |                  |               |                      |

# 3.6. Block Diagram

| Toshiba<br>Satellite |              | Transceiver<br>Base |                               | L-com<br>HG908PCR |
|----------------------|--------------|---------------------|-------------------------------|-------------------|
| A105                 | USB<br>Cable | Station<br>(DUT)    | $50\Omega$ Cable <sup>1</sup> | Antenna           |

<sup>1</sup> Cable is integrated into the antenna.

## 4. Measurements Parameters

## 4.1. Measurement Equipment Used to Perform Tests

| Device                                 | Manufacturer    | Model<br>No. | Serial No. | Cal Due   | Cal<br>Interval |
|----------------------------------------|-----------------|--------------|------------|-----------|-----------------|
| EMI Test Receiver, 9kHz - 7GHz         | Rohde & Schwarz | ESR7         | 101156     | 4/4/2015  | 2 yrs           |
| Spectrum Analyzer                      | Rohde & Schwarz | FSV40        | 100899     | 6/6/2015  | 2 yrs           |
| Microwave Preamp                       | Hewlett Packard | 8449B        | 3008A01323 | 6/5/2015  | 2 yrs           |
| EMI Receiver, 9 kHz to 6.5 GHz         | Hewlett Packard | 8546A        | 3650A00360 | 6/4/2016  | 2 yrs           |
| RF Filter Section, 9 kHz to 6.5 GHz    | Hewlett Packard | 85460A       | 3704A00323 | 6/4/2016  | 2 yrs           |
| Loop Antenna, Passive, 9 kHz to 30 MHz | EMCO            | 6512         | 9309-1139  | 9/28/2014 | 2 yrs           |
| Biconilog Antenna, 30 MHz to 2000 MHz  | Sunol Sciences  | JB1          | A050913    | 5/15/2015 | 2 yrs           |
| Double Ridged Antenna, 1 - 18 GHz      | ETS-Lindgren    | 3117         | 00143292   | 1/14/2015 | 2 yrs           |
| 1.8 to 9.2 GHz Bandpass Filter         | Mini-Circuits   | VHP-16       | 0341       | 2/4/2015  | 1 yr            |
| LISN 50 ohm 50 µH, 9 kHz to 30 MHz     | EMCO            | 3825/2       | 11967C     | 6/2/2015  | 1 yr            |





Issue Date: 9/17/2014

## 4. Measurements Parameters (continued)

## 4.2. Measurement & Equipment Setup

| Test Dates:                          | August 29 <sup>th</sup> to Sep 11 <sup>th</sup> , 2014                               |
|--------------------------------------|--------------------------------------------------------------------------------------|
| Test Engineer:                       | Brian Breault                                                                        |
| Normal Site Temperature (15 - 35°C): | 21.7                                                                                 |
| Relative Humidity (20 -75%RH):       | 33%                                                                                  |
| Frequency Range:                     | 30 kHz to 10 GHz                                                                     |
| Measurement Distance:                | 3 Meters                                                                             |
| EMI Receiver IF Bandwidth:           | 9 kHz – 150 kHz to 30 MHz<br>120 kHz– 30 MHz to 1 GHz<br>1 MHz – Above 1 GHz         |
| EMI Receiver Avg Bandwidth:          | 30 kHz – 150 kHz to 30 MHz<br>300 kHz– 30 MHz to 1 GHz<br>3 MHz – Above 1 GHz        |
| Detector Function:                   | Peak, QP - 150 kHz to 1 GHz<br>Peak, Avg- Above 1 GHz<br>Unless otherwise specified. |
|                                      |                                                                                      |

### 4.3. Measurement Procedures

Test measurements were made in accordance FCC Part 15.247, IC RSS-210 Annex II: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5850 MHz, and 24.0 - 24.25 GHz.

The test procedures used to perform the measurements for this report are detailed in ANSI C63.10-2009 and FCC OET 558074: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, June 5, 2014, v03r02.

The device under test is a tabletop device, therefore it was not necessary to perform the measurements with the device in three orthogonal positions in accordance with ANSI C63.10-2009, sections 5.10.1, 6.3.2b, 6.4.4.1c, 6.5.4.1c, and 6.6.4.1.

## 4.4. Duty Cycle

The device under test was configured to run continuously at a duty cycle greater than 99%. The methodology used to determine the duty cycle is detailed in section 7.11.

### 4.5. Measurement Uncertainty

The following uncertainties are expressed for an expansion/coverage factor of K=2.

| RF Frequency                     | ± 1x10 <sup>-8</sup> |
|----------------------------------|----------------------|
| Radiated Emission of Transmitter | ± 4.55 dB            |
| Radiated Emission of Receiver    | ± 4.55 dB            |
| Temperature                      | ± 0.91° C            |
| Humidity                         | ± 5%                 |





# 5. Choice of Equipment for Test Suits

### 5.1 Choice of Model

This test report is based on the test sample supplied by the manufacturer and is reported by the manufacturer to be equivalent to the production units.

### **5.2 Presentation**

This test sample was tested complete with all required ancillary equipment. Refer to Section 3 of this report for product equipment configuration.

### 5.3 Choice of Operating Frequencies

The Forsythe Technologies Worldwide Inc. Rat Telemetry System Pressure and Temperature Transceiver, as tested, utilize a single channel at 916.5 MHz.

### 5.4 Modes of Operation

The Forsythe Technologies Worldwide Inc. Rat Telemetry System Transceiver Base Station was configured for a single mode of operation only. This test mode configured the transmitter to operate at a duty cycle greater than 99%.





Issue Date: 9/17/2014

# 6. Measurement Summary

| Test Requirement                                            | FCC<br>Rule<br>Reference    | IC Rule<br>Reference      | Test<br>Report<br>Section | Result    |
|-------------------------------------------------------------|-----------------------------|---------------------------|---------------------------|-----------|
| Antenna Requirement                                         | 15.203                      | RSS-GEN<br>7.1.2          | 7.1                       | Compliant |
| Minimum 6 dB Bandwidth                                      | 15.247 (a) (2)              | RSS-210<br>A8.2           | 7.2                       | Compliant |
| 99% Bandwidth                                               | N/A                         | RSS-GEN<br>4.6.1          | 7.3                       | Compliant |
| Maximum Peak Conducted Output Power                         | 15.247 (b) (1)              | RSS-210<br>A8.4 (4)       | 7.4                       | Compliant |
| Operation with directional antenna gains greater than 6 dBi | 15.247 (b) (4)              | RSS-GEN<br>7.1.2          | 7.5                       | Compliant |
| Spurious Radiated Emissions                                 | 15.247 (d)                  | RSS-GEN<br>4.9            | 7.6                       | Compliant |
| Unwanted Emissions into Non-<br>Restricted Bands            | 15.247 (d)                  | RSS-210<br>A8.5           | 7.7                       | Compliant |
| Harmonic Emissions in the<br>Restricted Bands of Operation  | 15.247 (d)                  | RSS-210<br>A8.9           | 7.8                       | Compliant |
| Lower and Upper Band Edge                                   | 15.247 (d)                  | RSS-210<br>A8.5           | 7.9                       | Compliant |
| Maximum Power Spectral Density                              | 15.247(e)                   |                           | 7.10                      | Compliant |
| Duty Cycle                                                  | ANSI C63.10,<br>§ 5.10.5    |                           | 7.11                      | Noted     |
| Conducted Emissions                                         | 15.207                      | RSS-GEN                   | 7.12                      | Compliant |
| Public Exposure to Radio<br>Frequency Energy Levels         | 15.247(i)<br>1.1307 (b) (1) | RSS-GEN<br>5.5<br>RSS-102 | 7.13                      | Compliant |





Issue Date: 9/17/2014

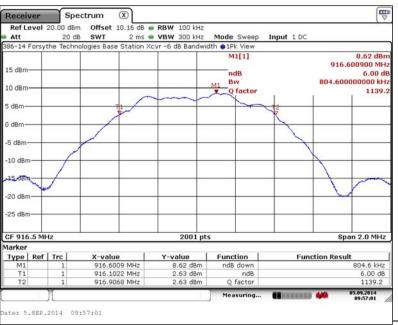
# Test Number 386-14R1

## 7. Measurement Data

## 7.1. Antenna Requirement (15.203, RSS GEN 7.1.2)

- Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.
- Conclusion: The transmitter module utilizes a unique reverse SMA connector. The antenna referenced in section 3.3 of this document is supplied with the DUT.

### 7.2. Minimum 6 dB Bandwidth


Requirement: (15.247 (a) (2), RSS 210 A8.2(a))

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

- Procedure: This measurement was performed in accordance with FCC OET 558074 D01 DTS Measurement Guidance, v03r02, dated June 5, 2014, section 8.0: DTS bandwidth.
- Conclusion: The device under test meets the minimum 500 kHz 6 dB bandwidth requirement.

#### Measurement Results - Minimum 6 dB Bandwidth

| Frequency<br>(MHz) | -6 dB<br>Bandwidth<br>(kHz) | Minimum<br>-6 dB<br>Bandwidth (kHz) | Result    |
|--------------------|-----------------------------|-------------------------------------|-----------|
| 916.5              | 804.60                      | > 500                               | Compliant |



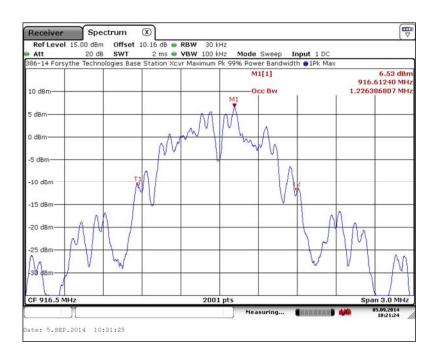
Page 8 of 34



Test Number 386-14R1

Issue Date: 9/17/2014

# 7. Measurement Data (continued)


## 7.3. 99% Bandwidth (RSS 210)

Requirement: When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth.

- Procedure: This test was performed utilizing the automated 99% bandwidth function of the spectrum analyzer.
- Conclusion: Compliant, for informational purposes only.

Measurement Results - 99% Bandwidth

| Channel<br>Frequency<br>(MHz) | 99% Power<br>Bandwidth<br>(MHz) |
|-------------------------------|---------------------------------|
| 916.5                         | 1.22638                         |

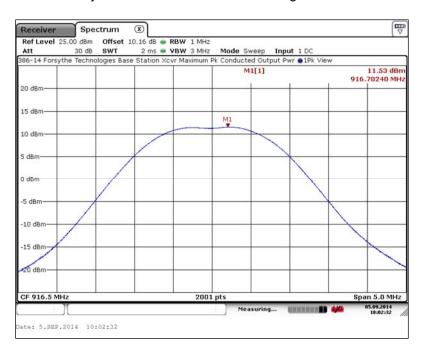






# 7. Measurement Data (continued)

### 7.4. Maximum Peak Conducted Output Power


Requirement: (15.247 (b) (3))

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

- Procedure: This measurement was performed in accordance with FCC OET 558074 D01 DTS Measurement Guidance, v03r02, dated June 5, 2014, section 9.1.1: RBW ≥ DTS bandwidth.
- Test Note: Reference FCC Part 15.247, section (b)(4) for transmitters used with antennas that have directional gains > 6 dBi.
- Conclusion: The device under test meets the required maximum peak conducted output power level of 1 Watt.

Measurement Results - Maximum Peak Conducted Output Power

| Frequency | DUT Channel<br>Power Output<br>Setting | Peak Conducted Output<br>Power<br>(Watts) (dBm) |  | Output<br>Power<br>Limit <sup>1</sup> | Margin | Result    |
|-----------|----------------------------------------|-------------------------------------------------|--|---------------------------------------|--------|-----------|
| (MHz)     | (dBm)                                  |                                                 |  | (dBm)                                 | (dBm)  |           |
| 916.50    | Default                                | 0.01422 11.53                                   |  | 28                                    | -16.47 | Compliant |



<sup>1</sup> Limit adjusted -2 db for use with an 8 dBi gain antenna.





Issue Date: 9/17/2014

## 7. Measurement Data (continued)

### 7.5. Operation with directional antenna gains greater than 6 dBi (15.247 (b)(4))

Requirement: If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of FCC Part 15.247, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400 – 2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Conclusion: The antenna to be used with the DUT has a gain of 8.0 dBi. The peak power and peak power spectral density measurements met the requirements with the limits adjusted by -2 dB as required by this section of Part 15.247.

Page 11 of 34





Issue Date: 9/17/2014

# Test Number 386-14R1

# 7. Measurement Data (continued)

# 7.6. Transmitter Spurious Radiated Emissions (30 kHz to 10 GHz)

Requirement: (15.209) The Emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency Range<br>(MHz) | Distance<br>(Meters) | Limit<br>(dBµV/m) <sup>1</sup> |
|--------------------------|----------------------|--------------------------------|
| 0.009 to 0.490           | 3                    | 128.5 to 93.8                  |
| 0.490 to 1.705           | 3                    | 73.8 to 63.0                   |
| 1.705 to 30              | 3                    | 69.5                           |
| 30 to 88                 | 3                    | 40.0                           |
| 88 to 216                | 3                    | 43.5                           |
| 216 to 960               | 3                    | 46.0                           |
| >960                     | 3                    | 54.0                           |

<sup>1</sup>Measurements in the 9 to 90 kHz, 110 to 490 kHz and above 1000 MHz ranges employ an average detector. Otherwise a quasi-peak detector is used.

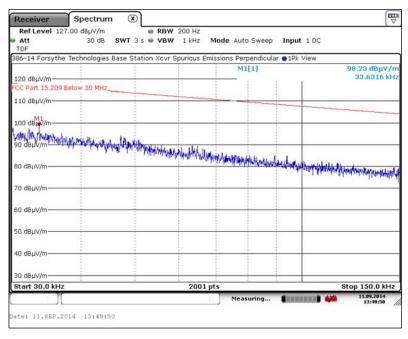
Procedure: This test was performed in accordance with the procedure detailed in ANSI C63.10:2009, section 6.3: Radiated emissions testing—general requirements and FCC 47 CFR Part 15.209: Radiated Emission Limits; General Requirements.

Test measurements were made in accordance with ANSI C63.4-2009, Standard Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronics Equipment in the Range of 9 kHz to 40 GHz.

- Test Note: The measurements were performed with the device in three orthogonal positions in accordance with ANSI C63.10-2009, sections 5.10.1, 6.3.2b, 6.4.4.1c, 6.5.4.1c, and 6.6.4.1c. Reference section 4.3 of this report for additional information.
- Conclusion: The Emissions from the DUT did not exceed the field strength levels specified in the above table.






# 7. Measurement Data (continued)

# 7.6. Transmitter Spurious Radiated Emissions (30 kHz to 10 GHz)

7.6.1. Spurious Radiated Emissions (30 kHz – 150 kHz) Test Results Measurement Results – Parallel Antenna

| Receiver                                                      | Spectrum        | n 🗵               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   | <b>T</b>                                                                                                        |
|---------------------------------------------------------------|-----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|
| Ref Level 12<br>Att<br>TDF                                    |                 |                   | RBW 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Auto Sweep                      | Input 1 D         | c                                                                                                               |
| 386-14 Forsythe                                               | e Technologies  | Base Station      | n Xovr Spurio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | us Emission   | s Parallel 🔵 1 P                | k View            |                                                                                                                 |
|                                                               |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | M1[1]                           |                   | 98.97 dBµV/r<br>32.7239 kH                                                                                      |
| 120 dBµV/m                                                    | Below 30 MHz    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -                               | É É               | 32.7239 KH                                                                                                      |
| 110 dBµV/m                                                    | Delott So think |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   |                                                                                                                 |
| 110 0BpV/m-                                                   |                 |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                 |                   |                                                                                                                 |
| 100 d uV/m-                                                   |                 | -                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -                               | 8                 |                                                                                                                 |
| Man hardly                                                    |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   |                                                                                                                 |
| 90 dBuV/m                                                     | Mary hard and   | houting the later |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 | -                 |                                                                                                                 |
|                                                               |                 | deres det         | a half the start of the start o | Monochillands | the state of the                |                   | edinaastigteisensterpeterdaasteer                                                                               |
| 80 dBµV/m                                                     |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | a substanting the second second | With the state of | Manufatting and Line                                                                                            |
|                                                               |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   |                                                                                                                 |
|                                                               |                 | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   | to an out the distant                                                                                           |
| 70 dBµV/m                                                     |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   | An and a star of the second                                                                                     |
| 70 dBµV/m                                                     |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   | a an air an                                                                 |
| 70 dBµV/m<br>60 dBµV/m                                        |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   | لم هول م الم الم                                                                                                |
| 70 dBµV/m<br>60 dBµV/m                                        |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   | <b>لىم م</b> ۇلە بى ايىرىدىر                                                                                    |
| 70 dBµV/m                                                     |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   | لم من الم الم الم                                                                                               |
| 70 dBµV/m<br>60 dBµV/m                                        |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   | n na standarda                                                                                                  |
| 70 dBµV/m<br>60 dBµV/m<br>50 dBµV/m                           |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   | n na standarden de la serie |
| 70 dBµV/m<br>60 dBµV/m<br>50 dBµV/m                           |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                 |                   | 1                                                                                                               |
| 70 dBµV/m<br>60 dBµV/m<br>50 dBµV/m<br>40 dBµV/m              |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2001 pts      |                                 |                   | Stop 150.0 kHz                                                                                                  |
| 70 dBµV/m<br>60 dBµV/m<br>50 dBµV/m<br>40 dBµV/m<br>30 dBµV/m |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2001 pts      | Measuring                       |                   | Stop 150.0 kHz                                                                                                  |

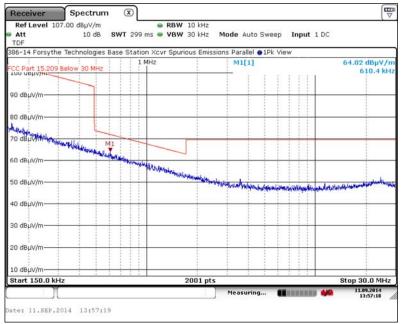
## Measurement Results – Perpendicular Antenna



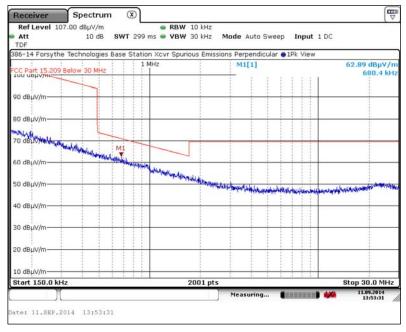
Page 13 of 34






Issue Date: 9/17/2014

# 7. Measurement Data (continued)


# 7.6. Transmitter Spurious Radiated Emissions (30 kHz to 10 GHz)

7.6.2. Spurious Radiated Emissions (150 kHz – 30 MHz) Test Results

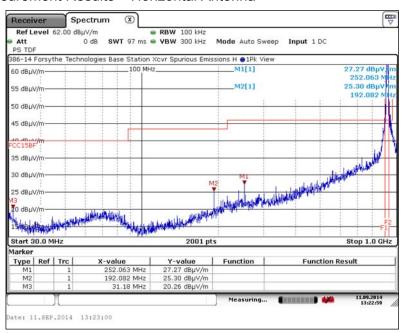
### Measurement Results – Parallel Antenna



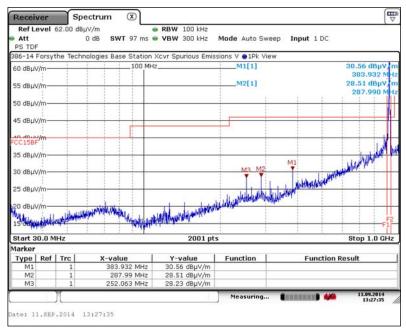
## Measurement Results - Perpendicular Antenna



Page 14 of 34







# 7. Measurement Data (continued)

# 7.6. Transmitter Spurious Radiated Emissions (30 kHz to 10 GHz)

7.6.3. Spurious Radiated Emissions (30 MHz – 1 GHz) Test Results Measurement Results – Horizontal Antenna

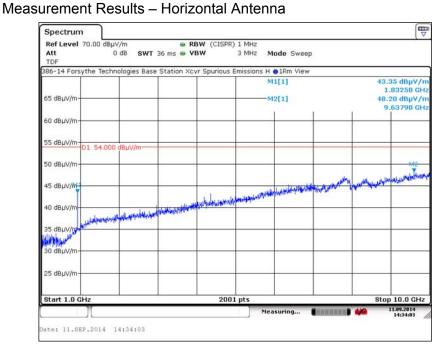


## Measurement Results – Vertical Antenna

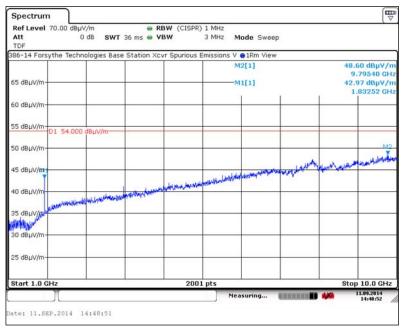


#### Page 15 of 34






Issue Date: 9/17/2014


# 7. Measurement Data (continued)

# 7.6. Transmitter Spurious Radiated Emissions (30 kHz to 10 GHz)

7.6.4. Spurious Radiated Emissions (1 GHz – 10 GHz) Test Results



# Measurement Results – Vertical Antenna



Page 16 of 34





Issue Date: 9/17/2014

# 7. Measurement Data (continued)

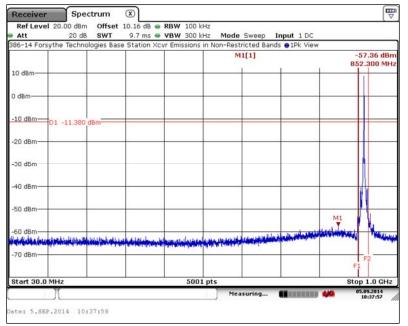
## 7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

- Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
- Procedure: The procedure detailed in publication 558074 D01 DTS Measurement Guidance v03r02, June 5, 2014, section 11: *Emissions in non-restricted frequency bands* was used to perform the following measurements.

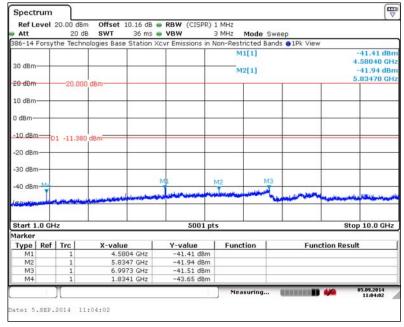
### Reference Level Measurement






Test Number 386-14R1

Issue Date: 9/17/2014


# 7. Measurement Data (continued)

## 7.7. Emissions in Non-Restricted Frequency Bands (15.247(d))

### 7.7.1. 30 MHz to 1000 MHz



### 7.7.2. 1 GHz to 10GHz



Page 18 of 34





Issue Date: 9/17/2014

# 7. Measurement Data (continued)

# 7.8. Harmonic Emissions in the Restricted Bands of Operation

Measurement Results – Harmonic Emissions

| Freq.<br>(MHz) | Stre  | red Field<br>ength<br>µV/m) | Duty<br>Cycle<br>CF | Adjusted<br>Average<br>Field Strn. | Limit<br>(dBµV/m)<br>Peak Average |       | Margin<br>(dBµV/m) |         | Antenna<br>Polarity<br>(H/V) | Result    |
|----------------|-------|-----------------------------|---------------------|------------------------------------|-----------------------------------|-------|--------------------|---------|------------------------------|-----------|
|                | Peak  | Average                     | (dB) <sup>1</sup>   | (dBµV/m) <sup>1</sup>              |                                   |       | Peak               | Average |                              |           |
| 2749.5         | 52.99 | 39.45                       | 0.00                | 39.45                              | 74.00                             | 54.00 | -21.01             | -14.55  | Н                            | Compliant |
| 3666.0         | 48.37 | 45.58                       | 0.00                | 45.58                              | 74.00                             | 54.00 | -25.63             | -8.42   | Н                            | Compliant |
| 4582.5         | 50.44 | 36.74                       | 0.00                | 36.74                              | 74.00                             | 54.00 | -23.56             | -17.26  | Н                            | Compliant |
| 7332.0         | 54.34 | 39.91                       | 0.00                | 39.91                              | 74.00                             | 54.00 | -19.66             | -14.09  | Н                            | Compliant |
| 8248.5         | 55.95 | 40.75                       | 0.00                | 40.75                              | 74.00                             | 54.00 | -18.05             | -13.25  | Н                            | Compliant |
| 9165.0         | 55.98 | 42.09                       | 0.00                | 42.09                              | 74.00                             | 54.00 | -18.02             | -11.91  | Н                            | Compliant |

<sup>1</sup> Duty cycle correction factors were not used because the duty cycle is 100%.





# 7. Measurement Data (continued)

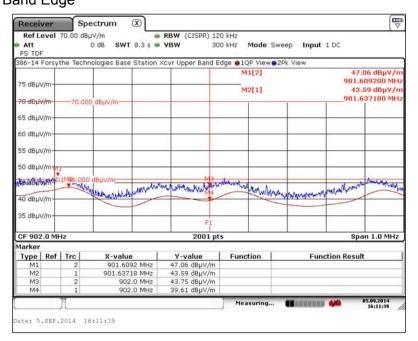
## 7.9. Band Edge Measurements (15.247 d))

- Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
- Procedure: ANSI C63.10:2009, section 6.9.2: Band-edge testing was referenced for this measurement.
- Test Notes: For additional out of band measurements, reference section 7.7 of this test report.

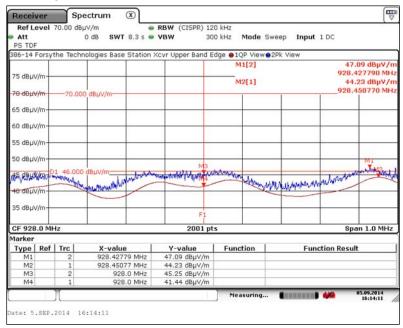
| Band Edge<br>Frequency | Field Strength<br>(dBµV/m) |            |       | 15.209 Limit<br>µV/m) | Ma<br>(dB | Result     |           |
|------------------------|----------------------------|------------|-------|-----------------------|-----------|------------|-----------|
| (MHz)                  | Peak                       | Quasi-Peak | Peak  | Quasi-Peak            | Peak      | Quasi-Peak |           |
| 902                    | 43.75                      | 39.61      | 66.00 | 46.00                 | -22.25    | -6.39      | Compliant |
| 928                    | 45.25                      | 41.44      | 66.00 | 46.00                 | -20.75    | -4.56      | Compliant |

### Measurement Results - Lower and Upper Band Edges

Page 20 of 34







Issue Date: 9/17/2014

# 7. Measurement Data (continued)

#### 7.9. Band Edge Measurements (15.247 d)) Lower Band Edge



## Upper Band Edge



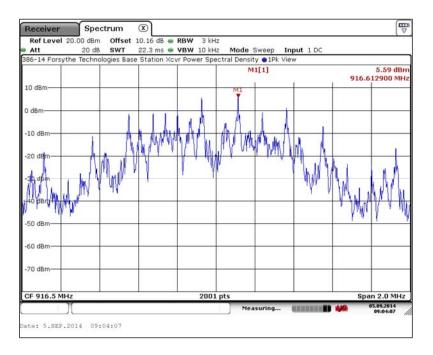




Issue Date: 9/17/2014

## Test Number 386-14R1

# 7. Measurement Data (continued)


## 7.10. Peak Power Spectral Density (15.247(e))

- Requirement: For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
- Procedure: This measurement was performed in accordance with FCC OET 558074 D01 DTS Measurement Guidance, v03r02, dated June 5, 2014, section 10.2: Method PKPSD (peak PSD).
- Test Note: Reference FCC Part 15.247, section (b)(4) for transmitters used with antennas that have directional gains > 6 dBi.
- Conclusion: The DUT meets the required power spectral density.

Measurement Results - Power Spectral Density

| Chan<br>Freq | Measured<br>Frequency | Power<br>Spectral<br>Density | Limit <sup>1</sup> | Margin | Result    |
|--------------|-----------------------|------------------------------|--------------------|--------|-----------|
| (MHz)        | (MHz)                 | (dBm)                        | (dBm)              | (dB)   |           |
| 916.50       | 916.6129              | 5.59                         | 6                  | -0.41  | Compliant |

<sup>1</sup> Limit adjusted -2 db for use with an 8 dBi gain antenna.







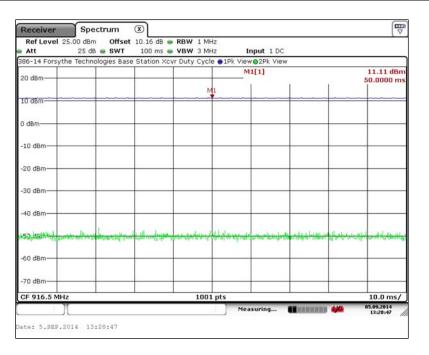
Issue Date: 9/17/2014

# Test Number 386-14R1

# 7. Measurement Data (continued)

## 7.11. Duty Cycle Calculations (ANSI C63.10-2009, Section 7.5)

Requirement: When the average value of the pulsed emissions from a DUT must be determined, the average can be found by measuring the peak pulse amplitude and determining the duty cycle correction factor of the pulse modulation. The duty cycle correction factor  $\delta$  may be expressed in dB as in the following equation:


$$\delta$$
 (dB) = 20<sub>logdB</sub> ( $\delta$ )

This correction factor can then be applied to the peak pulse amplitude to find the average emission. This correction is applied for all emissions including the fundamental and harmonics.

- Test Notes: 1. The DUT duty cycle under normal operating conditions was at or near 100%.
  - 2. The lower trace on the plot is the analyzer noise floor (transmitter off).

Duty Cycle for the Device as Tested

| Channel<br>Frequency<br>(MHz) | Total Time<br>On per 100<br>ms Period<br>(ms) | Percentage<br>of Time On<br>per 100 ms<br>Period<br>(Fraction) | Duty Cycle<br>Correction<br>Factor<br>(dB) | Maximum<br>Allowed<br>Duty Cycle<br>Correction<br>Factor (dB) | Applied<br>Duty Cycle |
|-------------------------------|-----------------------------------------------|----------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|-----------------------|
| 916.50                        | 100.000                                       | 100                                                            | 0.000                                      | -20                                                           | 0.000                 |

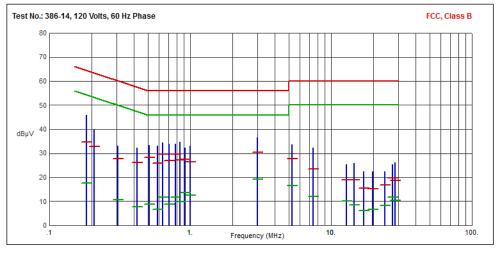






Issue Date: 9/17/2014

## 7. Measurement Data (continued)


### 7.12. Conducted Emissions

### Regulatory Limit: FCC Part 15.315, 15.207, IC RSS-213 6.3, RSS-GEN

| Frequency Range | Limits (dBµV) |           |  |  |  |
|-----------------|---------------|-----------|--|--|--|
| (MHz)           | Quasi-Peak    | Average   |  |  |  |
| 0.15 to 0.50    | 66 to 56*     | 56 to 46* |  |  |  |
| 0.50 to 5.0     | 56            | 46        |  |  |  |
| 5.0 to 30.0     | 60            | 50        |  |  |  |

\* Decreases with the logarithm of the frequency.

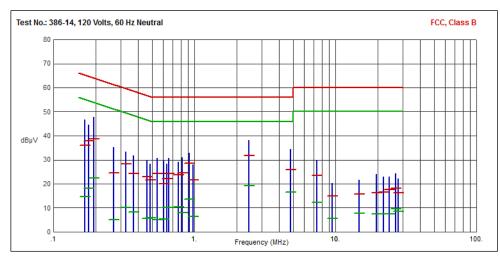
## 7.12.1. 120 Volts, 60 Hz, Phase



| Frequency<br>(MHz) | Pk Amp<br>(dBµV) | QP<br>Amp<br>(dBµV) | QP<br>Limit<br>(dBµV) | QP<br>Margin<br>(dB) | Avg<br>Amp<br>(dBµV) | Avg<br>Limit<br>(dBµV) | Avg<br>Margin<br>(dB) | Comments |
|--------------------|------------------|---------------------|-----------------------|----------------------|----------------------|------------------------|-----------------------|----------|
| .1834              | 45.78            | 34.78               | 64.33                 | -29.55               | 17.72                | 54.33                  | -36.61                |          |
| .2081              | 39.79            | 32.78               | 63.28                 | -30.50               | -1.29                | 53.28                  | -54.57                |          |
| .3080              | 33.10            | 27.61               | 60.02                 | -32.41               | 10.77                | 50.02                  | -39.25                |          |
| .4178              | 32.39            | 26.20               | 57.49                 | -31.29               | 7.77                 | 47.49                  | -39.72                |          |
| .5125              | 33.45            | 28.27               | 56.00                 | -27.73               | 8.86                 | 46.00                  | -37.14                |          |
| .5873              | 32.94            | 25.90               | 56.00                 | -30.10               | 6.55                 | 46.00                  | -39.45                |          |
| .6355              | 34.43            | 29.71               | 56.00                 | -26.29               | 11.80                | 46.00                  | -34.20                |          |
| .7080              | 33.95            | 26.93               | 56.00                 | -29.07               | 8.92                 | 46.00                  | -37.08                |          |
| .7889              | 33.78            | 29.64               | 56.00                 | -26.36               | 11.67                | 46.00                  | -34.33                |          |
| .8457              | 34.54            | 27.32               | 56.00                 | -28.68               | 9.95                 | 46.00                  | -36.05                |          |
| .9198              | 32.29            | 27.42               | 56.00                 | -28.58               | 13.73                | 46.00                  | -32.27                |          |
| .9972              | 32.96            | 26.29               | 56.00                 | -29.71               | 12.42                | 46.00                  | -33.58                |          |
| 2.9864             | 36.55            | 30.38               | 56.00                 | -25.62               | 19.30                | 46.00                  | -26.70                |          |
| 5.2540             | 33.60            | 27.64               | 60.00                 | -32.36               | 16.53                | 50.00                  | -33.47                |          |
| 7.4984             | 32.17            | 23.40               | 60.00                 | -36.60               | 11.91                | 50.00                  | -38.09                |          |
| 12.8568            | 25.33            | 18.91               | 60.00                 | -41.09               | 10.12                | 50.00                  | -39.88                |          |
| 14.6459            | 25.86            | 18.88               | 60.00                 | -41.12               | 8.64                 | 50.00                  | -41.36                |          |
| 17.0542            | 22.36            | 15.48               | 60.00                 | -44.52               | 6.03                 | 50.00                  | -43.97                |          |
| 19.6435            | 22.27            | 15.20               | 60.00                 | -44.80               | 6.61                 | 50.00                  | -43.39                |          |
| 24.1456            | 22.30            | 16.68               | 60.00                 | -43.32               | 8.30                 | 50.00                  | -41.70                |          |
| 27.4317            | 25.24            | 19.70               | 60.00                 | -40.30               | 11.63                | 50.00                  | -38.37                |          |
| 28.4113            | 26.01            | 18.70               | 60.00                 | -41.30               | 10.28                | 50.00                  | -39.72                |          |

Page 24 of 34






## Issue Date: 9/17/2014

# 7. Measurement Data (continued)

# 7.12. Conducted Emissions (continued)

7.12.2. 120 Volts, 60 Hz, Neutral



| Frequency<br>(MHz) | Pk Amp<br>(dBµV) | QP<br>Amp<br>(dBµV) | QP<br>Limit<br>(dBµV) | QP<br>Margin<br>(dB) | Avg<br>Amp<br>(dBµV) | Avg<br>Limit<br>(dBµV) | Avg<br>Margin<br>(dB) | Comments |
|--------------------|------------------|---------------------|-----------------------|----------------------|----------------------|------------------------|-----------------------|----------|
| .1675              | 46.56            | 35.93               | 65.08                 | -29.15               | 14.78                | 55.08                  | -40.30                |          |
| .1771              | 44.58            | 37.89               | 64.62                 | -26.73               | 18.26                | 54.62                  | -36.36                |          |
| .1931              | 47.80            | 38.68               | 63.90                 | -25.22               | 22.28                | 53.90                  | -31.62                |          |
| .2684              | 35.12            | 24.49               | 61.17                 | -36.68               | 5.10                 | 51.17                  | -46.07                |          |
| .3278              | 33.22            | 28.14               | 59.51                 | -31.37               | 10.24                | 49.51                  | -39.27                |          |
| .3713              | 31.73            | 24.31               | 58.47                 | -34.16               | 8.33                 | 48.47                  | -40.14                |          |
| .4844              | 28.15            | 21.63               | 56.26                 | -34.63               | 5.92                 | 46.26                  | -40.34                |          |
| .5440              | 30.74            | 24.15               | 56.00                 | -31.85               | 5.05                 | 46.00                  | -40.95                |          |
| .6055              | 29.59            | 19.88               | 56.00                 | -36.12               | 5.27                 | 46.00                  | -40.73                |          |
| .6402              | 28.21            | 22.04               | 56.00                 | -33.96               | 10.09                | 46.00                  | -35.91                |          |
| .6565              | 30.63            | 24.22               | 56.00                 | -31.78               | 10.24                | 46.00                  | -35.76                |          |
| .7715              | 29.19            | 23.83               | 56.00                 | -32.17               | 10.49                | 46.00                  | -35.51                |          |
| .8200              | 30.81            | 24.64               | 56.00                 | -31.36               | 8.01                 | 46.00                  | -37.99                |          |
| .9152              | 32.71            | 28.46               | 56.00                 | -27.54               | 13.57                | 46.00                  | -32.43                |          |
| .9750              | 28.06            | 21.69               | 56.00                 | -34.31               | 6.33                 | 46.00                  | -39.67                |          |
| 2.4261             | 38.22            | 31.61               | 56.00                 | -24.39               | 19.08                | 46.00                  | -26.92                |          |
| 4.8314             | 34.45            | 25.91               | 56.00                 | -30.09               | 16.64                | 46.00                  | -29.36                |          |
| 7.3921             | 29.77            | 23.51               | 60.00                 | -36.49               | 12.14                | 50.00                  | -37.86                |          |
| 9.4607             | 20.27            | 14.87               | 60.00                 | -45.13               | 5.67                 | 50.00                  | -44.33                |          |
| 14.6851            | 21.66            | 15.64               | 60.00                 | -44.36               | 7.74                 | 50.00                  | -42.26                |          |
| 19.6017            | 23.91            | 16.22               | 60.00                 | -43.78               | 7.49                 | 50.00                  | -42.51                |          |
| 21.8925            | 22.92            | 16.53               | 60.00                 | -43.47               | 7.53                 | 50.00                  | -42.47                |          |
| 24.0805            | 22.99            | 17.55               | 60.00                 | -42.45               | 7.48                 | 50.00                  | -42.52                |          |
| 26.8666            | 24.16            | 18.07               | 60.00                 | -41.93               | 9.48                 | 50.00                  | -40.52                |          |
| 27.7658            | 22.05            | 16.20               | 60.00                 | -43.80               | 8.41                 | 50.00                  | -41.59                |          |





## 7. Measurement Data (continued)

## 7.13. Public Exposure to Radio Frequency Energy Levels (15.247(i) (1.1307 (b)(1)) RSS-GEN 5.5, RSS 102)

- Requirement: Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. Devices are subject to the radio frequency radiation exposure requirements specified in 47CFR 1.1307(b), FCC 47 CFR 2.1091 and 47 CFR 2.1093, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment.
- Procedure: The power density is calculated from the peak field strength and device antenna gain:

$$PD = \frac{OP + AG}{(4 \times \pi \times d^2)}$$

- PD Power Density OP DUT Output Power AG DUT Antenna Gain d MPE Distance
- Conclusion: The device under test is meets radio frequency radiation exposure requirements specified in 47CFR 1.1307(b), § 2.1091 and § 2.1093.

**Power Density** 

| Freq.  | MPE<br>Distance      | MPE Output Au<br>Distance Power |       | utput Antenna Power Density |        |     | Result    |
|--------|----------------------|---------------------------------|-------|-----------------------------|--------|-----|-----------|
| 1104.  | eq. (cm) (dBm) (dBi) |                                 | (dBi) | (mW/cm2)                    | (W/m2) | · · | Result    |
|        | (1)                  | (2)                             | (3)   | (4                          | (4)    |     |           |
| 916.50 | 20.0                 | 11.53                           | 8.0   | 0.01785378 0.17853779       |        | 1   | Compliant |

mW/cm<sup>2</sup>

dBm

dBi

cm

- 1. Reference CFR 2.1093(b): For purposes of this section, a portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user.
- 2. Taken from column 2 of the table in section 7.4.
- 3. Data supplied by the client.
- 4. Power density is calculated using the above formula:.
- 5. Reference CFR 1.1310, Table 1: Limits for Maximum Permissible Exposure (MPE), Section (B): Limits for General Population/Uncontrolled Exposure.





# 8. Test Setup Photographs

8.1. Radiated Emissions - Front:



Page 27 of 34





# 8. Test Setup Photographs

8.2. Radiated Emissions Rear - Below 30 MHz



Page 28 of 34

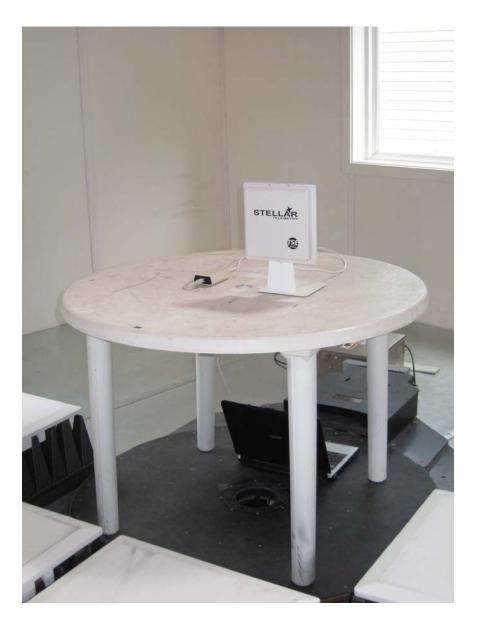




# 8. Test Setup Photographs

8.3. Radiated Emissions Rear – 30 MHz to 1 GHz




Page 29 of 34





# 8. Test Setup Photographs

8.4. Radiated Emissions Front - Above 1 GHz





ACCREDITED CERTIFICATE NUMBER: 1073.01 Issue Date: 9/17/2014

# Test Number 386-14R1

# 8. Test Setup Photographs

8.5. Radiated Emissions Rear - Above 1 GHz



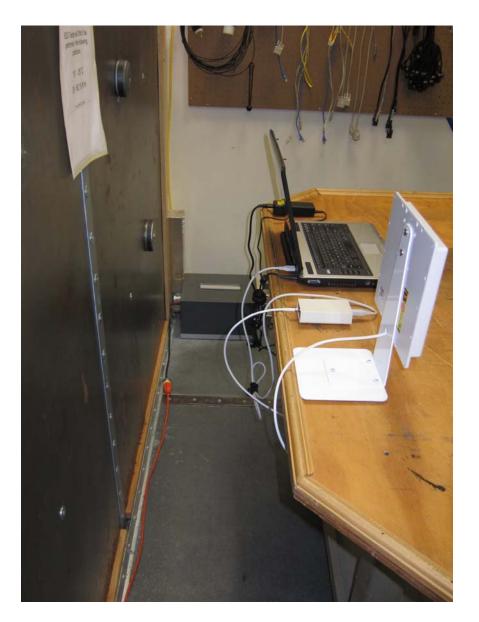




# 8. Test Setup Photographs

8.6. Conducted Emissions Front










# 8. Test Setup Photographs

8.6. Conducted Emissions Rear



Page 33 of 34







## 9. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with Federal Communications Commission (FCC), Industry Canada, and Voluntary Control Council Interference (VCCI) standards. A description of the test sites is on file with the FCC (registration number 96392), Industry Canada (file number IC 3023A-1), and VCCI (Member number 3168), Registration numbers C-3673, G-167, R-3305 & T-1809.

Compliance Worldwide is also designated as a Phase 1 CAB under APEC-MRA (US0132) for Australia/New Zealand AS/NZS CISPR 22, Chinese-Taipei (Taiwan) BSMI CNS 13438 and Korea (RRA) KN 22.

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16' x 20' x 12' ferrite tile chamber and uses one of the walls for the vertical ground plane required by EN 55022.

Both sites are designed to test products or systems 1.5 meters W x 1.5 meters L x 2.0 meters H, floor standing or table top.

Page 34 of 34