


### Shottracker WPTX

FCC 15.247:2018 Bluetooth Low Energy (DTS) Radio

Report # SHOT0005.1



TESTING NVLAP LAB CODE: 201049-0



This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

# **CERTIFICATE OF TEST**



#### Last Date of Test: July 26, 2018 Shottracker Model: WPTX

# **Radio Equipment Testing**

| Standards       |                              |
|-----------------|------------------------------|
| Specification   | Method                       |
| FCC 15.207:2018 | ANSI C63.10:2013, KDB 558074 |
| FCC 15.247:2018 | ANSI C03.10.2013, RDB 330074 |

Results

| Method Clause                 | Test Description              | Applied | Results | Comments |
|-------------------------------|-------------------------------|---------|---------|----------|
| 6.2                           | Powerline Conducted Emissions | Yes     | Pass    |          |
| 11.12.1,<br>11.13.2, 6.5, 6.6 | Solutions Radiated Emissions  |         | Pass    |          |
| 11.6                          | Duty Cycle                    | Yes     | Pass    |          |
| 11.8.2                        | Occupied Bandwidth            | Yes     | Pass    |          |
| 11.9.1.1                      | Output Power                  | Yes     | Pass    |          |
| 11.10.2                       | Power Spectral Density        | Yes     | Pass    |          |
| 11.11                         | Band Edge Compliance          | Yes     | Pass    |          |
| 11.11                         | Spurious Conducted Emissions  | Yes     | Pass    |          |

#### **Deviations From Test Standards**

None

**Approved By:** 

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

# **REVISION HISTORY**



| Revision<br>Number | Description | Date | Page Number |
|--------------------|-------------|------|-------------|
| 00                 | None        |      |             |

# ACCREDITATIONS AND AUTHORIZATIONS



#### **United States**

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

#### Canada

**ISED** - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

#### European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

#### Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

#### Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

#### Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

#### Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

**NCC** - Recognized by NCC as a CAB for the acceptance of test data.

#### Singapore

**IDA** – Recognized by IDA as a CAB for the acceptance of test data.

#### Israel

**MOC** – Recognized by MOC as a CAB for the acceptance of test data.

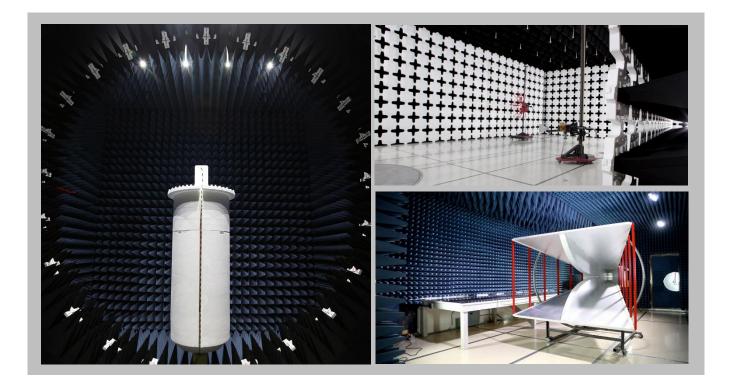
#### Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

#### Vietnam

**MIC** – Recognized by MIC as a CAB for the acceptance of test data.

### SCOPE


For details on the Scopes of our Accreditations, please visit: <u>http://portlandcustomer.element.com/ts/scope/scope.htm</u> <u>http://gsi.nist.gov/global/docs/cabs/designations.html</u>

# **FACILITIES**





| California<br>Labs OC01-17<br>41 Tesla<br>Irvine, CA 92618<br>(949) 861-8918 | Minnesota<br>Labs MN01-10<br>9349 W Broadway Ave.<br>Brooklyn Park, MN 55445<br>(612)-638-5136 | New York<br>Labs NY01-04<br>4939 Jordan Rd.<br>Elbridge, NY 13060<br>(315) 554-8214 | Oregon<br>Labs EV01-12<br>6775 NE Evergreen Pkwy #400<br>Hillsboro, OR 97124<br>(503) 844-4066 | <b>Texas</b><br>Labs TX01-09<br>3801 E Plano Pkwy<br>Plano, TX 75074<br>(469) 304-5255 | Washington<br>Labs NC01-05<br>19201 120 <sup>th</sup> Ave NE<br>Bothell, WA 98011<br>(425)984-6600 |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
|                                                                              |                                                                                                | NV                                                                                  | LAP                                                                                            |                                                                                        |                                                                                                    |  |
| NVLAP Lab Code: 200676-0                                                     | NVLAP Lab Code: 200881-0                                                                       | NVLAP Lab Code: 200761-0                                                            | NVLAP Lab Code: 200630-0                                                                       | NVLAP Lab Code:201049-0                                                                | NVLAP Lab Code: 200629-0                                                                           |  |
|                                                                              | Innovation, Science and Economic Development Canada                                            |                                                                                     |                                                                                                |                                                                                        |                                                                                                    |  |
| 2834B-1, 2834B-3                                                             | 2834E-1, 2834E-3                                                                               | N/A                                                                                 | 2834D-1, 2834D-2                                                                               | 2834G-1                                                                                | 2834F-1                                                                                            |  |
|                                                                              |                                                                                                | BS                                                                                  | МІ                                                                                             |                                                                                        |                                                                                                    |  |
| SL2-IN-E-1154R                                                               | SL2-IN-E-1152R                                                                                 | N/A                                                                                 | SL2-IN-E-1017                                                                                  | SL2-IN-E-1158R                                                                         | SL2-IN-E-1153R                                                                                     |  |
|                                                                              |                                                                                                | VC                                                                                  | CI                                                                                             |                                                                                        |                                                                                                    |  |
| A-0029                                                                       | A-0109                                                                                         | N/A                                                                                 | A-0108                                                                                         | A-0201                                                                                 | A-0110                                                                                             |  |
|                                                                              | Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA                       |                                                                                     |                                                                                                |                                                                                        |                                                                                                    |  |
| US0158                                                                       | US0175                                                                                         | N/A                                                                                 | US0017                                                                                         | US0191                                                                                 | US0157                                                                                             |  |
|                                                                              |                                                                                                |                                                                                     |                                                                                                |                                                                                        |                                                                                                    |  |

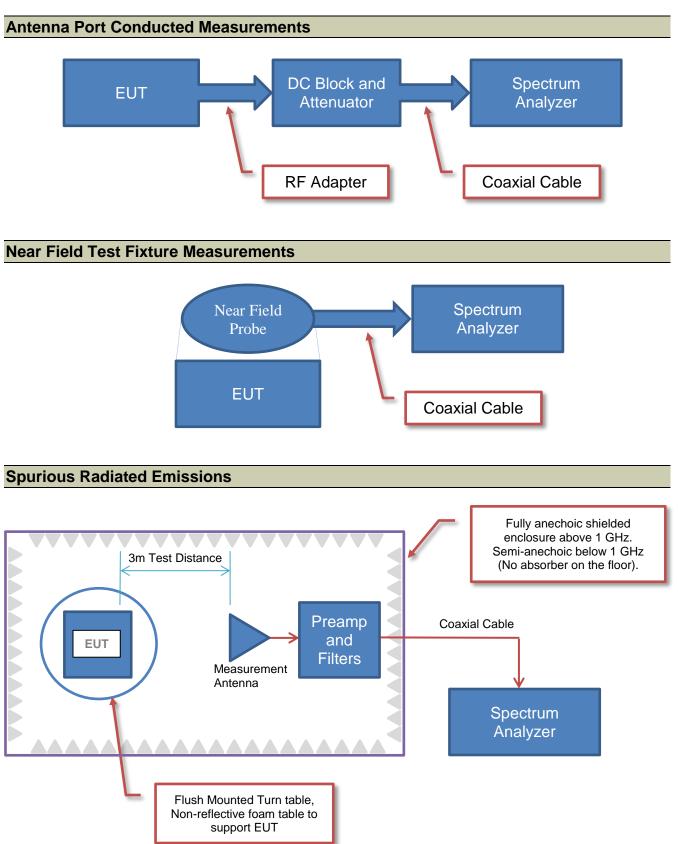


# **MEASUREMENT UNCERTAINTY**



#### **Measurement Uncertainty**

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

| Test                                  | + MU    | <u>- MU</u> |
|---------------------------------------|---------|-------------|
| Frequency Accuracy (Hz)               | 0.0007% | -0.0007%    |
| Amplitude Accuracy (dB)               | 1.2 dB  | -1.2 dB     |
| Conducted Power (dB)                  | 0.3 dB  | -0.3 dB     |
| Radiated Power via Substitution (dB)  | 0.7 dB  | -0.7 dB     |
| Temperature (degrees C)               | 0.7°C   | -0.7°C      |
| Humidity (% RH)                       | 2.5% RH | -2.5% RH    |
| Voltage (AC)                          | 1.0%    | -1.0%       |
| Voltage (DC)                          | 0.7%    | -0.7%       |
| Field Strength (dB)                   | 5.1 dB  | -5.1 dB     |
| AC Powerline Conducted Emissions (dB) | 2.4 dB  | -2.4 dB     |

# **Test Setup Block Diagrams**





# **PRODUCT DESCRIPTION**



#### **Client and Equipment Under Test (EUT) Information**

| Company Name:            | Shottracker          |
|--------------------------|----------------------|
| Address:                 | 7220 W. Frontage Rd. |
| City, State, Zip:        | Merriam, KS 66203    |
| Test Requested By:       | Patrick Herron       |
| Model:                   | WPTX                 |
| First Date of Test:      | July 24, 2018        |
| Last Date of Test:       | July 26, 2018        |
| Receipt Date of Samples: | July 24, 2018        |
| Equipment Design Stage:  | Prototype            |
| Equipment Condition:     | No Damage            |
| Purchase Authorization:  | Verified             |

#### Information Provided by the Party Requesting the Test

#### Functional Description of the EUT:

ShotTracker is a sensor based system that autonomously captures statistical and performance analytics for an entire team in real-time during practice and games. Use ShotTracker analytics to motivate players, engage fans and improve your team's record. Includes Wireless Charging and Bluetooth Low Energy.

#### **Testing Objective:**

To demonstrate compliance of the Bluetooth radio to FCC 15.247 requirements.





### Configuration SHOT0005-1

| EUT         |              |                   |               |
|-------------|--------------|-------------------|---------------|
| Description | Manufacturer | Model/Part Number | Serial Number |
| WPTX        | Shottracker  | S8D1              | 30            |

| Peripherals in test setup boundary |              |                   |               |  |  |  |
|------------------------------------|--------------|-------------------|---------------|--|--|--|
| Description                        | Manufacturer | Model/Part Number | Serial Number |  |  |  |
| AC/DC Brick                        | Intai        | IN2405000         | None          |  |  |  |

| Cables     |        |            |         |              |              |  |
|------------|--------|------------|---------|--------------|--------------|--|
| Cable Type | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |  |
| AC Cable   | No     | 1.7m       | No      | AC Mains     | AC/DC Brick  |  |
| DC Cable   | No     | .2m        | No      | AC/DC Brick  | WPTX         |  |

#### Configuration SHOT0005-3

| EUT                   |              |                   |               |
|-----------------------|--------------|-------------------|---------------|
| Description           | Manufacturer | Model/Part Number | Serial Number |
| WPTX (Direct Connect) | Shottracker  | S8D1              | 30            |

| Peripherals in test setup boundary |              |                   |               |  |  |  |
|------------------------------------|--------------|-------------------|---------------|--|--|--|
| Description                        | Manufacturer | Model/Part Number | Serial Number |  |  |  |
| AC/DC Brick                        | Intai        | IN2405000         | None          |  |  |  |

| Cables     |        |            |         |              |              |  |
|------------|--------|------------|---------|--------------|--------------|--|
| Cable Type | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |  |
| AC Cable   | No     | 1.7m       | No      | AC Mains     | AC/DC Brick  |  |
| DC Cable   | No     | .2m        | No      | AC/DC Brick  | WPTX         |  |

# **MODIFICATIONS**



### **Equipment Modifications**

| Item | Date      | Test           | Modification  | Note                       | Disposition of EUT    |  |  |
|------|-----------|----------------|---------------|----------------------------|-----------------------|--|--|
|      |           | Spurious       | Tested as     | No EMI suppression         | EUT remained at       |  |  |
| 1    | 7/24/2018 | Radiated       | delivered to  | devices were added or      | Element following the |  |  |
|      |           | Emissions      | Test Station. | modified during this test. | test.                 |  |  |
|      |           | Powerline      | Tested as     | No EMI suppression         | EUT remained at       |  |  |
| 2    | 7/25/2018 | Conducted      | delivered to  | devices were added or      | Element following the |  |  |
|      |           | Emissions      | Test Station. | modified during this test. | test.                 |  |  |
|      |           |                | Tested as     | No EMI suppression         | EUT remained at       |  |  |
| 3    | 7/26/2018 | Duty Cycle     | delivered to  | devices were added or      | Element following the |  |  |
|      |           |                | Test Station. | modified during this test. | test.                 |  |  |
|      |           | Occupied       | Tested as     | No EMI suppression         | EUT remained at       |  |  |
| 4    | 7/26/2018 | Bandwidth      | delivered to  | devices were added or      | Element following the |  |  |
|      |           | Banawiati      | Test Station. | modified during this test. | test.                 |  |  |
|      |           | 3 Output Power | Tested as     | No EMI suppression         | EUT remained at       |  |  |
| 5    | 7/26/2018 |                | delivered to  | devices were added or      | Element following the |  |  |
|      |           |                | Test Station. | modified during this test. | test.                 |  |  |
|      |           | Power          | Tested as     | No EMI suppression         | EUT remained at       |  |  |
| 6    | 7/26/2018 | Spectral       | delivered to  | devices were added or      | Element following the |  |  |
|      |           | Density        | Test Station. | modified during this test. | test.                 |  |  |
|      |           | Band Edge      | Tested as     | No EMI suppression         | EUT remained at       |  |  |
| 7    | 7/26/2018 | Compliance     | delivered to  | devices were added or      | Element following the |  |  |
|      |           | Compliance     | Test Station. | modified during this test. | test.                 |  |  |
|      |           | Spurious       | Tested as     | No EMI suppression         | Scheduled testing     |  |  |
| 8    | 7/26/2018 | Conducted      | delivered to  | devices were added or      | was completed.        |  |  |
|      |           | Emissions      | Test Station. | modified during this test. | was completed.        |  |  |



#### **TEST DESCRIPTION**

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

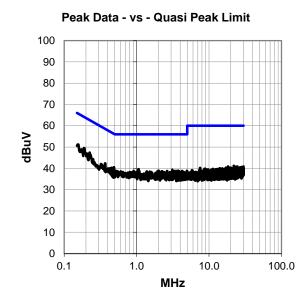
#### **TEST EQUIPMENT**

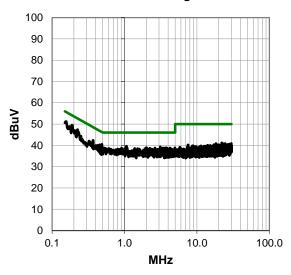
| Description                      | Manufacturer      | Model            | ID   | Last Cal. | Cal. Due  |
|----------------------------------|-------------------|------------------|------|-----------|-----------|
| LISN                             | Solar Electronics | 9252-50-R-24-BNC | LJK  | 9/11/2017 | 9/11/2018 |
| Cable - Conducted Cable Assembly | Northwest EMC     | TXA, HHZ, TQU    | TXAA | 1/31/2018 | 1/31/2019 |
| Analyzer - Spectrum Analyzer     | Keysight          | N9010A           | AFM  | 3/19/2018 | 3/19/2019 |

#### **MEASUREMENT UNCERTAINTY**

| Description  |        |         |
|--------------|--------|---------|
| Expanded k=2 | 2.4 dB | -2.4 dB |

#### **CONFIGURATIONS INVESTIGATED**


SHOT0005-1


#### **MODES INVESTIGATED**

Continuously Transmitting at Mid Ch 2440 MHz



| EUT:                                         | WPTX          |       |         |                    | Work Order:                  | SHOT0005   |  |  |  |
|----------------------------------------------|---------------|-------|---------|--------------------|------------------------------|------------|--|--|--|
| Serial Number:                               | 30            |       |         |                    | Date:                        | 07/25/2018 |  |  |  |
| Customer:                                    | Shottracker   |       |         | Temperature:       | 23°C                         |            |  |  |  |
| Attendees:                                   | Patrick Herro | n     |         | Relative Humidity: | 53.5%                        |            |  |  |  |
| Customer Project:                            | None          |       |         |                    | Bar. Pressure:               | 1019 mb    |  |  |  |
| Tested By:                                   | Marty Martin  |       |         |                    | Job Site:                    | TX01       |  |  |  |
| Power:                                       | 110VAC/60H    | Z     |         |                    | Configuration:               | SHOT0005-1 |  |  |  |
| TEST SPECIFICATIONS                          |               |       |         |                    |                              |            |  |  |  |
| Specification:                               |               |       |         | Method:            | bd:                          |            |  |  |  |
| FCC 15.207:2018                              |               |       |         | ANSI C63.10        | ):2013                       |            |  |  |  |
| TEST PARAME                                  | TERS          |       |         |                    |                              |            |  |  |  |
| Run #: 4                                     |               | Line: | Neutral | A                  | dd. Ext. Attenuation (dB): 0 |            |  |  |  |
| COMMENTS                                     |               |       |         |                    |                              |            |  |  |  |
| Standard Configura                           | tion          |       |         |                    |                              |            |  |  |  |
| EUT OPERATIN                                 |               |       |         |                    |                              |            |  |  |  |
| Continuously Transmitting at Mid Ch 2440 MHz |               |       |         |                    |                              |            |  |  |  |
| DEVIATIONS FROM TEST STANDARD                |               |       |         |                    |                              |            |  |  |  |
| None                                         |               |       |         |                    |                              |            |  |  |  |





#### Peak Data - vs - Average Limit

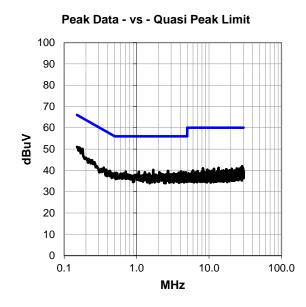


#### **RESULTS - Run #4**

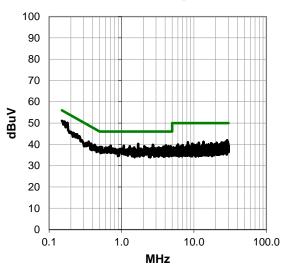
| Peak Data - vs - Quasi Peak Limit |                |                |                    |                          |                |  |  |  |  |  |
|-----------------------------------|----------------|----------------|--------------------|--------------------------|----------------|--|--|--|--|--|
| Freq<br>(MHz)                     | Amp.<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec.<br>Limit<br>(dBuV) | Margin<br>(dB) |  |  |  |  |  |
| 0.154                             | 31.1           | 20.1           | 51.2               | 65.8                     | -14.6          |  |  |  |  |  |
| 0.187                             | 29.4           | 20.1           | 49.5               | 64.2                     | -14.7          |  |  |  |  |  |
| 0.225                             | 27.4           | 20.0           | 47.4               | 62.6                     | -15.2          |  |  |  |  |  |
| 0.486                             | 20.3           | 20.2           | 40.5               | 56.2                     | -15.7          |  |  |  |  |  |
| 0.366                             | 22.2           | 20.1           | 42.3               | 58.6                     | -16.3          |  |  |  |  |  |
| 1.060                             | 19.6           | 20.0           | 39.6               | 56.0                     | -16.4          |  |  |  |  |  |
| 0.452                             | 20.1           | 20.2           | 40.3               | 56.8                     | -16.5          |  |  |  |  |  |
| 3.112                             | 19.2           | 20.1           | 39.3               | 56.0                     | -16.7          |  |  |  |  |  |
| 2.015                             | 18.7           | 20.2           | 38.9               | 56.0                     | -17.1          |  |  |  |  |  |
| 4.944                             | 18.7           | 20.2           | 38.9               | 56.0                     | -17.1          |  |  |  |  |  |
| 0.911                             | 18.6           | 20.2           | 38.8               | 56.0                     | -17.2          |  |  |  |  |  |
| 3.373                             | 18.7           | 20.1           | 38.8               | 56.0                     | -17.2          |  |  |  |  |  |
| 3.728                             | 18.6           | 20.2           | 38.8               | 56.0                     | -17.2          |  |  |  |  |  |
| 1.948                             | 18.6           | 20.1           | 38.7               | 56.0                     | -17.3          |  |  |  |  |  |
| 2.635                             | 18.5           | 20.2           | 38.7               | 56.0                     | -17.3          |  |  |  |  |  |
| 3.523                             | 18.5           | 20.2           | 38.7               | 56.0                     | -17.3          |  |  |  |  |  |
| 3.851                             | 18.5           | 20.2           | 38.7               | 56.0                     | -17.3          |  |  |  |  |  |
| 4.254                             | 18.5           | 20.2           | 38.7               | 56.0                     | -17.3          |  |  |  |  |  |
| 1.381                             | 18.5           | 20.1           | 38.6               | 56.0                     | -17.4          |  |  |  |  |  |
| 2.213                             | 18.5           | 20.1           | 38.6               | 56.0                     | -17.4          |  |  |  |  |  |
| 2.250                             | 18.5           | 20.1           | 38.6               | 56.0                     | -17.4          |  |  |  |  |  |
| 3.295                             | 18.5           | 20.1           | 38.6               | 56.0                     | -17.4          |  |  |  |  |  |
| 3.802                             | 18.4           | 20.2           | 38.6               | 56.0                     | -17.4          |  |  |  |  |  |
| 1.512                             | 18.4           | 20.1           | 38.5               | 56.0                     | -17.5          |  |  |  |  |  |
| 1.605                             | 18.2           | 20.1           | 38.3               | 56.0                     | -17.7          |  |  |  |  |  |
| 2.176                             | 18.2           | 20.1           | 38.3               | 56.0                     | -17.7          |  |  |  |  |  |

| Peak Data - vs - Average Limit |                |                |                    |                          |                |  |  |  |  |  |
|--------------------------------|----------------|----------------|--------------------|--------------------------|----------------|--|--|--|--|--|
| Freq<br>(MHz)                  | Amp.<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec.<br>Limit<br>(dBuV) | Margin<br>(dB) |  |  |  |  |  |
| 0.154                          | 31.1           | 20.1           | 51.2               | 55.8                     | -4.6           |  |  |  |  |  |
| 0.187                          | 29.4           | 20.1           | 49.5               | 54.2                     | -4.7           |  |  |  |  |  |
| 0.225                          | 27.4           | 20.0           | 47.4               | 52.6                     | -5.2           |  |  |  |  |  |
| 0.486                          | 20.3           | 20.2           | 40.5               | 46.2                     | -5.7           |  |  |  |  |  |
| 0.366                          | 22.2           | 20.1           | 42.3               | 48.6                     | -6.3           |  |  |  |  |  |
| 1.060                          | 19.6           | 20.0           | 39.6               | 46.0                     | -6.4           |  |  |  |  |  |
| 0.452                          | 20.1           | 20.2           | 40.3               | 46.8                     | -6.5           |  |  |  |  |  |
| 3.112                          | 19.2           | 20.1           | 39.3               | 46.0                     | -6.7           |  |  |  |  |  |
| 2.015                          | 18.7           | 20.2           | 38.9               | 46.0                     | -7.1           |  |  |  |  |  |
| 4.944                          | 18.7           | 20.2           | 38.9               | 46.0                     | -7.1           |  |  |  |  |  |
| 0.911                          | 18.6           | 20.2           | 38.8               | 46.0                     | -7.2           |  |  |  |  |  |
| 3.373                          | 18.7           | 20.1           | 38.8               | 46.0                     | -7.2           |  |  |  |  |  |
| 3.728                          | 18.6           | 20.2           | 38.8               | 46.0                     | -7.2           |  |  |  |  |  |
| 1.948                          | 18.6           | 20.1           | 38.7               | 46.0                     | -7.3           |  |  |  |  |  |
| 2.635                          | 18.5           | 20.2           | 38.7               | 46.0                     | -7.3           |  |  |  |  |  |
| 3.523                          | 18.5           | 20.2           | 38.7               | 46.0                     | -7.3           |  |  |  |  |  |
| 3.851                          | 18.5           | 20.2           | 38.7               | 46.0                     | -7.3           |  |  |  |  |  |
| 4.254                          | 18.5           | 20.2           | 38.7               | 46.0                     | -7.3           |  |  |  |  |  |
| 1.381                          | 18.5           | 20.1           | 38.6               | 46.0                     | -7.4           |  |  |  |  |  |
| 2.213                          | 18.5           | 20.1           | 38.6               | 46.0                     | -7.4           |  |  |  |  |  |
| 2.250                          | 18.5           | 20.1           | 38.6               | 46.0                     | -7.4           |  |  |  |  |  |
| 3.295                          | 18.5           | 20.1           | 38.6               | 46.0                     | -7.4           |  |  |  |  |  |
| 3.802                          | 18.4           | 20.2           | 38.6               | 46.0                     | -7.4           |  |  |  |  |  |
| 1.512                          | 18.4           | 20.1           | 38.5               | 46.0                     | -7.5           |  |  |  |  |  |
| 1.605                          | 18.2           | 20.1           | 38.3               | 46.0                     | -7.7           |  |  |  |  |  |
| 2.176                          | 18.2           | 20.1           | 38.3               | 46.0                     | -7.7           |  |  |  |  |  |

#### CONCLUSION


Pass

Marty Marti


Tested By



| EUT:                | WPTX                          |           |           |                    | Work Order:               | SHOT0005                     |  |  |  |
|---------------------|-------------------------------|-----------|-----------|--------------------|---------------------------|------------------------------|--|--|--|
| Serial Number:      | 30                            |           |           |                    | Date:                     | 07/25/2018                   |  |  |  |
| Customer:           | Shottracker                   |           |           | Temperature:       | 23°C                      |                              |  |  |  |
| Attendees:          | Patrick Herro                 | n         |           | Relative Humidity: | 53.5%                     |                              |  |  |  |
| Customer Project:   | None                          |           |           |                    | Bar. Pressure:            | 1019 mb                      |  |  |  |
| Tested By:          | Marty Martin                  |           |           |                    | Job Site:                 | TX01                         |  |  |  |
| Power:              | 110VAC/60H                    | z         |           |                    | Configuration:            | SHOT0005-1                   |  |  |  |
| TEST SPECIFICATIONS |                               |           |           |                    |                           |                              |  |  |  |
| Specification:      |                               |           |           | Method:            |                           |                              |  |  |  |
| FCC 15.207:2018     |                               |           |           | ANSI C63.2         | 10:2013                   |                              |  |  |  |
| TEST PARAMETERS     |                               |           |           |                    |                           |                              |  |  |  |
| Run #: 5            |                               | Line:     | High Line |                    | Add. Ext. Attenuation (dB | dd. Ext. Attenuation (dB): 0 |  |  |  |
| COMMENTS            |                               |           |           |                    |                           |                              |  |  |  |
| Standard Configura  | ation                         |           |           |                    |                           |                              |  |  |  |
| EUT OPERATII        |                               |           |           |                    |                           |                              |  |  |  |
| Continuously Trans  | mitting at Mid                | Ch 2440 M | Hz        |                    |                           |                              |  |  |  |
|                     | DEVIATIONS FROM TEST STANDARD |           |           |                    |                           |                              |  |  |  |
| None                |                               |           |           |                    |                           |                              |  |  |  |



Peak Data - vs - Average Limit





#### **RESULTS - Run #5**

| _             |                |                |                    |                          | Peak Data - vs - Quasi Peak Limit |               |  |  |  |  |  |  |  |  |  |
|---------------|----------------|----------------|--------------------|--------------------------|-----------------------------------|---------------|--|--|--|--|--|--|--|--|--|
| Freq<br>(MHz) | Amp.<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec.<br>Limit<br>(dBuV) | Margin<br>(dB)                    | Freq<br>(MHz) |  |  |  |  |  |  |  |  |  |
| 0.150         | 30.9           | 20.1           | 51.0               | 66.0                     | -15.0                             | 0.150         |  |  |  |  |  |  |  |  |  |
| 1.698         | 20.1           | 20.1           | 40.2               | 56.0                     | -15.8                             | 1.698         |  |  |  |  |  |  |  |  |  |
| 2.724         | 19.7           | 20.1           | 39.8               | 56.0                     | -16.2                             | 2.724         |  |  |  |  |  |  |  |  |  |
| 4.105         | 19.2           | 20.2           | 39.4               | 56.0                     | -16.6                             | 4.105         |  |  |  |  |  |  |  |  |  |
| 0.706         | 19.0           | 20.3           | 39.3               | 56.0                     | -16.7                             | 0.706         |  |  |  |  |  |  |  |  |  |
| 1.075         | 19.2           | 20.1           | 39.3               | 56.0                     | -16.7                             | 1.075         |  |  |  |  |  |  |  |  |  |
| 1.299         | 19.1           | 20.0           | 39.1               | 56.0                     | -16.9                             | 1.299         |  |  |  |  |  |  |  |  |  |
| 2.068         | 18.9           | 20.2           | 39.1               | 56.0                     | -16.9                             | 2.068         |  |  |  |  |  |  |  |  |  |
| 4.772         | 18.9           | 20.2           | 39.1               | 56.0                     | -16.9                             | 4.772         |  |  |  |  |  |  |  |  |  |
| 4.448         | 18.8           | 20.2           | 39.0               | 56.0                     | -17.0                             | 4.448         |  |  |  |  |  |  |  |  |  |
| 3.799         | 18.7           | 20.2           | 38.9               | 56.0                     | -17.1                             | 3.799         |  |  |  |  |  |  |  |  |  |
| 4.623         | 18.5           | 20.2           | 38.7               | 56.0                     | -17.3                             | 4.623         |  |  |  |  |  |  |  |  |  |
| 1.497         | 18.5           | 20.1           | 38.6               | 56.0                     | -17.4                             | 1.497         |  |  |  |  |  |  |  |  |  |
| 2.679         | 18.4           | 20.2           | 38.6               | 56.0                     | -17.4                             | 2.679         |  |  |  |  |  |  |  |  |  |
| 3.269         | 18.5           | 20.1           | 38.6               | 56.0                     | -17.4                             | 3.269         |  |  |  |  |  |  |  |  |  |
| 4.090         | 18.3           | 20.2           | 38.5               | 56.0                     | -17.5                             | 4.090         |  |  |  |  |  |  |  |  |  |
| 2.773         | 18.3           | 20.1           | 38.4               | 56.0                     | -17.6                             | 2.773         |  |  |  |  |  |  |  |  |  |
| 4.582         | 18.2           | 20.2           | 38.4               | 56.0                     | -17.6                             | 4.582         |  |  |  |  |  |  |  |  |  |
| 4.813         | 18.2           | 20.2           | 38.4               | 56.0                     | -17.6                             | 4.813         |  |  |  |  |  |  |  |  |  |
| 4.243         | 18.1           | 20.2           | 38.3               | 56.0                     | -17.7                             | 4.243         |  |  |  |  |  |  |  |  |  |
| 4.993         | 18.1           | 20.2           | 38.3               | 56.0                     | -17.7                             | 4.993         |  |  |  |  |  |  |  |  |  |
| 3.123         | 18.1           | 20.1           | 38.2               | 56.0                     | -17.8                             | 3.123         |  |  |  |  |  |  |  |  |  |
| 3.422         | 18.0           | 20.2           | 38.2               | 56.0                     | -17.8                             | 3.422         |  |  |  |  |  |  |  |  |  |
| 3.530         | 18.0           | 20.2           | 38.2               | 56.0                     | -17.8                             | 3.530         |  |  |  |  |  |  |  |  |  |
| 2.911         | 18.1           | 20.0           | 38.1               | 56.0                     | -17.9                             | 2.911         |  |  |  |  |  |  |  |  |  |
| 3.922         | 17.9           | 20.2           | 38.1               | 56.0                     | -17.9                             | 3.922         |  |  |  |  |  |  |  |  |  |

|       |        |        | <u> </u> |                |        |  |  |
|-------|--------|--------|----------|----------------|--------|--|--|
| Freq  | Amp.   | Factor | Adjusted | Spec.<br>Limit | Margin |  |  |
| (MHz) | (dBuV) | (dB)   | (dBuV)   | (dBuV)         | (dB)   |  |  |
| 0.150 | 30.9   | 20.1   | 51.0     | 56.0           | -5.0   |  |  |
| 1.698 | 20.1   | 20.1   | 40.2     | 46.0           | -5.8   |  |  |
| 2.724 | 19.7   | 20.1   | 39.8     | 46.0           | -6.2   |  |  |
| 4.105 | 19.2   | 20.2   | 39.4     | 46.0           | -6.6   |  |  |
| 0.706 | 19.0   | 20.3   | 39.3     | 46.0           | -6.7   |  |  |
| 1.075 | 19.2   | 20.1   | 39.3     | 46.0           | -6.7   |  |  |
| 1.299 | 19.1   | 20.0   | 39.1     | 46.0           | -6.9   |  |  |
| 2.068 | 18.9   | 20.2   | 39.1     | 46.0           | -6.9   |  |  |
| 4.772 | 18.9   | 20.2   | 39.1     | 46.0           | -6.9   |  |  |
| 4.448 | 18.8   | 20.2   | 39.0     | 46.0           | -7.0   |  |  |
| 3.799 | 18.7   | 20.2   | 38.9     | 46.0           | -7.1   |  |  |
| 4.623 | 18.5   | 20.2   | 38.7     | 46.0           | -7.3   |  |  |
| 1.497 | 18.5   | 20.1   | 38.6     | 46.0           | -7.4   |  |  |
| 2.679 | 18.4   | 20.2   | 38.6     | 46.0           | -7.4   |  |  |
| 3.269 | 18.5   | 20.1   | 38.6     | 46.0           | -7.4   |  |  |
| 4.090 | 18.3   | 20.2   | 38.5     | 46.0           | -7.5   |  |  |
| 2.773 | 18.3   | 20.1   | 38.4     | 46.0           | -7.6   |  |  |
| 4.582 | 18.2   | 20.2   | 38.4     | 46.0           | -7.6   |  |  |
| 4.813 | 18.2   | 20.2   | 38.4     | 46.0           | -7.6   |  |  |
| 4.243 | 18.1   | 20.2   | 38.3     | 46.0           | -7.7   |  |  |
| 4.993 | 18.1   | 20.2   | 38.3     | 46.0           | -7.7   |  |  |
| 3.123 | 18.1   | 20.1   | 38.2     | 46.0           | -7.8   |  |  |
| 3.422 | 18.0   | 20.2   | 38.2     | 46.0           | -7.8   |  |  |
| 3.530 | 18.0   | 20.2   | 38.2     | 46.0           | -7.8   |  |  |
| 2.911 | 18.1   | 20.0   | 38.1     | 46.0           | -7.9   |  |  |
| 3.922 | 17.9   | 20.2   | 38.1     | 46.0           | -7.9   |  |  |

Peak Data - vs - Average Limit

#### CONCLUSION

Pass

Marty Marti

Tested By

# **SPURIOUS RADIATED EMISSIONS**



PSA-ESCI 2018.05.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

#### MODES OF OPERATION

Continuously Transmitting at Low Ch 2402 MHz, Mid Ch 2440 MHz, High Ch 2480 MHz

#### **POWER SETTINGS INVESTIGATED**

110VAC/60Hz

#### **CONFIGURATIONS INVESTIGATED**

SHOT0005 - 1

#### FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 26500 MHz

#### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                  | ID  | Last Cal.   | Interval |
|------------------------------|--------------------|------------------------|-----|-------------|----------|
| Cable                        | Northwest EMC      | 18-40GHz               | TXE | 17-Nov-2017 | 12 mo    |
| Cable                        | Northwest EMC      | 8-18GHz                | TXD | 31-May-2018 | 12 mo    |
| Cable                        | Northwest EMC      | 1-8.2 GHz              | TXC | 31-May-2018 | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq              | JSDWK42-18004000-60-5P | PAM | 17-Nov-2017 | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq              | AMF-6F-12001800-30-10P | PAL | 9-Oct-2017  | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq              | AMF-6F-08001200-30-10P | PAK | 9-Oct-2017  | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq              | AMF-3D-00100800-32-13P | PAJ | 31-May-2018 | 12 mo    |
| Antenna - Double Ridge       | A.H. Systems, Inc. | SAS-574                | AXW | 5-Aug-2016  | 24 mo    |
| Antenna - Standard Gain      | ETS Lindgren       | 3160-08                | AJG | NCR         | 0 mo     |
| Antenna - Standard Gain      | ETS Lindgren       | 3160-07                | AJF | NCR         | 0 mo     |
| Filter - High Pass           | Micro-Tronics      | HPM50111               | HGC | 3/16/2018   | 12 mo    |
| Filter - Low Pass            | Micro-Tronics      | LPM50004               | HHV | 8/3/2017    | 12 mo    |
| Antenna - Biconilog          | ETS Lindgren       | 3143B                  | AYF | 5/10/2018   | 24 mo    |
| Cable                        | Northwest EMC      | RE 9kHz - 1GHz         | TXB | 10/10/2017  | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq              | AM-1551                | PAH | 10/10/2017  | 12 mo    |
| Antenna - Double Ridge       | ETS Lindgren       | 3115                   | AJN | 9/15/2016   | 24 mo    |
| Attenuator                   | Weinschel Corp     | 4H-20                  | AWB | 3/16/2018   | 12 mo    |
| Analyzer - Spectrum Analyzer | Agilent            | N9010A                 | AFL | 15-Mar-2018 | 12 mo    |

#### **TEST DESCRIPTION**

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

# SPURIOUS RADIATED EMISSIONS



|                                                                                                                                                      |           |                               |                         |                     |                       | EmiR5 2018.05.07        | PSA-ESCI 2018.05.04 |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------|-------------------------|---------------------|-----------------------|-------------------------|---------------------|--|--|--|--|--|
|                                                                                                                                                      | k Order:  |                               | Date:                   |                     | m                     | × 11                    |                     |  |  |  |  |  |
|                                                                                                                                                      | Project:  | None                          | Temperature:            | 22 °C               | Man                   | 4 116                   | arti                |  |  |  |  |  |
|                                                                                                                                                      | Job Site: | TX02                          | Humidity:               | 50.1% RH            | <                     | 1                       |                     |  |  |  |  |  |
| Serial I                                                                                                                                             | Number:   |                               | Barometric Pres.:       | 1020 mbar           | Teste                 | Tested by: Marty Martin |                     |  |  |  |  |  |
|                                                                                                                                                      |           | WPTX                          |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      | guration: |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      | Istomer:  | Shottracker<br>Patrick Herron |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           | 110VAC/60Hz                   |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           | 0 I T                         | itting at Low Ch 2402 I |                     |                       |                         |                     |  |  |  |  |  |
| Operatin                                                                                                                                             | ng Mode:  | Continuousiy mansin           | itting at Low Ch 2402 i |                     | IVINZ, NIGH CH 2460 I | VINZ                    |                     |  |  |  |  |  |
| Dev                                                                                                                                                  | viations: | None                          | ne                      |                     |                       |                         |                     |  |  |  |  |  |
| <b>Comments:</b> Standard Configuration. Duty Cycle Correction Factor of 10*log(1/DC) = 1*log(1/.6) = 2.2 dB added to Average detector measurements. |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
| Test Specifi                                                                                                                                         | ications  |                               |                         | Test                | lethod                |                         |                     |  |  |  |  |  |
| FCC 15.247:                                                                                                                                          |           |                               |                         |                     | C63.10:2013           |                         |                     |  |  |  |  |  |
| Run #                                                                                                                                                | 57        | Test Distance (m)             | 3 Antenna               | a Height(s)         | 1 to 4(m)             | Results                 | Pass                |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
| 00                                                                                                                                                   |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
| 80                                                                                                                                                   |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
| 70                                                                                                                                                   |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
| 10                                                                                                                                                   |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
| 60                                                                                                                                                   |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
| 00                                                                                                                                                   |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         | │ │ │ <mark></mark> |                       |                         |                     |  |  |  |  |  |
| 50                                                                                                                                                   |           |                               |                         |                     | ◆                     |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       | <b>_</b>                |                     |  |  |  |  |  |
| 40                                                                                                                                                   |           |                               |                         |                     | <b>_</b>              |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
| 30                                                                                                                                                   |           |                               |                         |                     |                       | ▼                       |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
| 20                                                                                                                                                   |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
| 10 🗕                                                                                                                                                 |           |                               |                         |                     |                       |                         |                     |  |  |  |  |  |
| 10                                                                                                                                                   |           | 100                           |                         | 1000                | 100                   | 00                      | 100000              |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         | MHz                 |                       |                         |                     |  |  |  |  |  |
|                                                                                                                                                      |           |                               |                         |                     |                       | PK 🕨                    | 🕨 AV 🗢 QP           |  |  |  |  |  |

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Antenna Height<br>(meters) | Azimuth<br>(degrees) | Duty Cycle<br>Correction<br>Factor<br>(dB) | External<br>Attenuation<br>(dB) | Polarity/<br>Transducer<br>Type | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>(dBuV/m) | Spec. Limit<br>(dBuV/m) | Compared to<br>Spec.<br>(dB) | Comments       |
|---------------|---------------------|----------------|----------------------------|----------------------|--------------------------------------------|---------------------------------|---------------------------------|----------|--------------------------------|----------------------|-------------------------|------------------------------|----------------|
| 2484.587      | 32.8                | -3.4           | 1.0                        | 271.0                | 2.2                                        | 20.0                            | Vert                            | AV       | 0.0                            | 51.6                 | 54.0                    | -2.4                         | EUT X, High Ch |
| 2485.250      | 32.6                | -3.4           | 3.6                        | 358.9                | 2.2                                        | 20.0                            | Horz                            | AV       | 0.0                            | 51.4                 | 54.0                    | -2.6                         | EUT Y, High Ch |
| 2484.423      | 32.6                | -3.4           | 1.4                        | 144.0                | 2.2                                        | 20.0                            | Vert                            | AV       | 0.0                            | 51.4                 | 54.0                    | -2.6                         | EUT Y, High Ch |
| 2484.170      | 32.6                | -3.4           | 1.8                        | 69.9                 | 2.2                                        | 20.0                            | Horz                            | AV       | 0.0                            | 51.4                 | 54.0                    | -2.6                         | EUT X, High Ch |
| 2485.147      | 32.6                | -3.4           | 3.8                        | 204.0                | 2.2                                        | 20.0                            | Horz                            | AV       | 0.0                            | 51.4                 | 54.0                    | -2.6                         | EUT Z, High Ch |
| 2484.653      | 32.6                | -3.4           | 1.0                        | 88.9                 | 2.2                                        | 20.0                            | Vert                            | AV       | 0.0                            | 51.4                 | 54.0                    | -2.6                         | EUT Z, High Ch |
| 2388.980      | 32.8                | -4.0           | 3.1                        | 202.9                | 2.2                                        | 20.0                            | Vert                            | AV       | 0.0                            | 51.0                 | 54.0                    | -3.0                         | EUT X, Low Ch  |
| 2389.900      | 32.6                | -4.0           | 1.0                        | 73.0                 | 2.2                                        | 20.0                            | Horz                            | AV       | 0.0                            | 50.8                 | 54.0                    | -3.2                         | EUT X, Low Ch  |
| 7327.150      | 29.8                | 14.7           | 1.0                        | 25.0                 | 2.2                                        | 0.0                             | Vert                            | AV       | 0.0                            | 46.7                 | 54.0                    | -7.3                         | EUT X, Mid Ch  |
| 7326.390      | 29.7                | 14.7           | 1.0                        | 271.0                | 2.2                                        | 0.0                             | Horz                            | AV       | 0.0                            | 46.6                 | 54.0                    | -7.4                         | EUT Y, Mid Ch  |
| 7441.065      | 29.4                | 14.7           | 1.0                        | 32.0                 | 2.2                                        | 0.0                             | Horz                            | AV       | 0.0                            | 46.3                 | 54.0                    | -7.7                         | EUT Y, High Ch |
| 7441.370      | 29.3                | 14.7           | 1.0                        | 309.0                | 2.2                                        | 0.0                             | Vert                            | AV       | 0.0                            | 46.2                 | 54.0                    | -7.8                         | EUT X, High Ch |
| 4960.030      | 34.6                | 7.1            | 2.0                        | 36.0                 | 2.2                                        | 0.0                             | Vert                            | AV       | 0.0                            | 43.9                 | 54.0                    | -10.1                        | EUT X, High Ch |
| 4803.935      | 32.9                | 6.8            | 2.0                        | 261.0                | 2.2                                        | 0.0                             | Vert                            | AV       | 0.0                            | 41.9                 | 54.0                    | -12.1                        | EUT X, Low Ch  |

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Antenna Height<br>(meters) | Azimuth<br>(degrees) | Duty Cycle<br>Correction<br>Factor<br>(dB) | External<br>Attenuation<br>(dB) | Polarity/<br>Transducer<br>Type | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>(dBuV/m) | Spec. Limit<br>(dBuV/m) | Compared to<br>Spec.<br>(dB) |                |
|---------------|---------------------|----------------|----------------------------|----------------------|--------------------------------------------|---------------------------------|---------------------------------|----------|--------------------------------|----------------------|-------------------------|------------------------------|----------------|
|               |                     |                |                            |                      |                                            |                                 |                                 |          |                                |                      |                         |                              | Comments       |
| 2483.573      | 45.3                | -3.4           | 1.4                        | 144.0                | 0.0                                        | 20.0                            | Vert                            | PK       | 0.0                            | 61.9                 | 74.0                    | -12.1                        | EUT Y, High Ch |
| 2483.610      | 44.6                | -3.4           | 3.8                        | 204.0                | 0.0                                        | 20.0                            | Horz                            | PK       | 0.0                            | 61.2                 | 74.0                    | -12.8                        | EUT Z, High Ch |
| 2483.537      | 44.5                | -3.4           | 1.0                        | 271.0                | 0.0                                        | 20.0                            | Vert                            | PK       | 0.0                            | 61.1                 | 74.0                    | -12.9                        | EUT X, High Ch |
| 2485.317      | 44.3                | -3.4           | 3.6                        | 358.9                | 0.0                                        | 20.0                            | Horz                            | PK       | 0.0                            | 60.9                 | 74.0                    | -13.1                        | EUT Y, High Ch |
| 4960.200      | 31.5                | 7.1            | 3.7                        | 261.0                | 2.2                                        | 0.0                             | Horz                            | AV       | 0.0                            | 40.8                 | 54.0                    | -13.2                        | EUT Y, High Ch |
| 2485.083      | 44.2                | -3.4           | 1.8                        | 69.9                 | 0.0                                        | 20.0                            | Horz                            | PK       | 0.0                            | 60.8                 | 74.0                    | -13.2                        | EUT X, High Ch |
| 2483.977      | 44.1                | -3.4           | 1.0                        | 88.9                 | 0.0                                        | 20.0                            | Vert                            | PK       | 0.0                            | 60.7                 | 74.0                    | -13.3                        | EUT Z, High Ch |
| 4803.570      | 31.7                | 6.8            | 1.3                        | 274.9                | 2.2                                        | 0.0                             | Horz                            | AV       | 0.0                            | 40.7                 | 54.0                    | -13.3                        | EUT Y, Low Ch  |
| 2389.783      | 44.5                | -4.0           | 1.0                        | 73.0                 | 0.0                                        | 20.0                            | Horz                            | PK       | 0.0                            | 60.5                 | 74.0                    | -13.5                        | EUT X, Low Ch  |
| 4804.035      | 31.2                | 6.8            | 1.0                        | 7.0                  | 2.2                                        | 0.0                             | Horz                            | AV       | 0.0                            | 40.2                 | 54.0                    | -13.8                        | EUT Z, Low Ch  |
| 2389.783      | 44.0                | -4.0           | 3.1                        | 202.9                | 0.0                                        | 20.0                            | Vert                            | PK       | 0.0                            | 60.0                 | 74.0                    | -14.0                        | EUT X, Low Ch  |
| 4803.970      | 31.0                | 6.8            | 1.0                        | 267.0                | 2.2                                        | 0.0                             | Vert                            | AV       | 0.0                            | 40.0                 | 54.0                    | -14.0                        | EUT Z, Low Ch  |
| 4803.780      | 30.8                | 6.8            | 1.7                        | 90.0                 | 2.2                                        | 0.0                             | Vert                            | AV       | 0.0                            | 39.8                 | 54.0                    | -14.2                        | EUT Y, Low Ch  |
| 4882.660      | 29.8                | 7.0            | 2.3                        | 242.0                | 2.2                                        | 0.0                             | Horz                            | AV       | 0.0                            | 39.0                 | 54.0                    | -15.0                        | EUT Y, Mid Ch  |
| 4883.680      | 29.8                | 7.0            | 1.0                        | 217.0                | 2.2                                        | 0.0                             | Vert                            | AV       | 0.0                            | 39.0                 | 54.0                    | -15.0                        | EUT X, Mid Ch  |
| 4803.195      | 29.3                | 6.8            | 1.0                        | 3.0                  | 2.2                                        | 0.0                             | Horz                            | AV       | 0.0                            | 38.3                 | 54.0                    | -15.7                        | EUT X, Low Ch  |
| 7324.725      | 42.1                | 14.7           | 1.0                        | 271.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 56.8                 | 74.0                    | -17.2                        | EUT Y, Mid Ch  |
| 7326.920      | 41.3                | 14.7           | 1.0                        | 25.0                 | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 56.0                 | 74.0                    | -18.0                        | EUT X, Mid Ch  |
| 7440.655      | 40.9                | 14.7           | 1.0                        | 32.0                 | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 55.6                 | 74.0                    | -18.4                        | EUT Y, High Ch |
| 7441.385      | 40.9                | 14.7           | 1.0                        | 309.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 55.6                 | 74.0                    | -18.4                        | EUT X, High Ch |
| 12398.720     | 30.4                | 0.6            | 1.0                        | 302.0                | 2.2                                        | 0.0                             | Vert                            | AV       | 0.0                            | 33.2                 | 54.0                    | -20.8                        | EUT X, High Ch |
| 12209.870     | 30.4                | 0.1            | 2.8                        | 334.9                | 2.2                                        | 0.0                             | Vert                            | AV       | 0.0                            | 32.7                 | 54.0                    | -21.3                        | EUT X, Mid Ch  |
| 12399.640     | 29.8                | 0.6            | 1.0                        | 255.9                | 2.2                                        | 0.0                             | Horz                            | AV       | 0.0                            | 32.6                 | 54.0                    | -21.4                        | EUT Y, High Ch |
| 12008.800     | 30.8                | -0.5           | 1.0                        | 199.0                | 2.2                                        | 0.0                             | Vert                            | AV       | 0.0                            | 32.5                 | 54.0                    | -21.5                        | EUT X, Low Ch  |
| 12211.100     | 30.3                | 0.0            | 1.0                        | 133.0                | 2.2                                        | 0.0                             | Horz                            | AV       | 0.0                            | 32.5                 | 54.0                    | -21.5                        | EUT Y, Mid Ch  |
| 12009.880     | 30.5                | -0.5           | 1.0                        | 322.9                | 2.2                                        | 0.0                             | Horz                            | AV       | 0.0                            | 32.2                 | 54.0                    | -21.8                        | EUT Y, Low Ch  |
| 4960.720      | 44.3                | 7.1            | 2.0                        | 36.0                 | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 51.4                 | 74.0                    | -22.6                        | EUT X, High Ch |
| 4960.545      | 42.8                | 7.1            | 3.7                        | 261.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 49.9                 | 74.0                    | -24.1                        | EUT Y, High Ch |
| 4803.090      | 42.7                | 6.8            | 1.3                        | 274.9                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 49.5                 | 74.0                    | -24.5                        | EUT Y, Low Ch  |
| 4803.325      | 42.5                | 6.8            | 2.0                        | 261.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 49.3                 | 74.0                    | -24.7                        | EUT X, Low Ch  |
| 4803.755      | 42.4                | 6.8            | 1.0                        | 7.0                  | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 49.2                 | 74.0                    | -24.8                        | EUT Z, Low Ch  |
| 4883.605      | 42.0                | 7.0            | 2.3                        | 242.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 49.0                 | 74.0                    | -25.0                        | EUT Y, Mid Ch  |
| 4803.505      | 41.6                | 6.8            | 1.7                        | 90.0                 | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 48.4                 | 74.0                    | -25.6                        | EUT Y, Low Ch  |
| 4882.830      | 41.1                | 7.1            | 1.0                        | 217.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 48.2                 | 74.0                    | -25.8                        | EUT X, Mid Ch  |
| 4803.655      | 41.2                | 6.8            | 1.0                        | 267.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 48.0                 | 74.0                    | -26.0                        | EUT Z, Low Ch  |
| 4804.520      | 41.0                | 6.8            | 1.0                        | 3.0                  | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 47.8                 | 74.0                    | -26.2                        | EUT X, Low Ch  |
| 12398.790     | 42.1                | 0.6            | 1.0                        | 302.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 42.7                 | 74.0                    | -31.3                        | EUT X, High Ch |
| 12210.660     | 42.1                | 0.1            | 2.8                        | 334.9                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 42.2                 | 74.0                    | -31.8                        | EUT X, Mid Ch  |
| 12010.940     | 42.5                | -0.5           | 1.0                        | 199.0                | 0.0                                        | 0.0                             | Vert                            | PK       | 0.0                            | 42.0                 | 74.0                    | -32.0                        | EUT X, Low Ch  |
| 12399.690     | 41.4                | 0.6            | 1.0                        | 255.9                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 42.0                 | 74.0                    | -32.0                        | EUT Y, High Ch |
| 12008.710     | 42.2                | -0.5           | 1.0                        | 322.9                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 41.7                 | 74.0                    | -32.3                        | EUT Y, Low Ch  |
| 12210.170     | 41.4                | 0.1            | 1.0                        | 133.0                | 0.0                                        | 0.0                             | Horz                            | PK       | 0.0                            | 41.5                 | 74.0                    | -32.5                        | EUT Y, Mid Ch  |



XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### TEST EQUIPMENT

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Attenuator                   | Fairview Microwave | SA4018-20             | TYE | 17-Nov-17 | 17-Nov-18 |
| Block - DC                   | Fairview Microwave | SD3379                | AMT | 11-Oct-17 | 11-Oct-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 28-Nov-17 | 28-Nov-18 |
| Analyzer - Spectrum Analyzer | Agilent            | N9010A                | AFL | 15-Mar-18 | 15-Mar-19 |

#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.



|                                                                                     |                                                                              |           |                                                |                                 |                     |                            | TbtTx 2017.12.14                | 4 XMit 2017.      |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------|------------------------------------------------|---------------------------------|---------------------|----------------------------|---------------------------------|-------------------|
|                                                                                     | WPTX                                                                         |           |                                                |                                 |                     | Work Order:                |                                 |                   |
| Serial Number:                                                                      |                                                                              |           |                                                |                                 |                     |                            | 26-Jul-18                       |                   |
|                                                                                     | Shottracker                                                                  |           |                                                |                                 |                     | Temperature:               |                                 |                   |
|                                                                                     | Patrick Herron                                                               |           |                                                |                                 | Humidity: 49.4% RH  |                            |                                 |                   |
| Project:                                                                            |                                                                              |           |                                                |                                 | E                   | Barometric Pres.:          |                                 |                   |
|                                                                                     | Jonathan Kiefer                                                              |           | Power: 110VAC/60Hz                             |                                 |                     | Job Site:                  | TX09                            |                   |
| TEST SPECIFICAT                                                                     | IONS                                                                         |           | Test Method                                    |                                 |                     |                            |                                 |                   |
| FCC 15.247:2018                                                                     |                                                                              |           | ANSI C63.10:2013                               |                                 |                     |                            |                                 |                   |
|                                                                                     |                                                                              |           |                                                |                                 |                     |                            |                                 |                   |
| COMMENTS                                                                            |                                                                              |           |                                                |                                 |                     |                            |                                 |                   |
| None                                                                                |                                                                              |           |                                                |                                 |                     |                            |                                 |                   |
|                                                                                     |                                                                              |           |                                                |                                 |                     |                            |                                 |                   |
| DEVIATIONS EPON                                                                     |                                                                              |           |                                                |                                 |                     |                            |                                 |                   |
|                                                                                     | M TEST STANDARD                                                              |           |                                                |                                 |                     |                            |                                 |                   |
|                                                                                     | M TEST STANDARD                                                              |           |                                                |                                 |                     |                            |                                 |                   |
| None                                                                                |                                                                              |           | o the xiele                                    |                                 |                     |                            |                                 |                   |
| None                                                                                | M TEST STANDARD                                                              | Signature | Jonsthan Kiefer                                |                                 |                     |                            |                                 |                   |
|                                                                                     |                                                                              | Signature | Jonathan Kiefer                                |                                 | Number of           | Value                      | Limit                           |                   |
| None                                                                                |                                                                              | Signature | Jonathan Niefer<br>Pulse Width                 | Period                          | Number of<br>Pulses | Value<br>(%)               | Limit<br>(%)                    | Results           |
| None<br>Configuration #                                                             | 3                                                                            | Signature | Pulse Width                                    |                                 |                     | Value<br>(%)<br>58.9       | Limit<br>(%)<br>N/A             | Results<br>N/A    |
| None<br>Configuration #<br>BLE/GFSK Low Cha                                         | 3<br>annel, 2402 MHz                                                         | Signature | Pulse Width<br>370.593 us                      | 629.295 us                      |                     | <b>(%)</b><br>58.9         | <b>(%)</b><br>N/A               | N/A               |
| None<br>Configuration #<br>BLE/GFSK Low Cha<br>BLE/GFSK Low Cha                     | 3<br>annel, 2402 MHz<br>annel, 2402 MHz                                      | Signature | Pulse Width<br>370.593 us<br>N/A               | 629.295 us<br>N/A               |                     | (%)<br>58.9<br>N/A         | (%)<br>N/A<br>N/A               | N/A<br>N/A        |
| None<br>Configuration #<br>BLE/GFSK Low Cha<br>BLE/GFSK Low Cha<br>BLE/GFSK Mid Cha | 3<br>annel, 2402 MHz<br>annel, 2402 MHz<br>Innel, 2440 MHz                   | Signature | Pulse Width<br>370.593 us<br>N/A<br>374.466 us | 629.295 us<br>N/A<br>627.219 us |                     | (%)<br>58.9<br>N/A<br>59.7 | <b>(%)</b><br>N/A<br>N/A<br>N/A | N/A<br>N/A<br>N/A |
| None                                                                                | 3<br>annel, 2402 MHz<br>annel, 2402 MHz<br>annel, 2440 MHz<br>nnel, 2440 MHz | Signature | Pulse Width<br>370.593 us<br>N/A               | 629.295 us<br>N/A               |                     | (%)<br>58.9<br>N/A         | (%)<br>N/A<br>N/A               | N/A<br>N/A        |



TbtTx 2017.12.14 XMit 2017.12.13

|                                                                                                                                                                                                                                                                                                       |                                | BLE/GES                                        | SK Low Channel, 2             | 2402 MH7           |           |                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------|-------------------------------|--------------------|-----------|---------------------------------------------|
|                                                                                                                                                                                                                                                                                                       |                                | 222,010                                        | Number of                     | Value              | Limit     |                                             |
|                                                                                                                                                                                                                                                                                                       | Pulse Width                    | Period                                         | Pulses                        | (%)                | (%)       | Results                                     |
|                                                                                                                                                                                                                                                                                                       | 370.593 us                     | 629.295 us                                     | 1                             | 58.9               | N/A       | N/A                                         |
|                                                                                                                                                                                                                                                                                                       |                                |                                                |                               |                    |           |                                             |
|                                                                                                                                                                                                                                                                                                       | yzer - Element Materials Techr |                                                |                               |                    |           |                                             |
| LXI RL RF                                                                                                                                                                                                                                                                                             | 50 Ω DC                        | SE                                             | Trig Delay-900.0 µs           |                    | : Log-Pwr | 02:26:33 PM Jul 26, 2018<br>TRACE 1 2 3 4 5 |
|                                                                                                                                                                                                                                                                                                       |                                | PNO: Fast 🔸                                    | Trig: Video<br>#Atten: 10 dB  |                    |           | TYPE WWWWWW                                 |
|                                                                                                                                                                                                                                                                                                       |                                | IFGain:Low                                     | #Atten: 10 dB                 |                    |           |                                             |
| Ref Of                                                                                                                                                                                                                                                                                                | fset 21.02 dB<br>2.00 dBm      |                                                |                               |                    |           | Mkr3 917.3 µ<br>-7.38 dBr                   |
| 5 dB/div Ref -2                                                                                                                                                                                                                                                                                       | 2.00 dBm                       | A 1                                            |                               | <b>∆</b> 2         |           | _7.58 dBi                                   |
| -7.00                                                                                                                                                                                                                                                                                                 |                                | <u>2</u>                                       |                               | Y <sup>2</sup>     |           | <sup>2</sup>                                |
| -12.0                                                                                                                                                                                                                                                                                                 |                                | /                                              |                               |                    |           |                                             |
| -17.0                                                                                                                                                                                                                                                                                                 |                                |                                                |                               |                    |           |                                             |
| -22.0                                                                                                                                                                                                                                                                                                 |                                |                                                |                               |                    |           |                                             |
| -27.0                                                                                                                                                                                                                                                                                                 |                                |                                                |                               |                    |           |                                             |
| -32.0                                                                                                                                                                                                                                                                                                 |                                |                                                |                               |                    |           | 1                                           |
| -37.0                                                                                                                                                                                                                                                                                                 |                                |                                                |                               |                    |           | , TRIG LV                                   |
| -42.0                                                                                                                                                                                                                                                                                                 |                                |                                                |                               |                    |           |                                             |
| -47.0                                                                                                                                                                                                                                                                                                 |                                |                                                |                               |                    |           |                                             |
| -47.0                                                                                                                                                                                                                                                                                                 |                                |                                                |                               |                    |           |                                             |
| Center 2.402000                                                                                                                                                                                                                                                                                       |                                |                                                |                               |                    |           | Span 0 H                                    |
| Res BW 3.0 MHz                                                                                                                                                                                                                                                                                        |                                |                                                |                               |                    |           |                                             |
|                                                                                                                                                                                                                                                                                                       |                                | #VBN                                           | V 30 kHz                      |                    |           | 1.000 ms (8192 pts                          |
| MKR MODELTRO SOL                                                                                                                                                                                                                                                                                      | х                              | Y                                              | FUNCTION                      | FUNCTION WIDTH     |           | 1.000 ms (8192 pts<br>TION VALUE            |
| MKR MODELTRO SOL                                                                                                                                                                                                                                                                                      | ×<br>288.0<br>658.6            | ү<br>µs -7.74 d<br>µs -7.07 d                  | FUNCTION<br>IBm<br>IBm        | FUNCTION WIDTH     |           | · ·                                         |
| MKR         MODE         TRC         SCL           1         N         1         t           2         N         1         t           3         N         1         t           4         4         1         t                                                                                      | х                              | ү<br>µs -7.74 d<br>µs -7.07 d                  | FUNCTION<br>IBm<br>IBm        | FUNCTION WIDTH     |           | · ·                                         |
| MKR         MODE         TRC         SCL           1         N         1         t           2         N         1         t           3         N         1         t           4         5         5         5                                                                                      | ×<br>288.0<br>658.6            | ү<br>µs -7.74 d<br>µs -7.07 d                  | FUNCTION<br>IBm<br>IBm        | FUNCTION WIDTH     |           | · ·                                         |
| MKR         MODE         TRC         SCL           1         N         1         t           2         N         1         t           3         N         1         t           4         5         6         6           7         7         7         7                                            | ×<br>288.0<br>658.6            | ү<br>µs -7.74 d<br>µs -7.07 d                  | FUNCTION<br>IBm<br>IBm        | FUNCTION WIDTH     |           | · ·                                         |
| MKR         MODE         TRC         SCL           1         N         1         t           2         N         1         t           3         N         1         t           4         5         5         5           6         7         5         5           7         8         5         5  | ×<br>288.0<br>658.6            | ү<br>µs -7.74 d<br>µs -7.07 d                  | FUNCTION<br>IBm<br>IBm        | FUNCTION WIDTH     |           | · ·                                         |
| MKR         MODE         TRC         SCLI           1         N         1         t           2         N         1         t           3         N         1         t           4         5         6         6           7         8         9         9                                           | ×<br>288.0<br>658.6            | ү<br>µs -7.74 d<br>µs -7.07 d                  | FUNCTION<br>IBm<br>IBm        | FUNCTION WIDTH     |           | · ·                                         |
| MKR         MODE         TRC         SCL           1         N         1         t           2         N         1         t           3         N         1         t           4         5         5         5           6         7         7         7           8         9         9         10 | ×<br>288.0<br>658.6            | ү<br>µs -7.74 d<br>µs -7.07 d                  | FUNCTION<br>IBm<br>IBm        | FUNCTION WIDTH     |           | · ·                                         |
| MKR         MODE         TRC         SCL           1         N         1         t           2         N         1         t           3         N         1         t           4         5         5         5           6         7         7         7           8         9         9         10 | ×<br>288.0<br>658.6            | ү<br>µs -7.74 d<br>µs -7.07 d                  | FUNCTION<br>IBm<br>IBm        | FUNCTION WIDTH     |           | · ·                                         |
| MKR MODE TRC SCL<br>1 N 1 t<br>2 N 1 t<br>3 N 1 t<br>4 5<br>6 6<br>7 8<br>9 9<br>10<br>11 8<br>4 1<br>4 5<br>6 7<br>8 9<br>10<br>11 8<br>7 8<br>9 9<br>10<br>11 8<br>1 8<br>1 8<br>1 8<br>1 8<br>1 8<br>1 8<br>1                                                                                      | ×<br>288.0<br>658.6            | μ <u>s</u> -7.74 d<br>μs -7.78 d<br>μs -7.38 d | FUNCTION<br>IBm<br>IBm<br>IBm | STATUS             |           | · ·                                         |
| MKR MODE TRC SCL<br>1 N 1 t<br>2 N 1 t<br>3 N 1 t<br>4 5<br>6 6<br>7 8<br>9 9<br>10<br>11 8<br>4 1<br>4 5<br>6 7<br>8 9<br>10<br>11 8<br>7 8<br>9 9<br>10<br>11 8<br>1 8<br>1 8<br>1 8<br>1 8<br>1 8<br>1 8<br>1                                                                                      | ×<br>288.0<br>658.6            | μ <u>s</u> -7.74 d<br>μs -7.78 d<br>μs -7.38 d | FUNCTION                      | STATUS<br>2402 MHz | FUNC      | · ·                                         |
| MKR MODE TRC SCL<br>1 N 1 t<br>2 N 1 t<br>3 N 1 t<br>4 5<br>6 6<br>7 8<br>9 9<br>10<br>11 8<br>4 1<br>4 5<br>6 7<br>8 9<br>10<br>11 8<br>7 8<br>9 9<br>10<br>11 8<br>1 8<br>1 8<br>1 8<br>1 8<br>1 8<br>1 8<br>1                                                                                      | ×<br>288.0<br>658.6            | μ <u>s</u> -7.74 d<br>μs -7.78 d<br>μs -7.38 d | FUNCTION<br>IBm<br>IBm<br>IBm | STATUS             |           | · ·                                         |

| Res BW 3.0 MHz         | #VBW 30 | Sweep 2.832 n | ns (8192 pts) |
|------------------------|---------|---------------|---------------|
| Center 2.402000000 GHz |         |               | Snan () Hz    |
| -47.0                  |         |               |               |
| -42.0                  |         |               |               |
| -37.0                  |         |               |               |
|                        |         |               | TRIG LVL      |
| -32.0                  |         |               |               |
| -27.0                  |         |               |               |
| -22.0                  |         |               |               |
| -17.0                  |         |               |               |
| -12.0                  |         |               |               |
|                        |         |               |               |

Keysight

5 dB/di Log



TbtTx 2017.12.14 XMit 2017.12.13 BLE/GFSK Mid Channel, 2440 MHz Number of Value Limit **(%)** 59.7 Pulse Width Period Pulses **(%)** N/A Results 374.466 us 627.219 us N/A 1 02:03:29 PM Jul 26, 2018 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P P P P P P ent Materials Technology SENSE:INT ALIGN OFF Trig Delay-900.0 µs Trig: Video #Atten: 10 dB PNO: Fast +++ IFGain:Low Mkr3 910.6 µs -8.09 dBm ∳<sup>3</sup> Ref Offset 21.02 dB Ref -2.00 dBm **⊘**2  $\wedge^1$ 

| Center 2.440000000 | GHz                  |                        | ļ        |                | S                | pan 0 F |
|--------------------|----------------------|------------------------|----------|----------------|------------------|---------|
| Res BW 3.0 MHz     |                      | #VBW 30                | kHz      |                | Sweep 1.000 ms ( | 8192 pt |
| MKR MODE TRC SCL   | x                    | Y                      | FUNCTION | FUNCTION WIDTH | FUNCTION VALUE   |         |
| 1 N 1 t            | 283.4 µs             | -8.72 dBm              |          |                |                  |         |
| 2 N 1 t<br>3 N 1 t | 657.8 μs<br>910.6 μs | -6.98 dBm<br>-8.09 dBm |          |                |                  |         |
| 4                  | 010.0 µ0             | 0.00 0200              |          |                |                  |         |
| 5                  |                      |                        |          |                |                  |         |
| 7                  |                      |                        |          |                |                  |         |
| 8                  |                      |                        |          |                |                  |         |
| 9                  |                      |                        |          |                |                  |         |
| 10                 |                      |                        |          |                |                  |         |

| BLE/GFSK Mid Channel, 2440 MHz |                       |        |        |     |     |         |  |  |
|--------------------------------|-----------------------|--------|--------|-----|-----|---------|--|--|
|                                | Number of Value Limit |        |        |     |     |         |  |  |
|                                | Pulse Width           | Period | Pulses | (%) | (%) | Results |  |  |
|                                | N/A N/A 5 N/A N/A N/A |        |        |     |     |         |  |  |

| RL      | RF                 | 50 Ω C               | C       |                    | 5             | SENSE:INT           |   | 🛕 ALI | IGN OFF  |            | 02:03     | 34 PM Jul 26, 2018                             |
|---------|--------------------|----------------------|---------|--------------------|---------------|---------------------|---|-------|----------|------------|-----------|------------------------------------------------|
|         |                    |                      |         | PNO: F<br>IFGain:I | ast ↔→<br>₋ow | Trig: Vi<br>#Atten: |   |       | #Avg Typ | e: Log-Pwr |           | TRACE 1 2 3 4 5<br>TYPE WWWWW<br>DET P P P P P |
| dB/div  | Ref Offs<br>Ref -2 | set 21.02<br>.00 dBn | dB<br>N |                    |               |                     |   |       |          |            |           |                                                |
|         |                    |                      |         |                    | _             |                     |   |       |          |            |           |                                                |
| 2.0     |                    |                      |         |                    |               |                     |   |       |          |            |           |                                                |
| 7.0     |                    |                      |         |                    |               |                     |   |       |          |            |           |                                                |
| 2.0     |                    |                      |         |                    |               |                     |   |       |          |            |           |                                                |
| 7.0     |                    |                      |         |                    |               |                     |   |       |          |            |           |                                                |
| 2.0     |                    |                      |         |                    |               |                     |   |       |          |            |           |                                                |
| 7.0     |                    |                      |         |                    |               |                     |   |       |          |            |           | TRIG L                                         |
| 2.0     |                    |                      |         |                    |               |                     |   |       |          |            |           |                                                |
| 7.0     |                    |                      |         |                    |               |                     |   |       |          |            |           |                                                |
| enter 2 | .4400000           | 00 GHz               |         |                    |               |                     |   |       |          |            |           | Span 0 H                                       |
|         | 3.0 MHz            |                      |         |                    | #VB۱          | № 30 kH             | z |       |          | Swee       | p 2.822 n | ns (8192 pt                                    |



TbtTx 2017.12.14 XMit 2017.12.13

|                                 |                                      | BLE/GFS                      | K High Channel, 24                                  |               |         |                                                     |
|---------------------------------|--------------------------------------|------------------------------|-----------------------------------------------------|---------------|---------|-----------------------------------------------------|
|                                 |                                      |                              | Number of                                           | Value         | Limit   |                                                     |
|                                 | Pulse Width                          | Period                       | Pulses                                              | (%)           | (%)     | Results                                             |
|                                 | 370.216 us                           | 625.389 us                   | 1                                                   | 59.2          | N/A     | N/A                                                 |
| Keyright Spectrum Ap            | alyzer - Element Materials Technol   |                              |                                                     |               |         |                                                     |
| IXI RL RF                       | 50 Ω DC                              |                              | NSE:INT                                             | ALIGN OFF     |         | 02:14:04 PM Jul 26, 2018                            |
|                                 |                                      | PNO: Fast ↔ → →<br>FGain:Low | Trig Delay-900.0 μs<br>Trig: Video<br>#Atten: 10 dB | #Avg Type:    | Log-Pwr | TRACE 1 2 3 4 5 6<br>TYPE WWWWWW<br>DET P P P P P P |
| 5 dB/div Ref                    | offset 21.02 dB<br>- <b>2.00 dBm</b> |                              |                                                     |               |         | Mkr3 914.3 µs<br>-7.48 dBm                          |
| Log                             |                                      | )1                           |                                                     | <b>2</b>      |         | <b>A</b> 3                                          |
| -7.00                           |                                      |                              |                                                     |               |         |                                                     |
| -12.0                           |                                      |                              |                                                     |               |         |                                                     |
| -17.0                           |                                      |                              |                                                     |               |         |                                                     |
| -22.0                           |                                      |                              |                                                     |               |         |                                                     |
| -27.0                           |                                      |                              |                                                     |               |         |                                                     |
| -32.0                           |                                      |                              |                                                     |               |         |                                                     |
| -37.0                           |                                      |                              |                                                     |               |         | TRIG LVL                                            |
| -42.0                           |                                      |                              |                                                     |               |         |                                                     |
|                                 |                                      |                              |                                                     |               |         |                                                     |
| -47.0                           |                                      |                              |                                                     |               |         |                                                     |
| Center 2.48000<br>Res BW 3.0 MH |                                      | #VBN                         | / 30 kHz                                            |               | Sweep   | Span 0 Hz<br>1.000 ms (8192 pts)                    |
| MKR MODE TRC SCL                | X                                    | Y                            | FUNCTION F                                          | UNCTION WIDTH | FUNC    | TION VALUE                                          |
| 1 1                             |                                      |                              |                                                     |               |         |                                                     |
| 2 <u>1</u><br>3 1               |                                      |                              |                                                     |               |         |                                                     |
| 4                               |                                      |                              |                                                     |               |         |                                                     |
| 6                               |                                      |                              |                                                     |               |         | E.                                                  |
| 7 8                             |                                      |                              |                                                     |               |         |                                                     |
| 9                               |                                      |                              |                                                     |               |         |                                                     |
| 10                              |                                      |                              |                                                     |               |         |                                                     |
|                                 |                                      | 1                            | m                                                   |               |         | •                                                   |
| MSG                             |                                      |                              |                                                     | STATUS        |         |                                                     |
|                                 |                                      | BLE/GFS                      | K High Channel, 24                                  | 80 MHz        |         |                                                     |
|                                 |                                      |                              | Number of                                           | Value         | Limit   |                                                     |
|                                 | Pulse Width                          | Period                       | Pulses                                              | (%)           | (%)     | Results                                             |
|                                 | N/A                                  | N/A                          | 5                                                   | N/A           | N/A     | N/A                                                 |

| RL RF                            | 50 Ω DC                 |                           | SENSE:INT                      | ALIGN OFF          | 02:14:10 PM Jul 26, 2018                      |
|----------------------------------|-------------------------|---------------------------|--------------------------------|--------------------|-----------------------------------------------|
|                                  |                         | PNO: Fast ↔<br>IFGain:Low | . Trig: Video<br>#Atten: 10 dB | #Avg Type: Log-Pwr | TRACE 1 2 3 4 5<br>TYPE WWWW<br>DET P P P P P |
| Ref Offs<br>dB/div Ref -2        | set 21.02 dB<br>.00 dBm |                           |                                |                    |                                               |
| -<br>.00 <del>7</del>            |                         |                           |                                |                    |                                               |
| 2.0                              |                         |                           |                                |                    |                                               |
| ·.o                              |                         |                           |                                |                    |                                               |
| .0                               |                         |                           |                                |                    |                                               |
| .0                               |                         |                           |                                |                    |                                               |
| .0                               |                         |                           |                                |                    |                                               |
| .0                               |                         |                           |                                |                    | TRIG                                          |
| .0                               |                         |                           |                                |                    |                                               |
| .0                               |                         |                           |                                |                    |                                               |
| enter 2.4800000<br>es BW 3.0 MHz | 000 GHz                 |                           | 3W 30 kHz                      | Sw                 | Span 0 H<br>eep 2.814 ms (8192 pt             |
| S DW J.V WINZ                    |                         | #VE                       | JW JU KHZ                      | SW                 | eep 2.814 ills (8192 pl                       |



XMit 2017.12.13

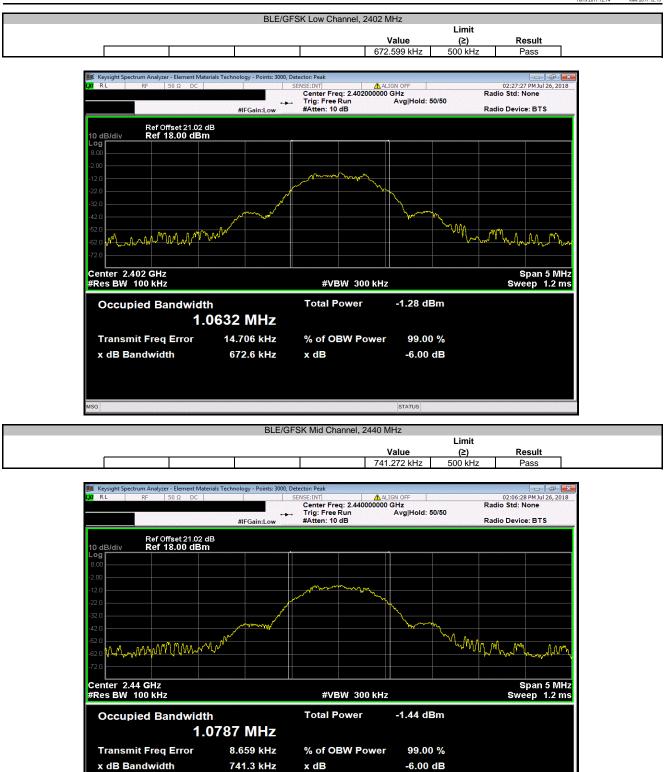
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### TEST EQUIPMENT

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYE | 17-Nov-17 | 17-Nov-18 |
| Block - DC                   | Fairview Microwave | SD3379                | AMT | 11-Oct-17 | 11-Oct-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 28-Nov-17 | 28-Nov-18 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Agilent            | N9010A                | AFL | 15-Mar-18 | 15-Mar-19 |

#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.


The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.



|                      |               |           |          |                  |                   | TbtTx 2017.12.14 | XMit 2017.12 |
|----------------------|---------------|-----------|----------|------------------|-------------------|------------------|--------------|
| EUT: WF              | РТХ           |           |          |                  | Work Order:       |                  | AMIL 2017.12 |
| Serial Number: 30    |               |           |          |                  |                   | 26-Jul-18        |              |
| Customer: Sh         |               |           |          |                  | Temperature:      |                  |              |
| Attendees: Par       |               |           |          |                  |                   | 50.8% RH         |              |
| Project: No          | one           |           |          |                  | Barometric Pres.: | 1019 mbar        |              |
| Tested by: Jo        | nathan Kiefer |           | Power:   | 110VAC/60Hz      | Job Site:         | TX09             |              |
| EST SPECIFICATION    | S             |           |          | Test Method      |                   |                  |              |
| CC 15.247:2018       |               |           |          | ANSI C63.10:2013 |                   |                  |              |
|                      |               |           |          |                  |                   |                  |              |
| COMMENTS             |               |           |          |                  |                   |                  |              |
| lone                 |               |           |          |                  |                   |                  |              |
|                      |               |           |          |                  |                   |                  |              |
|                      |               |           |          |                  |                   |                  |              |
| DEVIATIONS FROM TE   | EST STANDARD  |           |          |                  |                   |                  |              |
| lone                 |               |           |          |                  |                   |                  |              |
|                      |               |           |          |                  |                   |                  |              |
| Configuration #      | 3             |           | Jonathan | Krefer           |                   |                  |              |
|                      |               | Signature | 0        |                  |                   |                  |              |
|                      |               |           |          |                  |                   | Limit            |              |
|                      |               |           |          |                  | Value             | (≥)              | Result       |
| BLE/GFSK Low Channe  |               |           |          |                  | 672.599 kHz       | 500 kHz          | Pass         |
| BLE/GFSK Mid Channel |               |           |          |                  | 741.272 kHz       | 500 kHz          | Pass         |
| BLE/GFSK High Channe | el. 2480 MHz  |           |          |                  | 694.065 kHz       | 500 kHz          | Pass         |



TbtTx 2017.12.14 XMit 2017.12.13



STATUS



TbtTx 2017.12.14 XMit 2017.12.13





XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYE | 17-Nov-17 | 17-Nov-18 |
| Block - DC                   | Fairview Microwave | SD3379                | AMT | 11-Oct-17 | 11-Oct-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 28-Nov-17 | 28-Nov-18 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Agilent            | N9010A                | AFL | 15-Mar-18 | 15-Mar-19 |

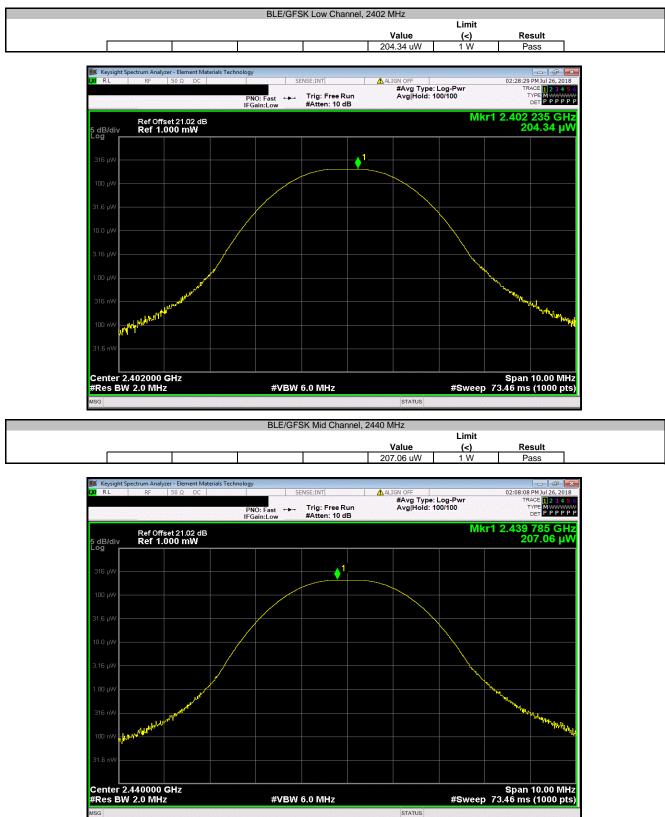
#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

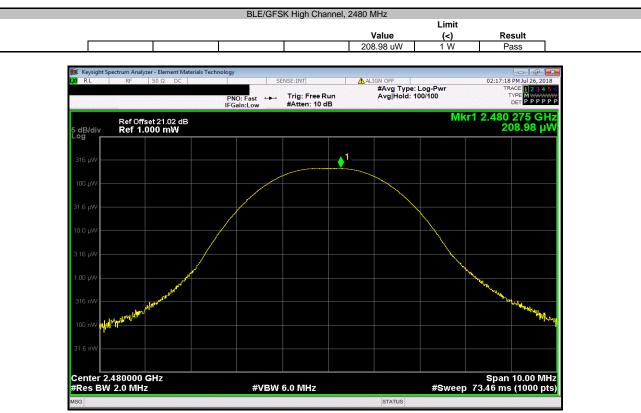
The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

De Facto EIRP Limit: The EUT meets the de facto EIRP limit of +36 dBm.




| mum have             |              |           |                    |                   | TbtTx 2017.12.14 | XMit 2017.12. |
|----------------------|--------------|-----------|--------------------|-------------------|------------------|---------------|
| EUT: WF              |              |           |                    | Work Order:       |                  |               |
| Serial Number: 30    |              |           |                    |                   | 26-Jul-18        |               |
| Customer: She        |              |           |                    | Temperature:      |                  |               |
| Attendees: Pat       |              |           |                    |                   | 52.5% RH         |               |
| Project: No          |              |           |                    | Barometric Pres.: |                  |               |
| Tested by: Jor       |              |           | Power: 110VAC/60Hz | Job Site:         | TX09             |               |
| TEST SPECIFICATIONS  | S            |           | Test Method        |                   |                  |               |
| FCC 15.247:2018      |              |           | ANSI C63.10:2013   |                   |                  |               |
|                      |              |           |                    |                   |                  |               |
| COMMENTS             |              |           |                    |                   |                  |               |
| None                 |              |           |                    |                   |                  |               |
|                      |              |           |                    |                   |                  |               |
|                      |              |           |                    |                   |                  |               |
| DEVIATIONS FROM TE   | EST STANDARD |           |                    |                   |                  |               |
| None                 | -            |           |                    |                   |                  |               |
| Configuration #      | 3            |           | Jonathan Kiefer    |                   |                  |               |
| sonnguration #       | 5            | Signature | Jonathan meger     |                   |                  |               |
|                      | 1            | <b>2</b>  |                    |                   | Limit            |               |
|                      |              |           |                    | Value             | (<)              | Result        |
| BLE/GFSK Low Channe  | el. 2402 MHz |           |                    | 204.34 uW         | 1 W              | Pass          |
|                      |              |           |                    |                   |                  | r doo         |
| BLE/GFSK Mid Channel |              |           |                    | 207.06 uW         | 1 W              | Pass          |

Report No. SHOT0005.1




TbtTx 2017.12.14 XMit 2017.12.13





TbtTx 2017.12.14 XMit 2017.12.13





XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

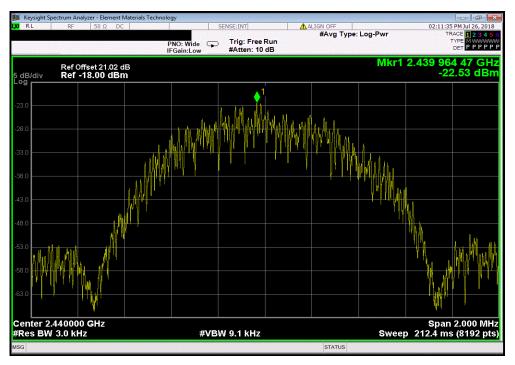
#### **TEST EQUIPMENT**

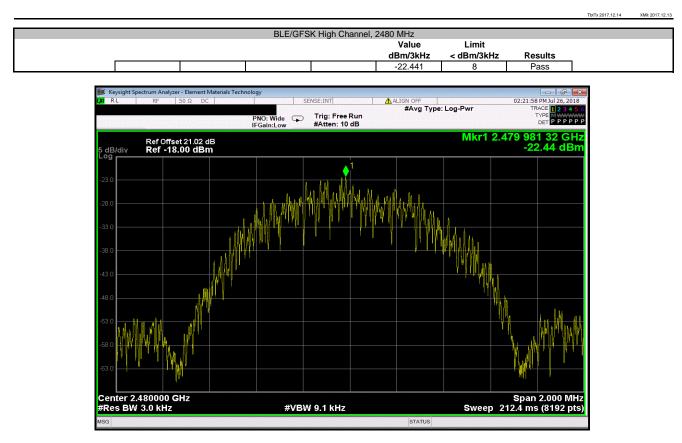
| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYE | 17-Nov-17 | 17-Nov-18 |
| Block - DC                   | Fairview Microwave | SD3379                | AMT | 11-Oct-17 | 11-Oct-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 28-Nov-17 | 28-Nov-18 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Agilent            | N9010A                | AFL | 15-Mar-18 | 15-Mar-19 |

#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.





| EUT: W                                                           |                                  |           |        |                  | Work Order:         |            |         |
|------------------------------------------------------------------|----------------------------------|-----------|--------|------------------|---------------------|------------|---------|
| Serial Number: 30                                                |                                  |           |        |                  | Date:               | 26-Jul-18  |         |
| Customer: Sh                                                     | nottracker                       |           |        |                  | Temperature:        | 22.8 °C    |         |
| Attendees: Pa                                                    |                                  |           |        |                  |                     | 53.6% RH   |         |
| Project: No                                                      |                                  |           |        |                  | Barometric Pres.:   | 1019 mbar  |         |
| Tested by: Jo                                                    |                                  |           | Pov    | ver: 110VAC/60Hz | Job Site:           | TX09       |         |
| EST SPECIFICATION                                                | IS                               |           |        | Test Method      |                     |            |         |
| CC 15.247:2018                                                   |                                  |           |        | ANSI C63.10:2013 |                     |            |         |
|                                                                  |                                  |           |        |                  |                     |            |         |
| COMMENTS                                                         |                                  |           |        |                  |                     |            |         |
|                                                                  |                                  |           |        |                  |                     |            |         |
|                                                                  |                                  |           |        |                  |                     |            |         |
| None                                                             |                                  |           |        |                  |                     |            |         |
|                                                                  |                                  |           |        |                  |                     |            |         |
| None                                                             | EST STANDARD                     |           |        |                  |                     |            |         |
| None<br>DEVIATIONS FROM TR                                       | EST STANDARD                     |           |        |                  |                     |            |         |
| None                                                             | EST STANDARD                     |           |        |                  |                     |            |         |
| None<br>DEVIATIONS FROM TI<br>None                               | EST STANDARD                     |           | 0      | Xiele            |                     |            |         |
| None<br>DEVIATIONS FROM TR                                       |                                  | Simatura  | Joneth | an Kiefer        |                     |            |         |
| None<br>DEVIATIONS FROM TI<br>None                               |                                  | Signature | Jonath | an Kiefe         | Value               | Limit      |         |
| None<br>DEVIATIONS FROM TI<br>None                               |                                  | Signature | Jonath | an Kiefer        | Value<br>dBm/2kWz   | Limit      | Posulte |
| None<br>DEVIATIONS FROM TI<br>None<br>Configuration #            | 3                                | Signature | Jonath | an Kiefer        | dBm/3kHz            | < dBm/3kHz | Results |
| None DEVIATIONS FROM TH None Configuration # BLE/GFSK Low Channe | <b>3</b><br>el, 2402 MHz         | Signature | Jonath | an Kiefe         | dBm/3kHz<br>-22.669 |            | Pass    |
| None<br>DEVIATIONS FROM TI<br>None<br>Configuration #            | 3<br>el, 2402 MHz<br>J, 2440 MHz | Signature | Jonath | an Kiefer        | dBm/3kHz            | < dBm/3kHz |         |



TbtTx 2017.12.14 XMit 2017.12.13 BLE/GFSK Low Channel, 2402 MHz Value Limit dBm/3kHz < dBm/3kHz Results -22.669 8 Pass 02:32:07 PM Jul 26, 2018 RL 🚹 ALI #Avg Type: Log-Pwr RACE 1 2 3 4 5 PNO: Wide Trig: Free Run IFGain:Low #Atten: 10 dB Mkr1 2.401 963 74 GHz -22.67 dBm Ref Offset 21.02 dB Ref -18.00 dBm 5 dB/div Center 2.402000 GHz #Res BW 3.0 kHz Span 2.000 MHz Sweep 212.4 ms (8192 pts) #VBW 9.1 kHz STATUS BLE/GFSK Mid Channel, 2440 MHz Value Limit









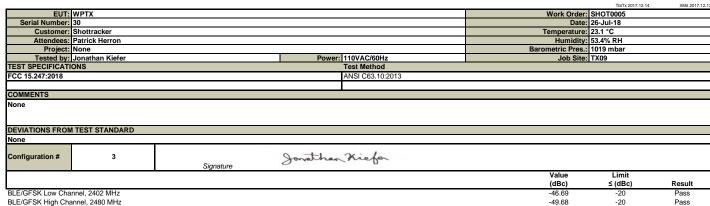
# **BAND EDGE COMPLIANCE**



XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

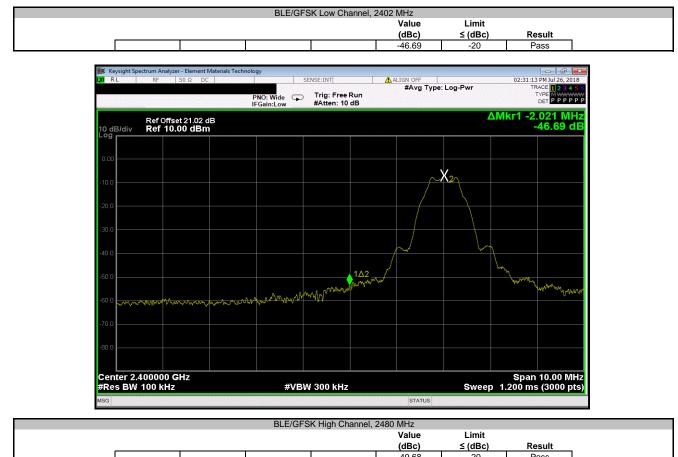

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYE | 17-Nov-17 | 17-Nov-18 |
| Block - DC                   | Fairview Microwave | SD3379                | AMT | 11-Oct-17 | 11-Oct-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 28-Nov-17 | 28-Nov-18 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Agilent            | N9010A                | AFL | 15-Mar-18 | 15-Mar-19 |

#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

# **BAND EDGE COMPLIANCE**




BLE/GFSK High Channel, 2480 MHz

# **BAND EDGE COMPLIANCE**



TbtTx 2017.12.14 XMit 2017.12.13



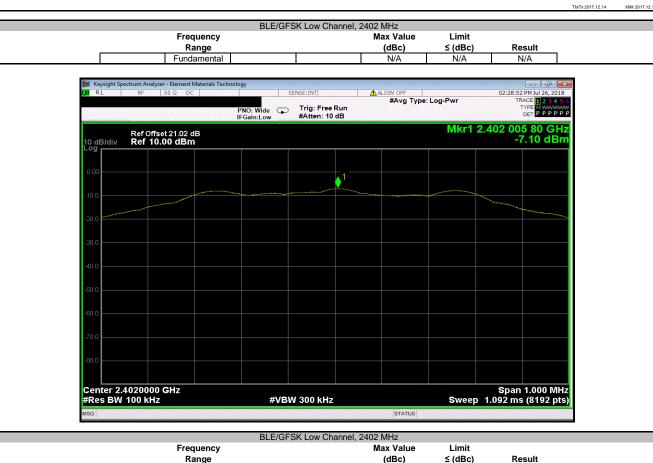




XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**


| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYE | 17-Nov-17 | 17-Nov-18 |
| Block - DC                   | Fairview Microwave | SD3379                | AMT | 11-Oct-17 | 11-Oct-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 28-Nov-17 | 28-Nov-18 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Agilent            | N9010A                | AFL | 15-Mar-18 | 15-Mar-19 |

#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.



|                                                                                                                                                                                                  |                                                                                              |           |          |                                                                                                                                      |                                                                       | TbtTx 2017.12.14                                  | XMit 2017.12.                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|
| EUT: WPT                                                                                                                                                                                         | X                                                                                            |           |          |                                                                                                                                      | Work Order:                                                           |                                                   |                                            |
| Serial Number: 30                                                                                                                                                                                |                                                                                              |           |          |                                                                                                                                      |                                                                       | 26-Jul-18                                         |                                            |
| Customer: Shot                                                                                                                                                                                   | tracker                                                                                      |           |          |                                                                                                                                      | Temperature:                                                          | 23.3 °C                                           |                                            |
| Attendees: Patri                                                                                                                                                                                 | ck Herron                                                                                    |           |          |                                                                                                                                      |                                                                       | 52.3% RH                                          |                                            |
| Project: None                                                                                                                                                                                    | 9                                                                                            |           |          |                                                                                                                                      | Barometric Pres.:                                                     | 1019 mbar                                         |                                            |
| Tested by: Jona                                                                                                                                                                                  | ithan Kiefer                                                                                 |           | Power:   | 110VAC/60Hz                                                                                                                          | Job Site:                                                             | TX09                                              |                                            |
| TEST SPECIFICATIONS                                                                                                                                                                              |                                                                                              |           |          | Test Method                                                                                                                          |                                                                       |                                                   |                                            |
| FCC 15.247:2018                                                                                                                                                                                  |                                                                                              |           |          | ANSI C63.10:2013                                                                                                                     |                                                                       |                                                   |                                            |
|                                                                                                                                                                                                  |                                                                                              |           |          |                                                                                                                                      |                                                                       |                                                   |                                            |
| COMMENTS                                                                                                                                                                                         |                                                                                              |           |          |                                                                                                                                      |                                                                       |                                                   |                                            |
| None                                                                                                                                                                                             |                                                                                              |           |          |                                                                                                                                      |                                                                       |                                                   |                                            |
|                                                                                                                                                                                                  |                                                                                              |           |          |                                                                                                                                      |                                                                       |                                                   |                                            |
|                                                                                                                                                                                                  |                                                                                              |           |          |                                                                                                                                      |                                                                       |                                                   |                                            |
| DEVIATIONS FROM TES                                                                                                                                                                              | T STANDARD                                                                                   |           |          |                                                                                                                                      |                                                                       |                                                   |                                            |
| None                                                                                                                                                                                             |                                                                                              |           |          |                                                                                                                                      |                                                                       |                                                   |                                            |
|                                                                                                                                                                                                  |                                                                                              |           |          |                                                                                                                                      |                                                                       |                                                   |                                            |
|                                                                                                                                                                                                  |                                                                                              |           |          | 21.1                                                                                                                                 |                                                                       |                                                   |                                            |
| Configuration #                                                                                                                                                                                  | 3                                                                                            |           | Jonathan | Kiefer                                                                                                                               |                                                                       |                                                   |                                            |
| Configuration #                                                                                                                                                                                  | 3                                                                                            | Signature | Jonathan |                                                                                                                                      |                                                                       |                                                   |                                            |
| Configuration #                                                                                                                                                                                  | 3                                                                                            | Signature | Jonathan | Frequency                                                                                                                            | Max Value                                                             | Limit                                             |                                            |
| -                                                                                                                                                                                                |                                                                                              | Signature | Jonathan | Frequency<br>Range                                                                                                                   | (dBc)                                                                 | ≤ (dBc)                                           | Result                                     |
| BLE/GFSK Low Channel, :                                                                                                                                                                          | 2402 MHz                                                                                     | Signature |          | Frequency<br>Range<br>Fundamental                                                                                                    | (dBc)<br>N/A                                                          | <b>≤ (dBc)</b><br>N/A                             | N/A                                        |
| BLE/GFSK Low Channel, :<br>BLE/GFSK Low Channel, :                                                                                                                                               | 2402 MHz<br>2402 MHz                                                                         | Signature |          | Frequency<br>Range<br>Fundamental<br>30 MHz - 12.5 GHz                                                                               | (dBc)<br>N/A<br>-38.43                                                | ≤ (dBc)<br>N/A<br>-20                             | N/A<br>Pass                                |
| BLE/GFSK Low Channel,<br>BLE/GFSK Low Channel,<br>BLE/GFSK Low Channel, :                                                                                                                        | 2402 MHz<br>2402 MHz<br>2402 MHz<br>2402 MHz                                                 | Signature |          | Frequency<br>Range<br>Fundamental<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz                                                          | (dBc)<br>N/A<br>-38.43<br>-45.23                                      | ≤ (dBc)<br>N/A<br>-20<br>-20                      | N/A<br>Pass<br>Pass                        |
| BLE/GFSK Low Channel,<br>BLE/GFSK Low Channel,<br>BLE/GFSK Low Channel, :                                                                                                                        | 2402 MHz<br>2402 MHz<br>2402 MHz<br>2402 MHz                                                 | Signature |          | Frequency<br>Range<br>Fundamental<br>30 MHz - 12.5 GHz                                                                               | (dBc)<br>N/A<br>-38.43                                                | ≤ (dBc)<br>N/A<br>-20                             | N/A<br>Pass                                |
| BLE/GFSK Low Channel,<br>BLE/GFSK Low Channel,<br>BLE/GFSK Low Channel,<br>BLE/GFSK Mid Channel, 2                                                                                               | 2402 MHz<br>2402 MHz<br>2402 MHz<br>2402 MHz<br>2440 MHz                                     | Signature |          | Frequency<br>Range<br>Fundamental<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz                                                          | (dBc)<br>N/A<br>-38.43<br>-45.23                                      | ≤ (dBc)<br>N/A<br>-20<br>-20                      | N/A<br>Pass<br>Pass                        |
| BLE/GFSK Low Channel,<br>BLE/GFSK Low Channel, 3<br>BLE/GFSK Low Channel, 3<br>BLE/GFSK Mid Channel, 2<br>BLE/GFSK Mid Channel, 2                                                                | 2402 MHz<br>2402 MHz<br>2402 MHz<br>2400 MHz<br>2440 MHz<br>2440 MHz                         | Signature |          | Frequency<br>Range<br>Fundamental<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>Fundamental                                           | (dBc)<br>N/A<br>-38.43<br>-45.23<br>N/A                               | ≤ (dBc)<br>N/A<br>-20<br>-20<br>N/A               | N/A<br>Pass<br>Pass<br>N/A                 |
| BLE/GFSK Low Channel,<br>BLE/GFSK Low Channel,<br>BLE/GFSK Low Channel,<br>BLE/GFSK Mid Channel, 2<br>BLE/GFSK Mid Channel, 2<br>BLE/GFSK Mid Channel, 2                                         | 2402 MHz<br>2402 MHz<br>2402 MHz<br>2400 MHz<br>2440 MHz<br>2440 MHz<br>2440 MHz             | Signature |          | Frequency<br>Range<br>Fundamental<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>Fundamental<br>30 MHz - 12.5 GHz                      | (dBc)<br>N/A<br>-38.43<br>-45.23<br>N/A<br>-45.11                     | ≤ (dBc)<br>N/A<br>-20<br>-20<br>N/A<br>-20        | N/A<br>Pass<br>Pass<br>N/A<br>Pass         |
| Configuration #<br>BLE/GFSK Low Channel,<br>BLE/GFSK Low Channel,<br>BLE/GFSK Mid Channel,<br>BLE/GFSK Mid Channel,<br>BLE/GFSK Mid Channel,<br>BLE/GFSK High Channel,<br>BLE/GFSK High Channel, | 2402 MHz<br>2402 MHz<br>2402 MHz<br>2400 MHz<br>2440 MHz<br>2440 MHz<br>2440 MHz<br>2480 MHz | Signature |          | Frequency<br>Range<br>Fundamental<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>Fundamental<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz | (dBc)<br>N/A<br>-38.43<br>-45.23<br>N/A<br>-45.11<br>-45.11<br>-44.73 | ≤ (dBc)<br>N/A<br>-20<br>-20<br>N/A<br>-20<br>-20 | N/A<br>Pass<br>Pass<br>N/A<br>Pass<br>Pass |



| 522, 61 6         |  |           |         |        |
|-------------------|--|-----------|---------|--------|
| Frequency         |  | Max Value | Limit   |        |
| Range             |  | (dBc)     | ≤ (dBc) | Result |
| 30 MHz - 12.5 GHz |  | -38.43    | -20     | Pass   |
|                   |  |           |         |        |

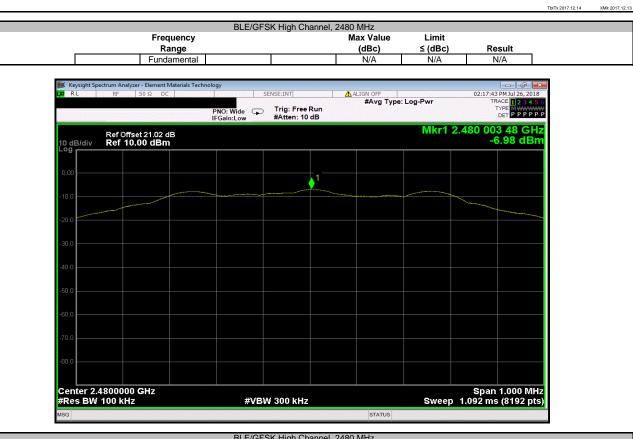
| RL       | RF 50 \$                               | 2 DC                                                                                                           |             | SENSE:INT | ALIGN OFF                                | and the second second                                                                                           | 02:29:55                      | PM Jul 26, 2018                         |
|----------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|-----------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|
|          |                                        |                                                                                                                | PNO: Fast G |           | #Avg Type                                | : Log-Pwr                                                                                                       | TR<br>1                       | ACE 1 2 3 4 5<br>TYPE MWWWW<br>DET PPPP |
| ) dB/div | Ref Offset 2 <sup>4</sup><br>Ref 10.00 |                                                                                                                |             |           |                                          | 1                                                                                                               | Mkr1 4.8<br>-45               | 04 3 GH<br>5.53 dBi                     |
| .00      |                                        |                                                                                                                |             |           |                                          |                                                                                                                 |                               |                                         |
| ).0      |                                        |                                                                                                                |             |           |                                          |                                                                                                                 |                               |                                         |
|          |                                        |                                                                                                                |             |           |                                          |                                                                                                                 |                               |                                         |
| .0       |                                        |                                                                                                                |             | 1         |                                          |                                                                                                                 |                               |                                         |
| .0       |                                        |                                                                                                                |             | dia       |                                          |                                                                                                                 |                               |                                         |
| .0       | William des and the state              | And a second |             |           | an a | a di kana di kili kana di kili kana di kili kana di kili kana di kana di kana di kana di kana di kana di kana d | مناجل <u>اور المنامر العن</u> |                                         |
| .0       |                                        |                                                                                                                |             |           |                                          |                                                                                                                 |                               |                                         |
| art 0.03 | 0 GHz                                  |                                                                                                                |             |           |                                          |                                                                                                                 | Stop_1                        | 2.500 GF                                |
|          | 100 kHz                                |                                                                                                                | #VE         | 300 kHz   |                                          | Swe                                                                                                             | ep 1.192 s                    | (8192 pi                                |

XMit 2017.12.13



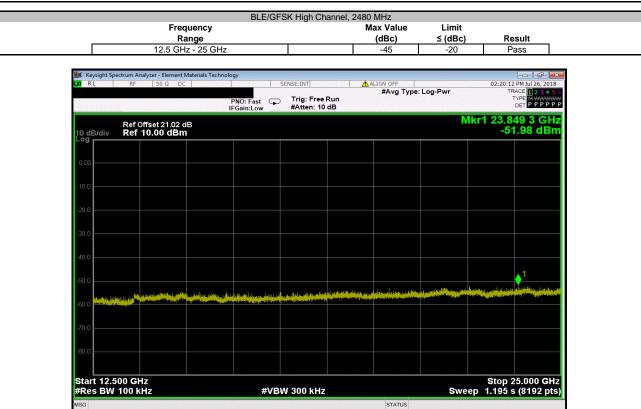

TbtTx 2017.12.14 XMit 2017.12.13 BLE/GFSK Low Channel, 2402 MHz Frequency Max Value Limit Range 12.5 GHz - 25 GHz ≤ (dBc) (dBc) Result -45.23 -20 Pass er - Element Materials Techno 02:30:53 PM Jul 26, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P P Keysight S RL GN OFF #Avg Type: Log-Pwr ALI PNO: Fast Trig: Free Run IFGain:Low #Atten: 10 dB Mkr1 24.989 3 GHz -52.33 dBm Ref Offset 21.02 dB Ref 10.00 dBm 10 dB/div Log a ball the base بالطغ a la sub de la sub d فعلول حرور فال Stop 25.000 GHz Sweep 1.195 s (8192 pts) Start 12.500 GHz #Res BW 100 kHz #VBW 300 kHz STATUS

|   |             | BLE/GFSK Mid Channel, | 2440 MHz  |         |        |  |
|---|-------------|-----------------------|-----------|---------|--------|--|
|   | Frequency   |                       | Max Value | Limit   |        |  |
| _ | Range       |                       | (dBc)     | ≤ (dBc) | Result |  |
|   | Fundamental |                       | N/A       | N/A     | N/A    |  |


| RL RF 50                         | Ω DC           | 1           | SENSE:INT                       | ALIGN OFF          | 02:08:44 PM Jul 26, 201                      |
|----------------------------------|----------------|-------------|---------------------------------|--------------------|----------------------------------------------|
|                                  |                | PNO: Wide 😱 | Trig: Free Run<br>#Atten: 10 dB | #Avg Type: Log-Pwr | TRACE 1 2 3 4 5<br>TYPE M WWW<br>DET P P P P |
| Ref Offset 2<br>dB/div Ref 10.00 | 1.02 dB<br>dBm |             |                                 | M                  | kr1 2.440 007 75 GH<br>-7.01 dBi             |
|                                  |                |             |                                 |                    |                                              |
| ).0                              |                | ~           |                                 |                    |                                              |
| 0.0                              |                |             |                                 |                    |                                              |
| I.O                              |                |             |                                 |                    |                                              |
| ).0                              |                |             |                                 |                    |                                              |
| .0                               |                |             |                                 |                    |                                              |
| .0                               |                |             |                                 |                    |                                              |
|                                  |                |             |                                 |                    |                                              |
| .0                               |                |             |                                 |                    |                                              |
| enter 2.4400000 GH               | iz             |             |                                 |                    | Span 1.000 MI<br>veep 1.092 ms (8192 pt      |
| Res BW 100 kHz                   |                | #VB         | W 300 kHz                       | Sv                 | veep 1.092 ms (8192 pt                       |

TbtTx 2017.12.14 XMit 2017.12.13




|   | BLE/GFS                   | SK Mid Channel, 2440 MHz |         |        |  |
|---|---------------------------|--------------------------|---------|--------|--|
|   | Frequency Max Value Limit |                          |         |        |  |
|   | Range                     | (dBc)                    | ≤ (dBc) | Result |  |
| [ | 12.5 GHz - 25 GHz         | -44.73                   | -20     | Pass   |  |

| RL                     | RF 50 Ω DC                           |                                                                                                                | S                                                                                                              | ENSE:INT                   | ٨۵  | LIGN OFF   |         | 02:10:            | 52 PM Jul 26, 201                                 |
|------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|-----|------------|---------|-------------------|---------------------------------------------------|
|                        | , por co                             | PNO: F<br>IFGain:                                                                                              | ast 🖵                                                                                                          | Trig: Free F<br>#Atten: 10 | Run | #Avg Type: | Log-Pwr |                   | TYPE MWWW<br>DET PPPP                             |
| ) dB/div               | Ref Offset 21.02 di<br>Ref 10.00 dBm | 3                                                                                                              |                                                                                                                |                            |     |            |         | Mkr1 23.<br>-5    | 713 5 GH<br>1.74 dB                               |
| .00                    |                                      |                                                                                                                |                                                                                                                |                            |     |            |         |                   |                                                   |
| ).0                    |                                      |                                                                                                                |                                                                                                                |                            |     |            |         |                   |                                                   |
| D.O                    |                                      |                                                                                                                |                                                                                                                |                            |     |            |         |                   |                                                   |
| 0.0                    |                                      |                                                                                                                |                                                                                                                |                            |     |            |         |                   |                                                   |
| 0.0                    |                                      |                                                                                                                |                                                                                                                |                            |     |            |         |                   | 1                                                 |
| 0.0                    |                                      | Alexandrated produces are adviced a                                                                            | and the state of the second                                                                                    | . Labelanna Madilia (      |     |            |         | in a second state | <ul> <li>↓<br/>↓↓ applichtlaggetikerig</li> </ul> |
|                        |                                      | Torthean and a series of a second | nen an fer sin der sin |                            |     |            |         |                   |                                                   |
| ).0                    |                                      |                                                                                                                |                                                                                                                |                            |     |            |         |                   |                                                   |
|                        |                                      |                                                                                                                |                                                                                                                |                            |     |            |         |                   |                                                   |
| tart 12.50<br>Res BW 1 |                                      |                                                                                                                | #VBV                                                                                                           | V 300 kHz                  |     |            | Sw      | Stop<br>eep 1.195 | 25.000 GH<br>s (8192 pt                           |



| BLE/GFSK High Channel, 2480 MHz |           |         |        |  |  |  |  |
|---------------------------------|-----------|---------|--------|--|--|--|--|
| Frequency                       | Max Value | Limit   |        |  |  |  |  |
| Range                           | (dBc)     | ≤ (dBc) | Result |  |  |  |  |
| 30 MHz - 12.5 GHz               | -43.71    | -20     | Pass   |  |  |  |  |

| PNO: Fast<br>IFGain:Low         Trig: Free Run<br>#Atten: 10 dB         #Avg Type: Log-Pwr<br>Type: Log-Pwr         Trace II 2 and<br>Type: Log-Pwr           Ref Offset 21.02 dB         Mkr1 4.961 1 G<br>-50.69 dI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RL  | Spectrum Analyzer - El | 2 DC               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SENSE:INT   |                        | LIGN OFF                     |                                                                                                                 | 02:18:45              | PM Jul 26, 2018                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------|
| Balain       Ref 10.00 dBm       -50.69 dE         000       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                        |                    | PNO: Fast (<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trig: Free  | Run                    |                              | Log-Pwr                                                                                                         | TF                    | ACE 1 2 3 4 5<br>TYPE M WWWW<br>DET P P P P P |
| 1000       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                        |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                        |                              | 1                                                                                                               | Mkr1 4.9<br>-50       | 61 1 GH<br>).69 dBr                           |
| 0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .00 |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |                              |                                                                                                                 |                       |                                               |
| A second seco | 0.0 |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |                              |                                                                                                                 |                       |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |                              |                                                                                                                 |                       |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |                              |                                                                                                                 |                       |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0  |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                        |                              |                                                                                                                 |                       |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0  | المتعادية والمحاجلين   | and the start from | A here a state of the second state of the seco |             | فالملجع وإراده المتعلم | ak in all in an all in a sub | al the second |                       |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |                              |                                                                                                                 |                       |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ).0 |                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                        |                              |                                                                                                                 |                       |                                               |
| art 0.030 GHz Stop 12.500 G<br>Res BW 100 kHz #VBW 300 kHz Sweep 1.192 s (8192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                        |                    | #\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /BW 300 kHz | <u>.</u>               |                              | Swe                                                                                                             | Stop 1<br>eep 1.192 s | 2.500 GI<br>(8192 pi                          |





TbtTx 2017.12.14 XMit 2017.12.13