		Cetecom advanced	
Bundesnetzagentur BNetzA-CAB-02/21-102		REPORT : 1-5071_22-01-06	
Testing la	aboratory	Applicant	
CTC advanced GmbH Untertuerkheimer Strasse 6 - 66117 Saarbruecken / Germ Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 90 Internet: https://www.ctcad/ e-mail: mail@ctcadvance	any 175 <u>vanced.com</u>	Building 36 Technologies LLC 150 A Street, Suite 104 02494-0249 Needham) / UNITED STADES Phone: 781-474-0500 Contact: Daniel Goodman e-mail: <u>dan@building36.com</u>	
Accredited Testing Labora The testing laboratory (are according to DIN EN ISO/II Deutsche Akkreditierungsste The accreditation is valid procedures as stated in the starting with the registration in	a of testing) is accredited EC 17025 (2018-03) by the Ile GmbH (DAkkS) for the scope of testing he accreditation certificate	Manufacturer MEC electronics Entwicklung und Produktion GmbH Dresdner Straße 45 1200 Vienna (Wien) / AUSTRIA Contact: Helmut Kraus e-mail: <u>helmut.kraus@mec.at</u>	
	Test st	andard/s	
FCC - Title 47 CFR Part 1	5 FCC - Title 47 of the Co frequency devices	ode of Federal Regulations; Chapter I; Part 15 - Radio	
RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices			
For further applied test stand	ards please refer to section 3 o	of this test report.	
	Tes	t Item	
Kind of test item:	Display		
Model name:	ADC-T40-HQ		
	ADC-140-HQ		

ISED certification number:	12323A-B36T40HQRA
Frequency band:	902 MHz – 928 MHz
Technology tested:	Zwave
Antenna:	Integrated antenna
Power supply:	4.5 V to 5.5 V DC by external power supply
Temperature range:	+5°C to +35°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

F

Christoph Schneider	
Lab Manager	
Radio Communications	

Test performed:

Tobias Wittenmeier Testing Manager Radio Communications

1 Table of contents

1	Table	of contents	. 2
2	Gener	al information	. 3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	. 3
3	Test s	tandard/s, references and accreditations	. 4
4	Repo	ting statements of conformity – decision rule	. 5
5	Test e	nvironment	. 6
6	Test i	tem	. 6
	6.1 6.2	General description Additional information	
7	Descr	iption of the test setup	. 7
	7.1 7.2	Shielded semi anechoic chamber Shielded fully anechoic chamber	
8	Seque	ence of testing	12
	8.1 8.2 8.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 12.75 GHz	13
9	Meas	urement uncertainty	
10	Sur	nmary of measurement results	16
	10.1	DSSS	16
11	RF	measurements	17
	11.1	Additional comments	17
12	Меа	surement results Part 2 DSSS	18
	12.1 12.2 12.3 12.3.1 12.3.2		19 22 22
13	Obs	ervations	28
14	Glo	ssary	29
15	Doc	ument history	30
16	Acc	reditation Certificate – D-PL-12076-01-04	30
17	Acc	reditation Certificate – D-PL-12076-01-05	31

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2022-12-07
Date of receipt of test item:	2023-01-06
Start of test:*	2023-01-16
End of test:*	2023-01-18
Person(s) present during the test:	-/-

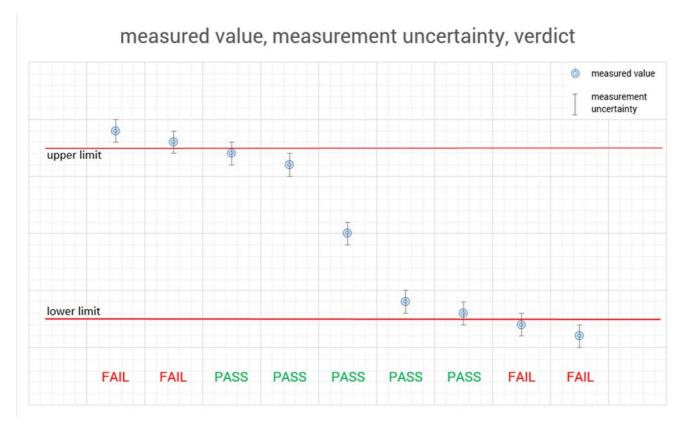
*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description				
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices				
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices				
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus				
Guidance	Version	Description				
ANSI C63.4-2014 ANSI C63.10-2013	-/- -/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices				
Accreditation	Descriptio	n				
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf					
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf					


ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	 +22 °C during room temperature tests +35 °C during high temperature tests* +5 °C during low temperature tests* 		
Relative humidity content	:		55 %		
Barometric pressure	:		1021 hpa		
Power supply	:	V _{nom} V _{max} V _{min}	 5.0 V DC by external power supply 5.5 V* 4.5 V* 		

*No tests under extreme conditions required.

6 Test item

6.1 General description

Kind of test item :	Display
Model name :	ADC-T40-HQ
HMN :	-/-
PMN :	ADC-T40-HQ-AT; ADC-T40-HQ-VZ; ADC-T40-HQ-VZ; ADC-T40-HQ-VZ-W
HVIN :	B36-T40-HQ-Z-A
FVIN :	-/-
S/N serial number :	015770000326877
Hardware status :	ADC-T40-HQ LTE
Software status :	v1.0
Firmware status :	-/-
Frequency band :	902 MHz – 928 MHz
Type of radio transmission : Use of frequency spectrum :	DSSS
Type of modulation :	OQPSK
Number of channels :	2
Antenna :	Integrated antenna
Power supply :	4.5 V to 5.5 V DC by external power supply
Temperature range :	+5°C to +35°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-5071_22-01-06_AnnexA 1-5071_22-01-06_AnnexB 1-5071_22-01-06_AnnexD

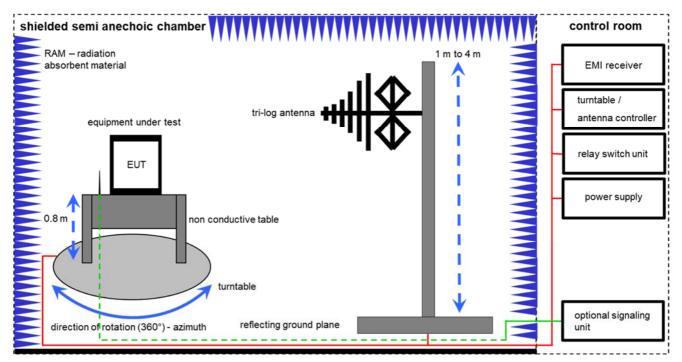
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

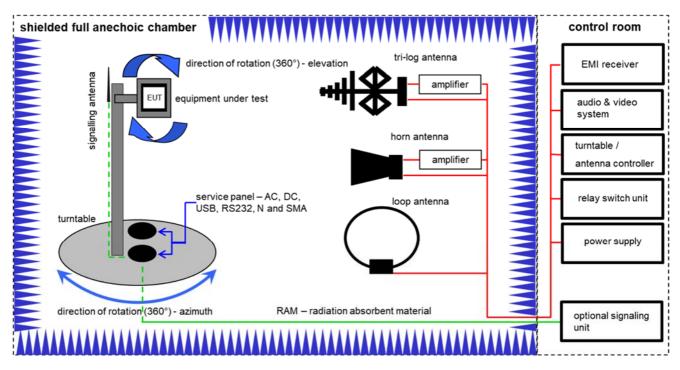
7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


<u>Example calculation:</u> FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Semi anechoic chamber	3000023	MWB AG		300000551	ne	-/-	-/-
3	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	viKi!	29.12.2021	31.12.2023
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	viKi!	30.09.2021	29.09.2023
8	Α	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	09.12.2022	31.12.2023
9	Α	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
10	Α	PC	TecLine	F+W		300004388	ne	-/-	-/-
11	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	09.12.2022	31.12.2023

7.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

<u>Example calculation:</u> FS [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μW) cetecom

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	31.07.2023
2	С	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3696	300001604	viKi!	12.03.2021	11.03.2023
3	С	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
4	С	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
5	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKl!	12.04.2021	30.04.2023
6	A,B,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
7	A,B,C	Computer	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	-/-
8	A,B,C	NEXIO EMV- Software	BAT EMC V2022.0.22.0	Nexio		300004682	ne	-/-	-/-
9	A,B,C	Anechoic chamber		TDK		300003726	ne	-/-	-/-
10	A,B,C	EMI Test Receiver 9kHz-26,5GHz	ESR26	Rohde & Schwarz	101376	300005063	k	13.12.2022	31.12.2023
11	С	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Carrier frequency separation	± 21.5 kHz				
Number of hopping channels	-/-				
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	±1dB				
Detailed conducted spurious emissions @ the band edge	±1dB				
Band edge compliance radiated	± 3 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				

10 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
\boxtimes	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

10.1 DSSS

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS 210 / A8.4(2)	Antenna gain	Nominal	Nominal	TX single channel				\boxtimes	-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	Nominal	Nominal	TX single channel				\boxtimes	-/-
§15.247(a)(2) RSS Gen clause 4.6.1	Spectrum bandwidth 6dB bandwidth	Nominal	Nominal	TX single channel				\boxtimes	-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	Nominal	Nominal	TX single channel	\boxtimes				radiated only
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance conducted	Nominal	Nominal	TX single channel				\boxtimes	-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	-/-				\boxtimes	-/-
§§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	Nominal	Nominal	TX single channel				\boxtimes	-/-
§15.209(a) RSS-Gen	TX spurious emissions radiated < 30 MHz	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(d) RSS-210 / A8.5	TX spurious emissions radiated	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.109 RSS-Gen.	RX spurious emissions radiated	Nominal	Nominal	RX				\boxtimes	-/-

11 RF measurements

11.1 Additional comme	nts	
Reference documents:	None	
Special test descriptions:	None	
Configuration descriptions:	None	
Test mode:	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself

12 Measurement results Part 2 DSSS

12.1 Maximum output power

Measurement:

Measuremei	nt parameter
Detector:	Peak
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Span:	5 MHz
Trace-Mode:	Max Hold
Used equipment:	See chapter 7.2 B
Measurement uncertainty:	See chapter 9

Limits:

FCC	IC
1 watt (30 dBm) Maximum	n Output Power Conducted

Result:

Test Conditions		ERP / dBm				
		912 MHz	-/-	920 MHz		
T _{nom}	V _{nom}	6.3 dBm		4.7 dBm		

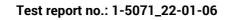
12.2 Spurious Emissions Radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

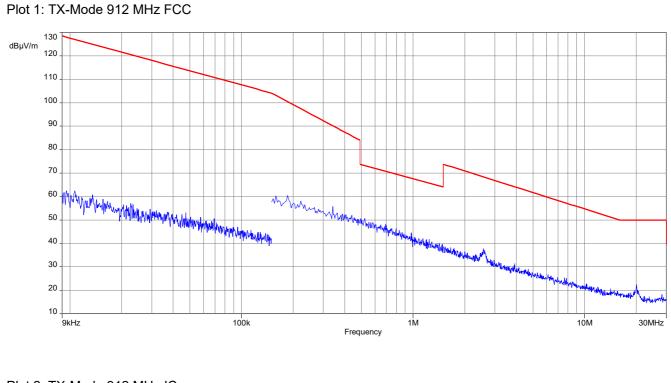
Measurement:

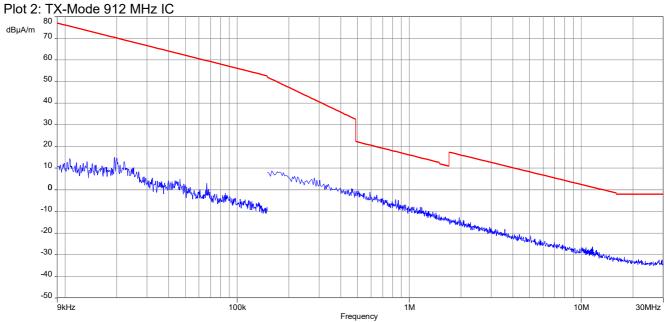
Measurement parameter							
Detector:	Peak / Quasi Peak						
Sweep time:	Auto						
Video bandwidth:	F < 150 kHz:200 HzF > 150 kHz:9 kHz						
Resolution bandwidth:	F < 150 kHz:1 kHzF > 150 kHz:100 kHz						
Span:	9 kHz to 30 MHz						
Trace-Mode:	Max Hold						
Used equipment:	See chapter 7.2 A						
Measurement uncertainty:	See chapter 9						

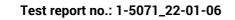

Limits:

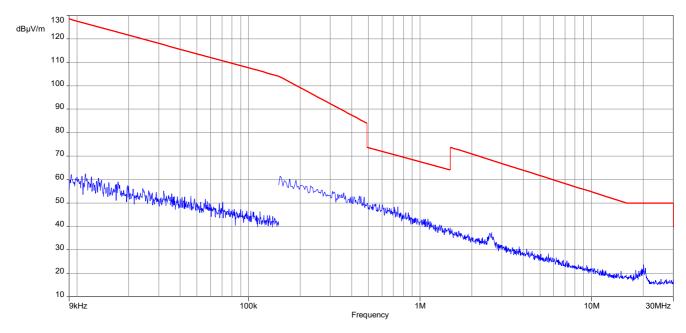
	FCC	
Frequency	Field strength	Measurement distance
(MHz)	(µV/m)	(m)
0.009 - 0.490	2400/(F/kHz)	300
0.490 – 1.705	24000/(F/kHz)	30
1.705 – 30	30 (29.5 dBµV/m)	30

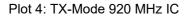
	IC	
Frequency	Field strength	Measurement distance
(MHz)	(dBµA/m)	(m)
0.009 - 0.490	2400/(F/kHz)	300
0.490 - 1.705	24000/(F/kHz)	30
1.705 – 30	0.08 (18.06 dBµA/m)	30

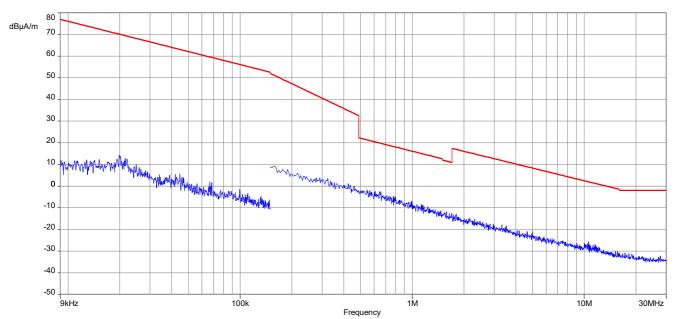

Result:


No emissions detected.




Plots:





cetecom advanced

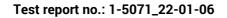
12.3 Spurious Emissions Radiated > 30 MHz

12.3.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

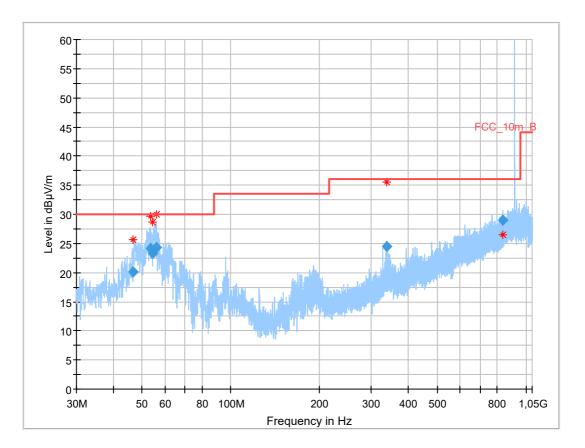
Measurement:


Measuren	Measurement parameters				
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	3 x VBW				
Video bandwidth	120 kHz				
Span	30 MHz to 1 GHz				
Trace mode	Max hold				
Measured modulation	DSSS				
Test setup	See sub clause 7.1 A				
Measurement uncertainty	See sub clause 9				

Limits:

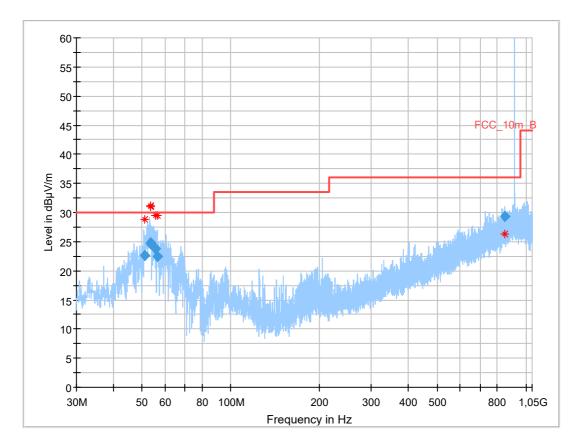
FCC IC							
Band-edge Compliance of conducted and radiated emissions							
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).							
Frequency / MHz	Field Strengt	h / (dBµV/m)	Measurement distance / m				
30 - 88	30 - 88 30.0 10						
88 – 216 33.5 10							
216 – 960	36	.0	10				
Above 960	54	.0	3				

Result:


See result table below the plots.

Plots:

Plot 1: 30 MHz - 1 GHz, horizontal & vertical polarisation, 912 MHz



Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
46.607	20.11	30.0	9.9	1000	120.0	184.0	V	103	16
53.415	24.19	30.0	5.8	1000	120.0	195.0	V	307	15
54.482	23.25	30.0	6.8	1000	120.0	167.0	V	52	15
56.091	24.31	30.0	5.7	1000	120.0	149.0	V	104	16
337.388	24.50	36.0	11.5	1000	120.0	195.0	Н	168	17
834.806	29.00	36.0	7.0	1000	120.0	110.0	V	-37	24

Plot 2: 30 MHz - 1 GHz, horizontal & vertical polarisation, 920 MHz

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
50.993	22.60	30.0	7.4	1000	120.0	104.0	V	282	15
53.528	24.78	30.0	5.2	1000	120.0	195.0	V	112	15
53.577	24.71	30.0	5.3	1000	120.0	100.0	V	15	15
55.656	23.83	30.0	6.2	1000	120.0	195.0	V	145	16
56.369	22.45	30.0	7.6	1000	120.0	152.0	V	157	16
847.932	29.38	36.0	6.6	1000	120.0	141.0	Н	120	25

12.3.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement:

Measurement parameters			
Detector	Peak / RMS		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 x RBW		
Span	1 GHz to 12.75 GHz		
Trace mode	Max hold		
DSSS, FHSS Hybrid	DSSS		
Test setup	See sub clause 7.2 C (1 GHz – 12.75 GHz)		
Measurement uncertainty	See sub clause 9		

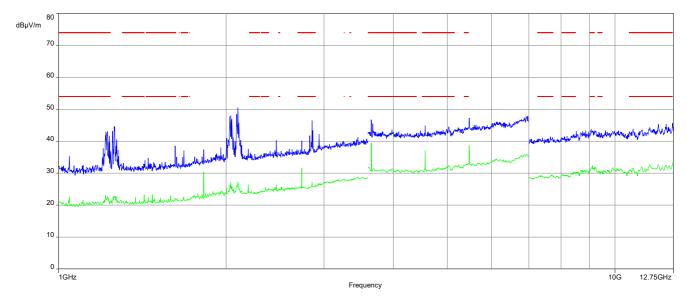
The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

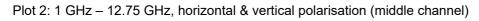
ANSI C63.10

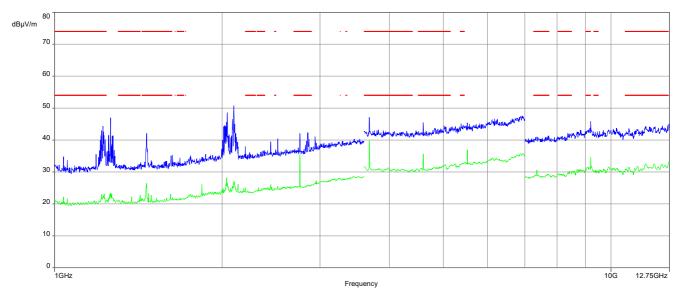

The average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor: $F = 20\log (dwell time/100 ms)$

FCC			IC
TX spurious emissions radiated			
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).			
§15.209			
Frequency / MHz Field strength / (dBµV/m)		Measurement distance / m	
Above 960 54		l.0	3


<u>Result:</u>

TX spurious emissions radiated								
	912 MHz -/-		920 MHz					
Frequency / MHz	Detector	Level / (dBµV/m)	Frequency / MHz	Detector	Level / (dBµV/m)	Frequency / MHz	Detector	Level / (dBµV/m)
All emissions were more than 10 dB			Peak		All emissions were more than 10 dB		e than 10 dB	
below the limit.			AVG		below the limit.		t.	





Plots:

Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

EUT	Equipment under text
EUT	Equipment under test Device under test
DUT	
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

Version	Applied changes	Date of release
-/-	Initial release	2023-01-23

16 Accreditation Certificate – D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
Accreditation	
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory	
CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken	
is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields:	
Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages.	accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette J. 2-250) and the Regulation (EC) No 755/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union L 218 of 9 July 2008, p. 30). DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European cooperation for Accreditation (EA), International Accreditation Forum (AF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements frequencies each other's accreditations.
Registration number of the certificate: D-PL-12076-01-04	The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.ilac.org IAF: www.ilaf.nu
Frankfurt am Main, 05.06.2020 by order (Pal-Ing) (Transfill Egnee Head of Division	
The conflictor together with its annex reflects the status at the time of the date of have. The current status of the scope of accreditation can be found in the database of accredited basies of Devisible Alkreditierungsstelle CmBA. https://www.dds.doi.en/content/accredited-basies-datas	

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

cetecom advanced

17 Accreditation Certificate – D-PL-12076-01-05

first page	last page
<image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header>	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Diffice Frankfurt am Main Office Braunschweig 10117 Berlin 60327 Frankfurt am Main Bundeallee 100 38116 Braunschweig Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 99.06.2020 The certificate sheet to be accredited back of the date of saw. The current status of the scope of accreditation can be found in the database of deviced have diversited backs. Mapping the scope of accredited back of the date of saw. The current status of the scope of accreditation can be found in the database of deviced eases. Mapping the scope of accessing to the scope of accredited back of date of saw. The current status of the scope of accreditation can be found in the database of deviced eases.	Deutsche Akkrediterungsstelle GmbH (DAkk5). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleat. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkk5. The accreditation was granted pursuant to the Act on the Accreditation Body (Akk5telleci) of 31 July 2009 (Federal Law Gaztet jp. 2-251) and the Regulation (EQ) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European International Laboratom for Accreditation (RL). International Accreditation formu (RA) and International Laboratory Accreditation Cooperation (ILA). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EAC: www.ilac.org LAC: www.ilac.org LAC: www.ilac.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf