

PARTIAL TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-5071_22-02-03

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: +49 681 5 98 - 0

Fax: +49 681 5 98 - 9075

Internet: https://www.cetecomadvanced.com

e-mail: <u>mail@cetecomadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS).

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number:

D-PL-12047-01-00.

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

Building 36 Technologies, LLC

150 A Street, Suite 104

02494-0249 Needham / UNITED STATES

Phone: 781-474-0500
Contact: Daniel Goodman
e-mail: dan@building36.com

Manufacturer

MEC electronics Entwicklung und Produktion GmbH

Dresdner Straße 45

1200 Vienna (Wien) / AUSTRIA

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Display

Model name: B36T40HDRB (ADC-T40-HD)

 FCC ID:
 2AC3T-B36T40HDRB

 Frequency:
 24.0 GHz - 24.25 GHz

Technology tested: FMCW

Antenna: Integrated patch antenna

Power supply: 5 V DC by external power supply

Temperature range: +5°C to 35°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Meheza Walla	Frank Heussner
Lab Manager	Lab Manager
Radio Labs	Radio Labs

Table of contents

1	Table	of contents	2
2	Genera	al information	3
		Notes and disclaimerApplication details	3
3	Test st	tandard/s, references and accreditations	4
4	Report	ing statements of conformity – decision rule	5
5	Test e	nvironment	6
6	Test it	em	6
		General description	
7	Descri	ption of the test setup	7
	7.1 7.2 7.3 7.4	Shielded semi anechoic chamber	10 12
8	Seque	nce of testing	14
	8.1 8.2 8.3 8.4 8.5	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz Sequence of testing radiated spurious above 50 GHz with external mixers	15 16 17
9	Measu	rement uncertainty	19
10	Sum	nmary of measurement results	20
11	Add	itional comments	21
12	Mea	surement results	22
	12.1 12.2 12.3 12.4 12.5	Bandwidth and frequency stability of the wanted signal	26 30
13	Glos	sary	42
14	Doc	ument history	43

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2023-05-05
Date of receipt of test item: 2023-12-01
Start of test:* 2024-01-11
End of test:* 2024-01-12

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

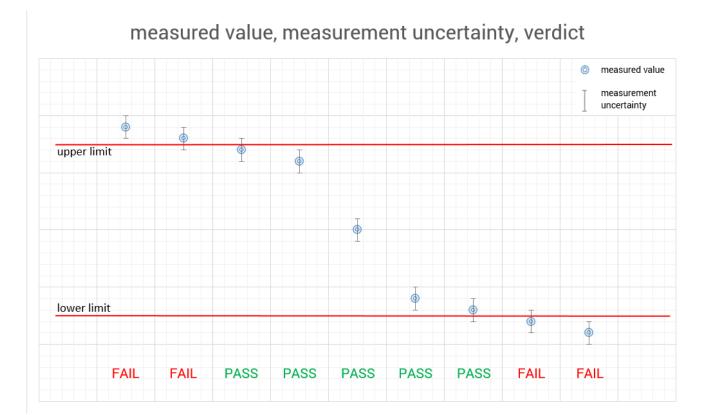
© cetecom advanced GmbH Page 3 of 43

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

Guidance	Version	Description
		American National Standard for Methods of Measurement of
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and
		Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices


© cetecom advanced GmbH Page 4 of 43

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

© cetecom advanced GmbH Page 5 of 43

5 Test environment

Temperature :		T _{nom} T _{max}	+22 °C during room temperature tests -/- °C during high temperature tests
		T_{min}	-/- °C during low temperature tests
Relative humidity content	:		49 %
Barometric pressure	:		990 hPa to 1010 hPa
		V_{nom}	5.1 V DC by external power supply (provided by customer)
Power supply	:	V_{max}	-/- V
		V_{min}	-/- V

6 Test item

6.1 General description

Kind of test item :	Display
Model name :	B36T40HDRB (ADC-T40-HD)
S/N serial number :	1264190623470001
Hardware status :	B36-T40-HD-Z-B
Software status :	n/a
Firmware status :	V1.8
Frequency band :	24.0 GHz – 24.25 GHz
Type of modulation :	FMCW
Number of modes :	1
Antenna :	Integrated patch antenna
Power supply :	5 V DC by external power supply
Temperature range :	+5°C to 35°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-5071/22-02-01_AnnexA

1-5071/22-02-01_AnnexB 1-5071/22-02-01_AnnexD

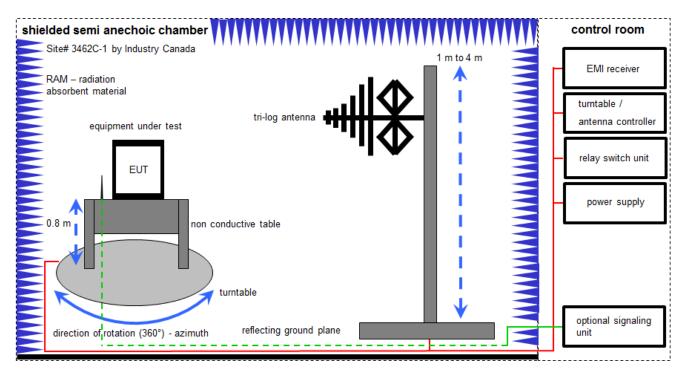
© cetecom advanced GmbH Page 6 of 43

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© cetecom advanced GmbH Page 7 of 43

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

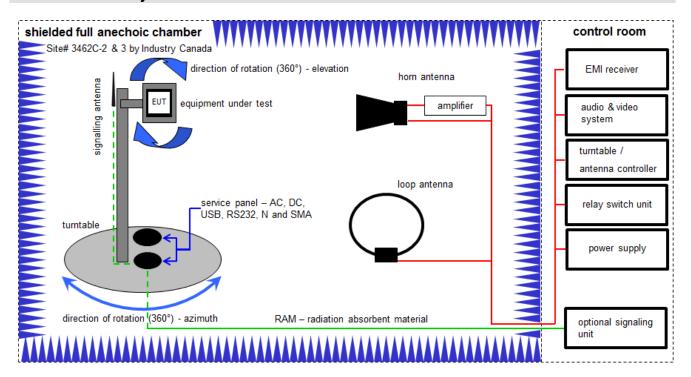
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

© cetecom advanced GmbH Page 8 of 43


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Analyzer- Impedence-System	AIS16/1	Spitzenberger + Spies GmbH & Co. KG	UO2076 07/0 1023	400001751	k	19.10.2023	31.10.2025
2	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
3	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	06.12.2023	31.12.2024
5	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	n. a.	Semi anechoic chamber	3000023	MWB AG		300000551	ne	-/-	-/-
7	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	216	300003288	vlKI!	31.08.2023	31.08.2025
9	n. a.	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
10	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-

© cetecom advanced GmbH Page 9 of 43

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$

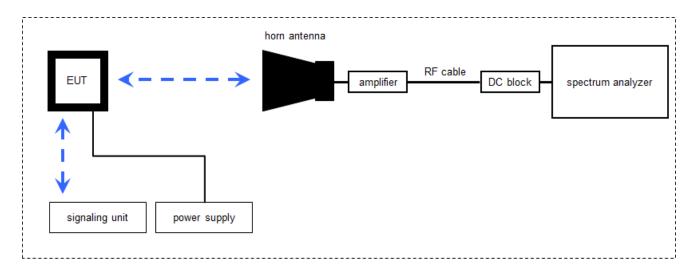
OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

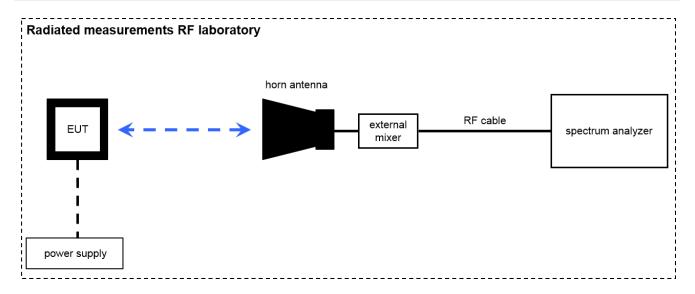
Example calculation:

OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μ W)

© cetecom advanced GmbH Page 10 of 43


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	vlKI!	19.07.2023	31.07.2025
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
5	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	05.12.2023	31.12.2026
6	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vlKI!	11.02.2022	29.02.2024
7	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2023	31.12.2024
8	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	n. a.	MXG Microwave Analog Signal Generator	N5183A	Agilent Technologies	MY47420220	300003813	vlKI!	07.12.2022	31.12.2025
10	n. a.	NEXIO EMV- Software	BAT EMC V2022.0.32.0	Nexio		300004682	ne	-/-	-/-
11	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-
12	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
13	n. a.	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-


© cetecom advanced GmbH Page 11 of 43

7.3 Radiated measurements > 18 GHz

7.4 Radiated measurements > 50/85 GHz

Measurement distance: horn antenna e.g. 75 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \text{ }\text{μV/m})$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP $[dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 \mu W)$

Note: conversion loss of mixer is already included in analyzer value.

© cetecom advanced GmbH Page 12 of 43

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2022	08.03.2024
2	n. a.	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	19.07.2023	31.07.2024
3	n. a.	Harmonic Mixer 3- Port, 60-90 GHz	FS-Z90	R&S	101555	300004691	k	25.08.2023	31.08.2024
4	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	Rohde & Schwarz	101411	300004959	k	21.07.2023	31.07.2024
5	n. a.	Harmonic Mixer 3- port, 90-140 GHz	FS-Z140	Rohde & Schwarz	101119	300005581	k	03.08.2023	31.08.2024
6	17a	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vlKI!	24.01.2024	23.01.2026
7	n. a.	Power supply	N5767A	Agilent Technologies	US14J1569P	300004851	vlKI!	06.12.2023	31.12.2026
8	n. a.	Signal- and Spectrum Analyzer 2 Hz - 50 GHz	FSW50	Rohde&Schwarz	101560	300006179	k	04.04.2023	30.04.2024
9	A027	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKI!	24.01.2024	23.01.2026
10	A031	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKI!	24.01.2024	23.01.2026
11	n. a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
12	A025	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
13	A036	Std. Gain Horn Antenna 60-90 GHz	COR 60_90	Thomson CSF		300000814	ev	-/-	-/-
14	A027	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
15	A029	Std. Gain Horn Antenna 92.3-140 GHz	2824-20	Flann	*	300001993	ne	-/-	-/-

© cetecom advanced GmbH Page 13 of 43

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© cetecom advanced GmbH Page 14 of 43

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 15 of 43

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 16 of 43

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 17 of 43

8.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by
 the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum
 analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic
 falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 18 of 43

9 Measurement uncertainty

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 18 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 18 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Conducted unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	±1°C
Humidity	± 3 %

© cetecom advanced GmbH Page 19 of 43

10 Summary of measurement results

	Io deviations from the technical specifications were ascertained					
	There were deviations from the technical specifications ascertained					
\boxtimes	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.					

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC 47 CFR Part 15	see below	2024-02-16	-/-

Test specification clause	Test case	Temperature conditions	Power supply	Pass	Fail	NA	NP	Remark
§15.215(c) / §15.249 (b)(2)	Bandwidth and frequency stability of the wanted signal	Nominal Extreme	Nominal Extreme	⊠ BW			freq.	Only test of bandwidth ²⁾ , no test of frequency stability
§15.249(b)(3)	Antenna gain & beam width	Nominal	Nominal			\boxtimes		-/-
§15.249(a), (b)(1), (c), (e)	Field strength of fundamental emission	Nominal	Nominal					complies ²⁾
§15.209(a) / §15.249(d)	Field strength of emissions (radiated spurious)	Nominal	Nominal					complies ²⁾
§15.207(a), (c)	Conducted emissions < 30 MHz	Nominal	Nominal				\boxtimes	-/-

Note:

- 1) NA = Not applicable; NP = Not performed
- 2) Partial tests according test plan: Only Stop Mode (middle frequency) tested

© cetecom advanced GmbH Page 20 of 43

11 Additional comments

Referen •	ce documents: None			
-	test description	ns:		
Configu •	ration descripti None	ions:		
Kind of	device:		Fixed, p	oint-to-point operation system
		intentio		o-multipoint system, omnidirectional application or multiple co-located ators transmitting the same information
		\boxtimes	Other	
Note: •	employing a fix	ced trans	smitter to ations, a	nt operation as referred to in this paragraph shall be limited to systems ransmitting to a fixed remote location. Point-to-multipoint systems, and multiple co-located intentional radiators transmitting the same
	vices (EUT):	- NA - al - /	· l	
3)	EUTT: The Stop	o-Mode (only mic	ddle) is used according to test plan.
	t ed equipment AE1։ Power sup			
Additio	nal test modes:			No test modes available
				Special test modes/special software (see description below)
				Stop-Modes (see description below)

Stop-Modes:

In addition to the normal operation mode, Stop-Modes are used in accordance with CFR 47 Part §15.31 (c) & (m), in which the frequency sweep is stopped at the following positions in the range of operation:

- Stop-Mode, low frequency: not used
- Stop-Mode, middle frequency: 24.149 GHz
- Stop-Mode, high frequency: not used

Details on test mode settings:

According to the customer's instructions, the Stop-Mode (middle) is selected in the software settings of the DUT.

© cetecom advanced GmbH Page 21 of 43

12 Measurement results

12.1 Bandwidth and frequency stability of the wanted signal

Description:

Measurement of the bandwidth and the frequency stability of the wanted signal (fundamental emission) under temperature and supply voltage variations.

Limits and provisions:

§15.215(c):

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

	Designated frequency	/ bands of §15.249		
Kind of device	Fundamental frequency [GHz]	f∟ [GHz]	f _H [GHz]	Bandwidth [MHz]
Fixed, point-to-point system (see also 15.249(b)(2))	24.05-24.25	> 24.05	< 24.25	< 200
Other	0.902 - 0.928	> 0.902	< 0.928	< 26 MHz
Other	2.400 - 2.4835	> 2.400	< 2.4835	< 83.5 MHz
Other	5.725 - 5.875	> 5.725	< 5.875	< 150 MHz
Other	24.0 – 24.25	> 24.0	< 24.25	<250 MHz

15.249(b): Fixed point-to-point systems

[...] Fixed, point-to-point operation is permitted in the 24.05–24.25 GHz band subject to the following conditions: [...]

(2) The frequency tolerance of the carrier signal shall be maintained within ±0.001% of the operating frequency over a temperature variation of −20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery. [...]

© cetecom advanced GmbH Page 22 of 43

Measurement:

Measurement parameter			
Detector:	Pos-Peak		
Resolution bandwidth:	200 kHz		
Video bandwidth:	300 kHz		
Trace-Mode:	Max Hold		

Measurement procedures:

Bandwidth: ANSI C63.10-2013 6.9

• Frequency stability: ANSI C63.10-2013 6.8

Measurement results:

20 dB bandwidth at normal conditions:

EUT	Mode	Test condition	f∟ [GHz]	f _н [GHz]	Bandwidth [MHz]
1	Stop (middle)	T_{nom} / V_{nom}	24.1433	24.1535	10.2

Verdict: Not Compliant / Compliant

Frequency stability / tolerance:


Not performed (not part of test plan for partial test report).

© cetecom advanced GmbH Page 23 of 43

Page 24 of 43

Plot 1: 20dB bandwidth at normal condition, Stop Mode (middle)

© cetecom advanced GmbH

12.2 Antenna gain & beam width

Description:

Information on the minimum antenna gain and maximum beam width.

Limits and provisions:

15.249(b): Fixed point-to-point systems

[...] Fixed, point-to-point operation is permitted in the 24.05–24.25 GHz band subject to the following conditions: [...]

(3) Antenna gain must be at least 33 dBi. Alternatively, the main lobe beamwidth must not exceed 3.5 degrees. The beamwidth limit shall apply to both the azimuth and elevation planes. At antenna gains over 33 dBi or beamwidths narrower than 3.5 degrees, power must be reduced to ensure that the field strength does not exceed 2500 millivolts/meter.

Results:

Not required (DUT: Other device, not fixed point-to-point system, see chapter 11)

Verdict: Not Applicable

© cetecom advanced GmbH Page 25 of 43

12.3 Field strength of fundamental emission

Description:

Measurement of the maximum radiated field strength of the wanted signal (fundamental emission).

Limits and provisions:

15.249(b): Fixed point-to-point systems

[...] Fixed, point-to-point operation is permitted in the 24.05–24.25 GHz band subject to the following conditions: [...]

(1) The field strength of emissions in this band shall not exceed 2500 millivolts/meter.

Kind of device	Fundamental frequency (GHz)	Field strength of fundamental (mV/m)
Fixed point-to-point system	24.05-24.25	2500

§15.249 (a):

Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Kind of device	Fundamental frequency (GHz)	Field strength of fundamental (mV/m)
Other	0.902-0.928	50
Other	2.400-2.4835	50
Other	5.725-5.875	50
Other	24.0-24.25	250

§15.249 (c):

Field strength limits are specified at a distance of 3 meters.

§15.249 (e):

As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the **peak field strength** of any emission shall not exceed the maximum permitted average limits specified above by more than **20 dB** under any condition of modulation.

For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

© cetecom advanced GmbH Page 26 of 43

§15.35(b):

Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz. When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§ 15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device, e.g., the total peak power level. Note that the use of a pulse desensitization correction factor may be needed to determine the total peak emission level. The instruction manual or application note for the measurement instrument should be consulted for determining pulse desensitization factors, as necessary.

§15.31 (c):

Except as otherwise indicated in §15.256, for swept frequency equipment, measurements shall be made with the frequency sweep stopped at those frequencies chosen for the measurements to be reported.

© cetecom advanced GmbH Page 27 of 43

Applicable limits according to §15.249 (b):

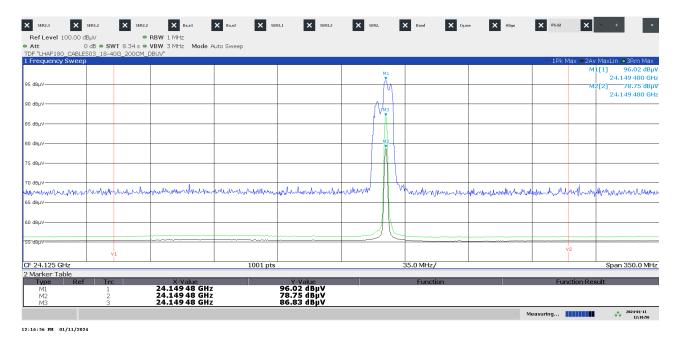
Kind of device	Fundamental frequency	Field strength	of fundamental	Measurement	Power delivered	
Kina of device	(GHz)	average value	peak value	distance	to the antenna	
Other	24.0-24.25	108 dBµV/m	128 dBµV/m	3 m	-/-	

Measurement:

Measurement parameter			
Detector:	Peak / Linear average		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Trace-Mode:	Max Hold		

Measurement results:

EUT	Frequency [GHz]	Field strength of fundamental @ 3m [dBµV/m]	Applicable limit	Margin [dB]	Plot
[GHZ]		Average value		ĮuБj	
1	24.149	79	108 dBμV/m	29	2


EUT	Frequency [GHz]	Field strength of fundamental @ 3m [dBµV/m] Peak value	Applicable limit	Margin [dB]	Plot
1	24.149	96	128 dBµV/m	32	2

Verdict: Compliant

© cetecom advanced GmbH Page 28 of 43

Plot 2: Field strength of fundamental emission, Stop Mode (middle)

© cetecom advanced GmbH Page 29 of 43

12.4 Field strength of emissions (radiated outside of the specified frequency bands)

Description:

Measurement of the field strength of emissions radiated outside of the specified frequency bands (in transmit mode).

Limits and provisions:

§15.249 (a):

Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency (GHz)	Field strength of harmonics (mV/m)
0.902-0.928	0.5
2.400-2.4835	0.5
5.725-5.875	0.5
24.0-24.25	2.5

§15.249 (c):

Field strength limits are specified at a distance of 3 meters.

§15.249 (c):

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

§15.249 (e):

As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the **peak field strength** of any emission shall not exceed the maximum permitted average limits specified above by more than **20 dB** under any condition of modulation. [...]

§15.205(d)(9):

Devices operated in the 24.0–24.25 GHz band under § 15.249 are exempt from complying with the requirements of this section for the 48.0–48.5 GHz and 72.0–72.75 GHz bands only, and shall not exceed the limits specified in § 15.249(a).

© cetecom advanced GmbH Page 30 of 43

§15.209 (a):

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 88	100**	3
88 - 216	150**	3
216 – 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241

§15.209(b):

In the emission table above, the tighter limit applies at the band edges.

§15.209(c):

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

§15.209(d):

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

© cetecom advanced GmbH Page 31 of 43

§15.31 (c):

Except as otherwise indicated in §§ 15.255 and 15.256, for swept frequency equipment, measurements shall be made with the frequency sweep stopped at those frequencies chosen for the measurements to be reported.

§15.33(a):

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph: [...]

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

Calculation of limits according to §15.249 (c):

$$E_{pot} = E_{fund} - 50 \text{ dB}$$

- E_{pot}: Potential limit according to §15.249 (c)
- E_{fund}: Measured field strength of fundamental emission @ 3m (see chapter 12.3)

EUT	Measured field strength of fundamental emission @ 3m [dBµV/m]	Potential limit according to §15.249 (c) [dBµV/m]	Limit according to §15.209 [dBµV/m]
	average value	average value	average value
1	79	29	54 (f > 1GHz)

Note:

- The limit value with the lesser attenuation compared to the fundamental field strength applies.
- The level of any unwanted emissions shall not exceed the level of the fundamental frequency.

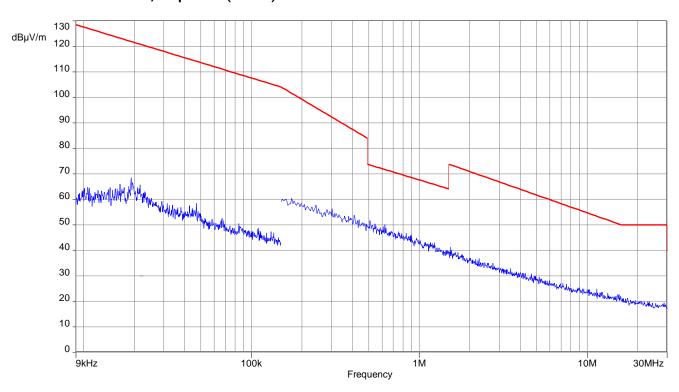
Applicable limits according to §15.249 (a),(c):

EUT	Harmonics Emissions radiated outsi frequency bands (exce		•	
	average value	peak value	average value peak value	
1	68 dBμV/m	88 dBµV/m	54 dBμV/m	74 dBμV/m

© cetecom advanced GmbH Page 32 of 43

Measurement:

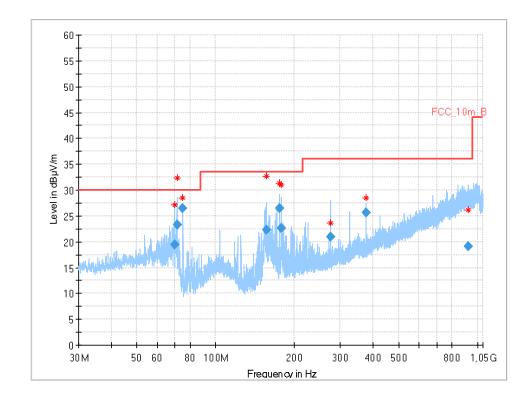
Measurement parameter				
Detector:	Quasi Peak / Peak / Linear average			
Resolution bandwidth:	F < 1 GHz: 100 kHz			
Resolution bandwidth.	F > 1 GHz: 1 MHz			
Video bandwidth:	F < 1 GHz: 300 kHz			
video bandwidth.	F > 1 GHz: 3 MHz			
Trace-Mode:	Max Hold			


Measurement results:

Emissions radiated outside of the specified frequency bands:

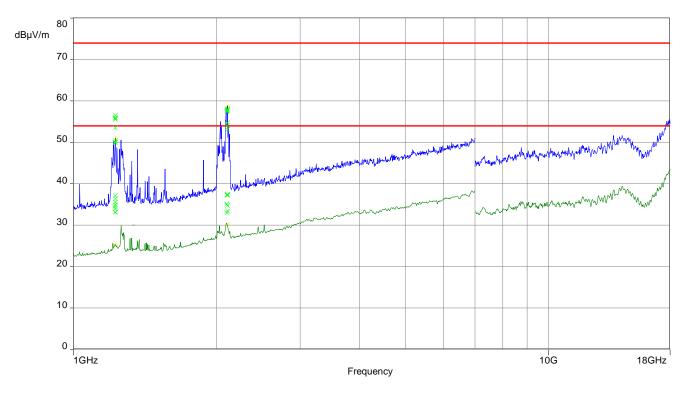
Frequency f [MHz]	Detector	Measured level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Pleas	Please refer to the following plots for more information on the level of sp		level of spurious	s emissions
-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-

Verdict: Compliant


Plot 3: 9 kHz to 30 MHz, Stop Mode (middle)

© cetecom advanced GmbH Page 33 of 43

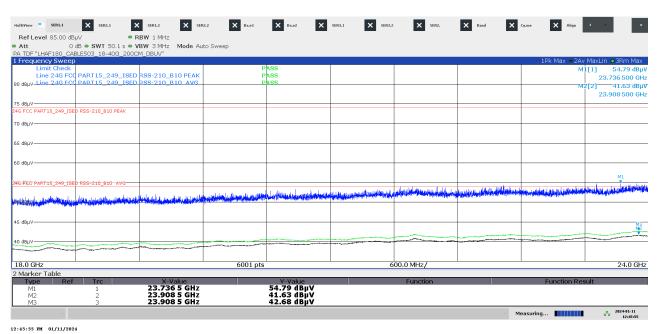
Plot 4: 30 MHz to 1 GHz, Stop Mode (middle)



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
69.650	19.36	30.0	10.6	1000	120.0	276.0	V	225	11
71.361	23.31	30.0	6.7	1000	120.0	301.0	٧	353	10
74.994	26.49	30.0	3.5	1000	120.0	297.0	٧	308	9
156.553	22.35	33.5	11.2	1000	120.0	106.0	٧	242	10
174.988	26.48	33.5	7.0	1000	120.0	107.0	٧	135	11
178.658	22.57	33.5	10.9	1000	120.0	107.0	٧	132	11
274.998	20.92	36.0	15.1	1000	120.0	106.0	٧	95	15
374.979	25.68	36.0	10.3	1000	120.0	100.0	٧	3	17
920.705	19.04	36.0	17.0	1000	120.0	178.0	٧	270	25

© cetecom advanced GmbH Page 34 of 43

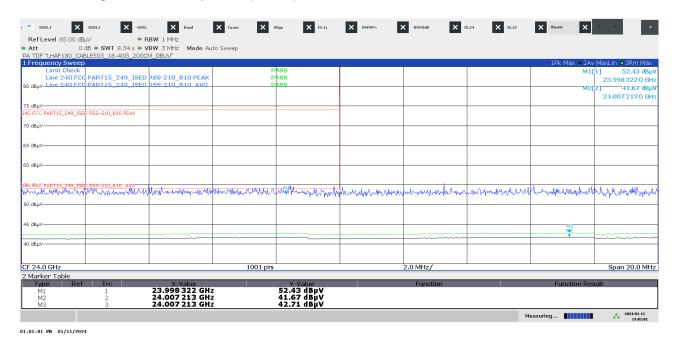
Plot 5: 1 GHz to 18 GHz, Stop Mode (middle)

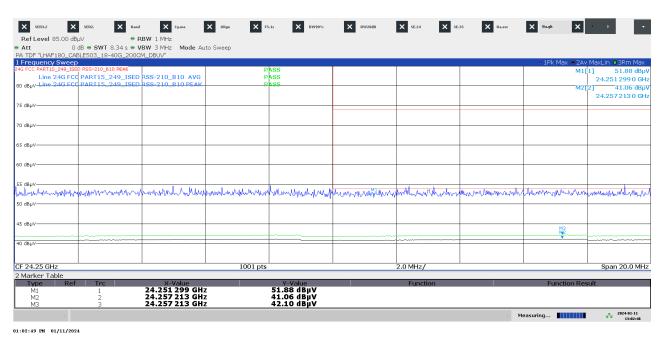


Note:

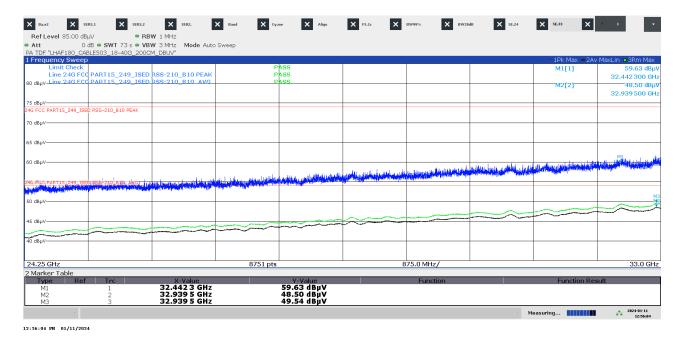
• Blue line: Peak detector

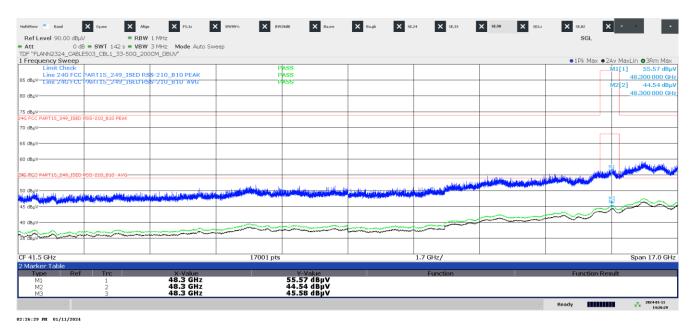
• Green line: Average (RMS) detector


Plot 6: 18 GHz to 24 GHz, Stop Mode (middle)

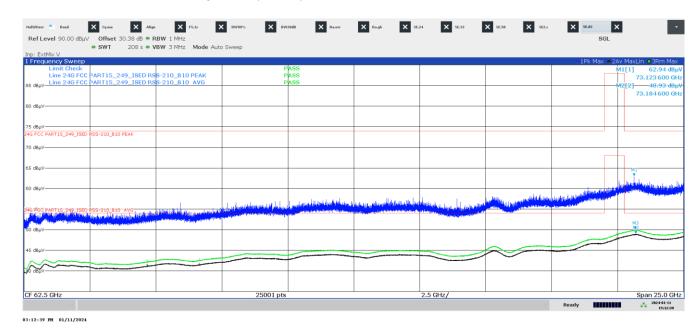

© cetecom advanced GmbH Page 35 of 43

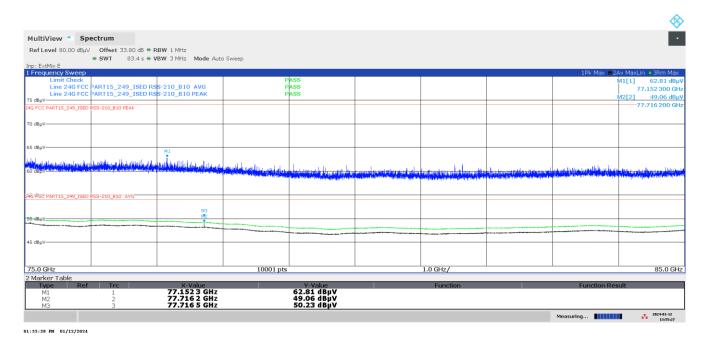
Plot 7: Band edge 24.0 GHz, Stop Mode (middle)


Plot 8: Band edge 24.25 GHz, Stop Mode (middle)

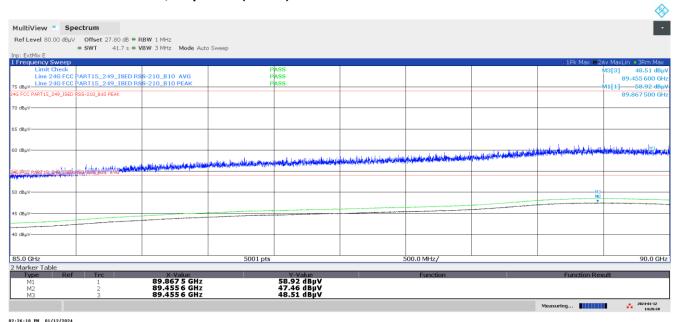

© cetecom advanced GmbH Page 36 of 43

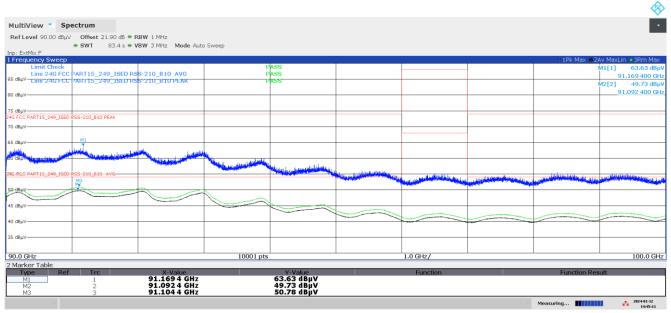
Plot 9: 24.25 GHz to 33 GHz, Stop Mode (middle)


Plot 10: 33 GHz to 50 GHz, Stop Mode (middle)


© cetecom advanced GmbH Page 37 of 43

Plot 11: 50 GHz to 75 GHz, Stop Mode (middle)


Plot 12: 75 GHz to 85 GHz, Stop Mode (middle)


© cetecom advanced GmbH Page 38 of 43

Plot 13: 85 GHz to 90 GHz, Stop Mode (middle)

Plot 14: 90 GHz to 100 GHz, Stop Mode (middle)

02:45:12 PM 01/12/2024

© cetecom advanced GmbH Page 39 of 43

12.5 Conducted emissions < 30MHz (AC power line)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Limits and provisions:

§15.207(a):

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \, \mu H/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Fraguency of emission (MILE)	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 – 30	60	50	

^{*} Decreases with the logarithm of the frequency

§15.207(c):

Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Measurement:

Parameter			
Detector:	Peak - Quasi Peak / Average		
Sweep time:	Auto		
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span:	9 kHz to 30 MHz		
Trace-Mode:	Max Hold		

© cetecom advanced GmbH Page 40 of 43

Measurement results:

Not part of test plan.

Verdict: Not performed

© cetecom advanced GmbH Page 41 of 43

13 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© cetecom advanced GmbH Page 42 of 43

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2024-02-16

© cetecom advanced GmbH Page 43 of 43