

ndesnetzagentu

BNetzA-CAB-02/21-102

TEST REPORT

Test report no.: 1-0981/20-01-05

Testing laboratory

CTC advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: https://www.ctcadvanced.com e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Building 36 Technologies, LLC 150 A Street, Suite 104 02494-0249 Needham / UNITED STATES Phone: 781-474-0500 Contact: Daniel Goodman e-mail: dan@building36.com

Manufacturer

MEC electronics Entwicklung und Produktion GmbH Dresdner Straße 45 1200 Wien / AUSTRIA

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices RSS - 210 Issue 10 Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

	Test Item							
Kind of test item:	Display unit							
Model name:	DM1ALM							
FCC ID:	2AC3T-B36T40HDRA							
IC:	12323A-B36T40HDRA							
Frequency:	24 GHz – 24.25 GHz							
Technology tested:	FMCW Radar							
Antenna:	Integrated patch antenna							
Power supply:	5 V DC by external power supply							
Temperature range:	+5°C to +35°C							

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

M. Wo

cn=Meheza Walla, o=CTC advanced GmbH, ou=WAL-200806, email=meheza.walla@ctcadvanced.com, c=DE 2021.05.25 13:59:19 +02'00'

Meheza Walla Lab Manager **Radio Communications**

Test performed:

Sebastian Janoschka Lab Manager **Radio Communications**

cn=Sebastian Janoschka, o=CTC advanced GmbH, ou=JKA-190527, email=sebastian.janoschka@ctcadvanced.com, c=DE 2021.05.25 13:56:46 +02'00'

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	tandard/s and references	
4	Repor	ting statements of conformity – decision rule	5
5	Test e	nvironment	6
6	Test i	em	6
	6.1 6.2	General description Additional information	
7	Descr	iption of the test setup	7
	7.1 7.2 7.3 7.4 7.5	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz Radiated measurements > 50/85 GHz AC conducted	10 12 12
8	Measu	urement uncertainty	15
9	Seque	ence of testing	16
	9.1 9.2 9.3 9.4 9.5	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz Sequence of testing radiated spurious above 50/85 GHz with external mixers	17 18 19
10	Sun	nmary of measurement results	21
11	Меа	surement results	22
	11.1 11.2 11.3 11.4 11.5	Field strength of fundamental emission Occupied bandwidth (99% bandwidth) Field strength of emissions (radiated spurious) Conducted emissions < 30 MHz Frequency Stability	26 27 46
Anr	nex A	Glossary	62
Anr	nex B	Document history	63
Anr	nex C	Accreditation Certificate – D-PL-12076-01-04	63
Anr	nex D	Accreditation Certificate – D-PL-12076-01-05	64

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2021-01-27
Date of receipt of test item:	2021-03-24
Start of test:*	2021-03-30
End of test:*	2021-04-01
Parson(s) present during the test	-/-

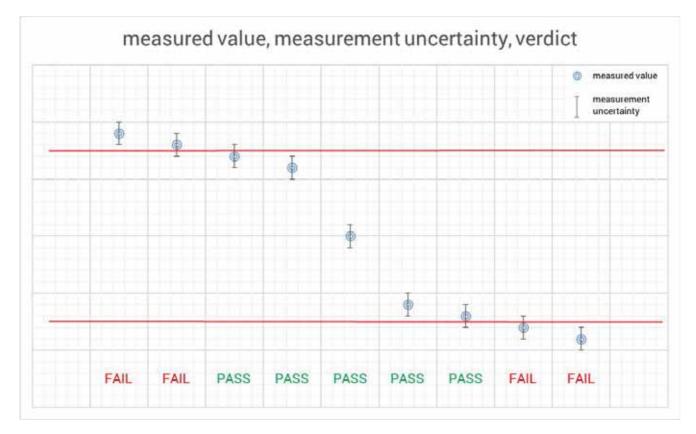
Person(s) present during the test: -/-

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

	3	Test standard/s	and references
--	---	-----------------	----------------


Test standard	Date	Description						
FCC - Title 47 CFR Part 1	15	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices						
RSS - 210 Issue 10	December 2019	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment						
Guidance	Version	Description						
ANSI C63.4-2014 ANSI C63.10-2013	-/- -/-	noise emissions from low-voltage electric equipment in the range of 9 kHz to 40 GF	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing					
Accreditation	Description	1						
D-PL-12076-01-04		unication and EMC Canada dakks.de/as/ast/d/D-PL-12076-01-04e.pdf	CEMINA DALKS Deutsche Akred Sierungsstelle D-PL-12076-01-04					
D-PL-12076-01-05		mmunication FCC requirements						

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3. The measurement uncertainty is mentioned in this test report, see chapter 8, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision

corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	 +20 °C during room temperature tests +35 °C during high temperature tests +5 °C during low temperature tests
Relative humidity content	:		46 %
Barometric pressure	:		1000 hPa – 1012 hPa
Power supply	:	V _{nom} V _{max} V _{min}	5.0 V DC by external power supply5.75 V4.25 V

6 Test item

6.1 General description

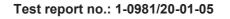
Kind of test item	:	Display unit
Type identification	:	DM1ALM
S/N serial number	:	Engineering sample
HVIN	:	n/a
PMN	:	Display
FVIN	:	ADC-T40-HD
HMN	:	n/a
HW hardware status	:	B36-T40-HD-Z-A
SW software status	:	v1.0
Frequency band	:	24.0 GHz – 24.25 GHz
Type of modulation	:	FMCW
Number of channels	:	1
Number of modes	:	1
Antenna	:	Integrated patch antenna
Power supply	:	5 V DC by external power supply
Temperature range	:	+5°C to +35°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

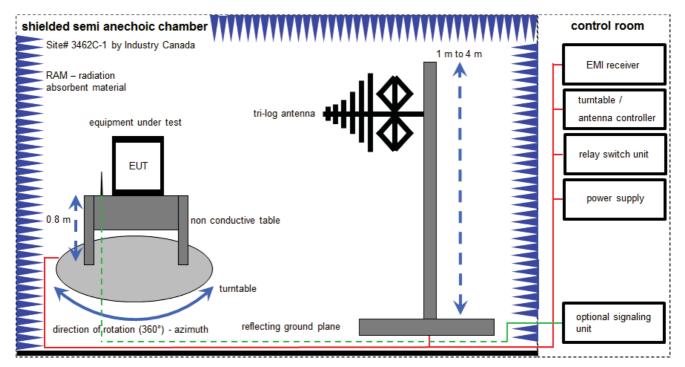
1-0981/20-01-05_AnnexA 1-0981/20-01-05_AnnexB 1-0981/20-01-05_AnnexD


7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	ΕK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

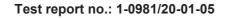
7.1 Shielded semi anechoic chamber

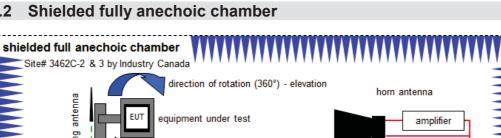
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

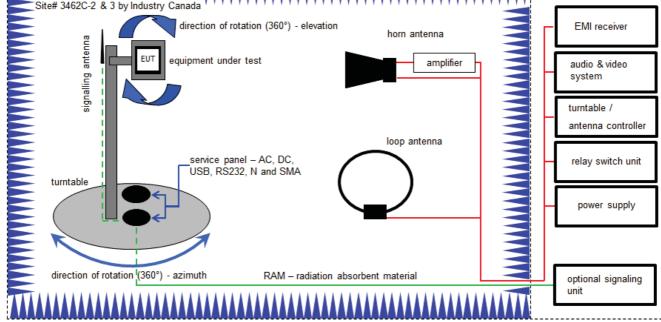
Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:


FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)


Equipment table:

No.	Setup	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	04.09.2019	03.09.2021
7	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.06.2022

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation: FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

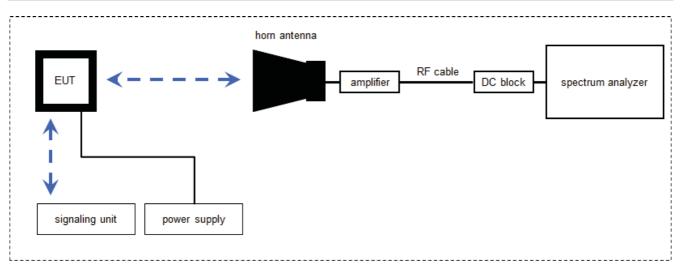
OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

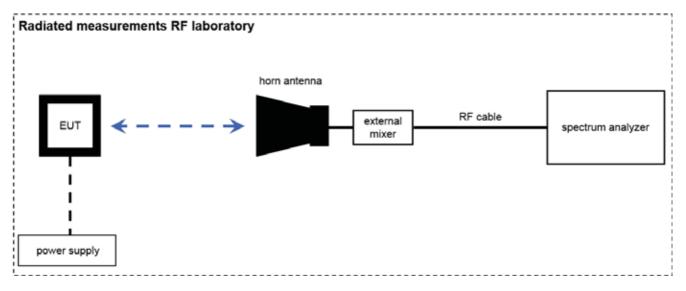
Example calculation: OP [dBm] = -39.0 [dBm] + 57.0 [dB] - 12.0 [dBi] + (-36.0) [dB] = -30 [dBm] (1 μW)

CTC | advanced

member of RWTÜV group


control room

Equipment table:


No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B,C	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vIKI!	09.12.2020	08.12.2023
2	A,B,C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	12.03.2021	11.03.2023
4	A,B,C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	A,B,C	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
6	A,B,C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2020	10.12.2021
7	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
8	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	В	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
10	A,B,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
11	A,B,C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
12	A,B,C	PC	ExOne	F+W		300004703	ne	-/-	-/-
13	В	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-
14	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021

7.3 Radiated measurements > 18 GHz

CTC | advanced

7.4 Radiated measurements > 50/85 GHz

Measurement distance: horn antenna e.g. 25 cm

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

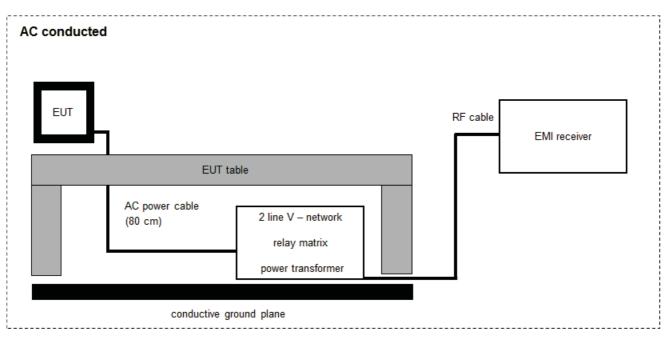
Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:


OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 μW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Spectrum Analyzer	FSW50	Rohde & Schwarz	101332	300005935	k	05.03.2021	04.03.2022
2	n. a.	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2020	08.03.2022
3	n.a.	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vIKI!	18.02.2019	17.02.2022
4	A027	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vIKI!	21.01.2020	20.01.2022
5	A031	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vIKI!	23.01.2020	22.01.2022
6	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
7	n. a.	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	17.06.2020	16.06.2021
8	A026	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001986	ne	-/-	-/-
9	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	R&S	101411	300004959	k	19.06.2020	18.06.2021
10	A027	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	101	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	893045/004	300000584	k	10.12.2020	09.12.2021
2	67	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	-/-
3	27	EM-Injection Clamp	FCC-203i	emv	232	300000626	ev	18.05.2001	-/-
4	n. a.	Magnetfeldantenne	MS 100	EM-Test		300002659	ev	24.04.2000	-/-
5	n.a.	AC- Spannungsquelle variabel	MV2616-V	EM-Test	0397-12	300003259	vIKI!	26.05.2020	25.05.2021
6	n.a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	17.01.2020	16.01.2022
7	n. a.	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	08.04.2008	-/-
8	n. a.	Power Supply	NGSM 32/10	R&S	3939	400000192	vlKl!	11.12.2019	10.12.2022
9	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	09.12.2020	08.12.2021

CTC I advanced

8 Measurement uncertainty

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 18 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 18 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Conducted unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	± 1 °C
Humidity	± 3 %

9 Sequence of testing

9.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

9.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9.5 Sequence of testing radiated spurious above 50/85 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

10 Summary of measurement results

\square	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	FCC 47 CFR Part 15 RSS-210 Issue 10	Passed	2021-05-25	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Results (max.)
§15.249(a) / RSS-210, B.10(a)	Field strength of fundamental emission	Nominal	Nominal	\boxtimes				
§2.1049	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				
§15.209(a) / §15.249(d) / RSS-210, B.10	Field strength of emissions (radiated spurious)	Nominal	Nominal	\boxtimes				
§15.207(a) RSS-Gen 8.8	Conducted emissions < 30 MHz	Nominal	Nominal	\boxtimes				
§15.215(c) RSS-Gen 8.11	Frequency Stability	Nominal Extreme	Nominal Extreme	\boxtimes				

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

11 Measurement results

11.1 Field strength of fundamental emission

Description:

Measurement of the maximum radiated field strength of the wanted signal.

Measurement:

Measurement parameter				
Detector: Pos-Peak / Average				
Sweep time:	10 s			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	300 MHz			
Trace-Mode:	Max Hold			
Measurement uncertainty	± 3 dB			

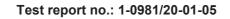
This test was performed on a shorter test distance. A correction factor of $20*\log(x m/3 m)$ is already considered in the plots.

Limits:

FCC		IC	
CFR Part 15.249(a)		RSS-210, B.10	
Field strength of emissions			
The field strength of emissions from intentional radiators operated within these frequency bands shall con with the following:			these frequency bands shall comply
Frequency Field Strength			Measurement distance
24.0 GHz – 24.25 GHz 108 dBμV/n 128 dBμV/			3 m

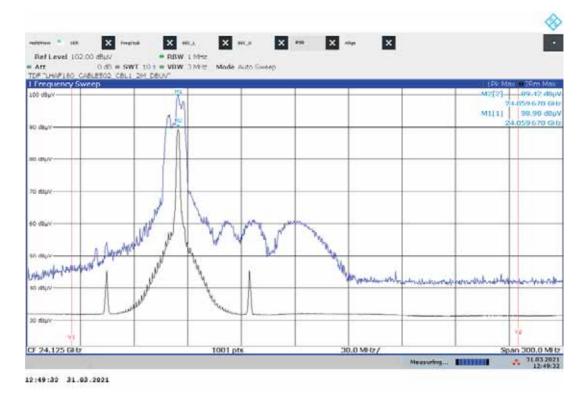
§15.249 (e) As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

§15.31 (c) Except as otherwise indicated in §15.256, for swept frequency equipment, measurements shall be made with the frequency sweep stopped at those frequencies chosen for the measurements to be reported.

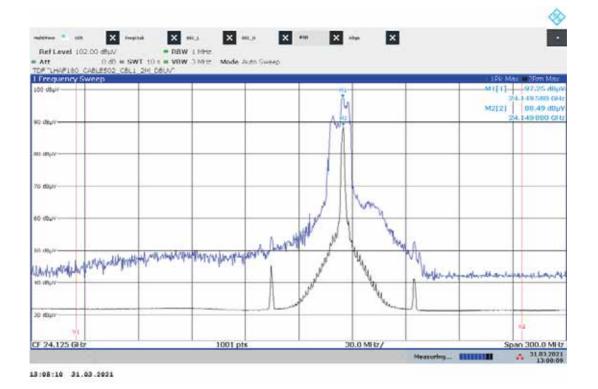


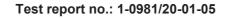
Measurement results:

Test condition	Maximum field strength (Peak) (dBµV/m @3m)	Maximum field strength (Average) (dBµV/m @3m)
flow	98.98	89.42
f _{mid}	97.25	88.49
fnigh	95.28	88.30

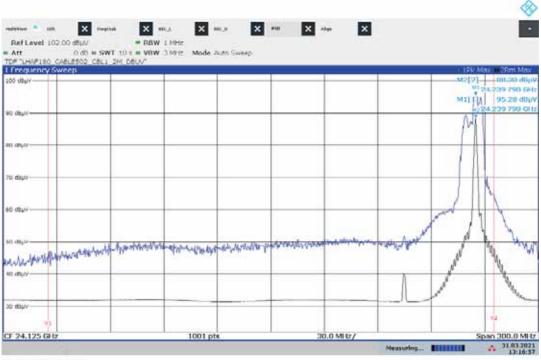

Note:

For the measurements presented in this section, the maximum power setting (highest possible duty cycle) has been used.





Plot No. 1: Field strength, flow


Plot No. 2: Field strength, fmid

Plot No. 3: Field strength, fhigh

13:16:58 31.03.2021

11.2 Occupied bandwidth (99% bandwidth)

Description:

Measurement of the 99% bandwidth of the wanted signal.

Measurement:

Parameter			
Detector:	Pos-Peak		
Sweep time:	10 s		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	350 MHz		
Trace-Mode:	Max Hold		
Measurement uncertainty	± Span/1000		

Limits:

FCC			IC	
CFR Part 15.249(a)		RSS-210, B.10	
The field strength of emissions from intentional radiators operated within the specified frequency band sha comply with the following				
Frequency range	f	L	fн	
250 MHz	> 24.0) GHz	< 24.25 GHz	

Measurement results:

Test condition	f∟ (GHz)	f _н (GHz)	Occupied bandwidth (MHz)
flow	24.0531	24.0633	10.3
fmid	24.1429	24.1533	10.4
fnigh	24.2329	24.2436	10.7

The corresponding plots are shown in section 11.5.

11.3 Field strength of emissions (radiated spurious)

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measurement:

Parameter			
Detector: Quasi-Peak / Pos-Peak / Average			
Sweep time:	Auto		
Resolution bandwidth:	100 kHz / 1 MHz		
Video bandwidth:	300 kHz / 3 MHz		
Trace-Mode:	Max Hold		
Measurement uncertainty	± 3 dB		

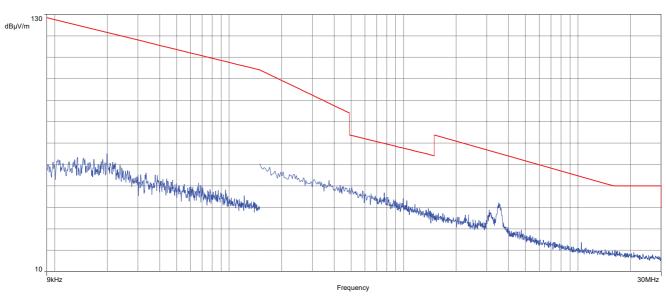
Limits:

FCC			IC	
CFR Part 15.209(a) / CFR Par	rt 15.249(d)		RSS - GEN	
Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by a least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.				
Frequency (MHz)	Field Stren	ıgth (μV/m)	Measurement distance (m)	
0.009 - 0.490	2400/F(kHz)		300	
0.490 – 1.705	24000/F(kHz)		30	
1.705 – 30.0	30		30	
30 88	100		3	
88 – 216	150		3	
216 – 960	200		3	
Above 960	50	00	3	

§15.249 (e) As shown in § 15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

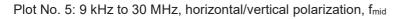
§15.31 (c) Except as otherwise indicated in §15.256, for swept frequency equipment, measurements shall be made with the frequency sweep stopped at those frequencies chosen for the measurements to be reported.

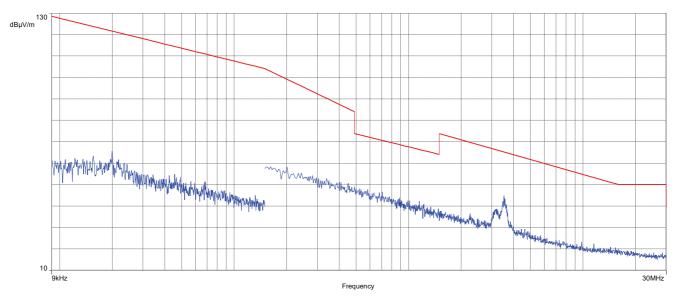
Measurement results:

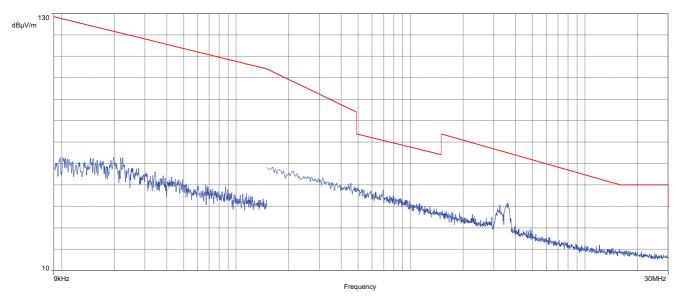

Low / Mid / High frequency									
f [GHz]	Detector	Measured level [dBµV/m]	Margin						
No critical peaks found. For details, please refer to plots.									
1224.4	AVG	35.32	18.68						
2035.0	AVG	37.14	16.86						
1224.4	PEAK	51.23	22.77						
2035.0	PEAK	51.97	22.03						
1214.2	AVG	29.06	24.94						
2040.4	AVG	43.46	10.54						
1214.2	PEAK	46.14	27.86						
2040.4	PEAK	61.28	12.72						
1022.8	AVG	27.23	26.77						
2048.8	AVG	38.43	15.57						
1022.8	PEAK	40.52	33.48						
2048.8	PEAK	56.87	17.13						

Note:

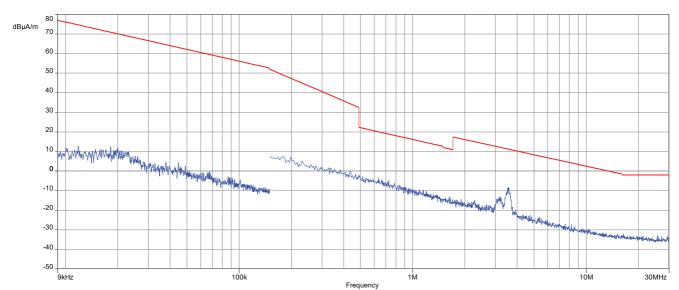
If not stated otherwise, the plots presented below show the maximum detected signals for all frequency modes ($f_{\text{low}}, f_{\text{mid}}, f_{\text{high}}$).

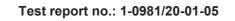

Measurements above 50 GHz were performed on a short measurement distance ($\leq 1m$) to improve the minimum sensitivity of the test system. A correction factor of $20*\log(d/3m)$ is already considered in the plots.

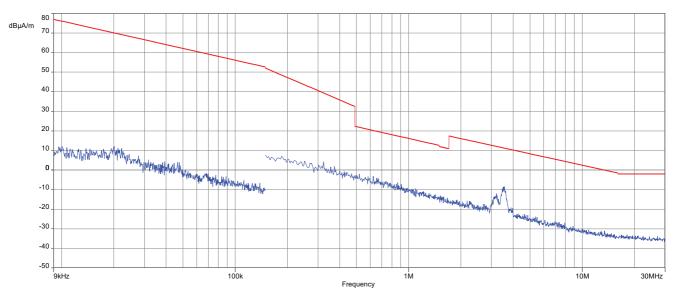



CTC I advanced

Plot No. 4: 9 kHz to 30 MHz, horizontal/vertical polarization, f_{low}

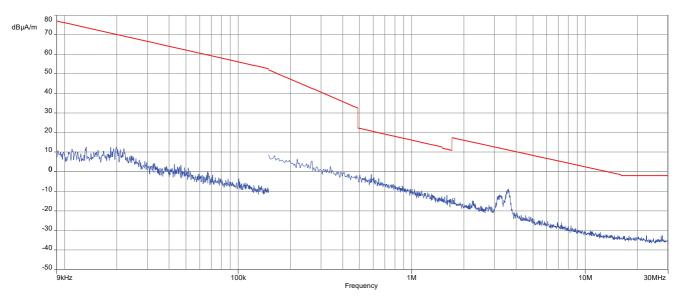




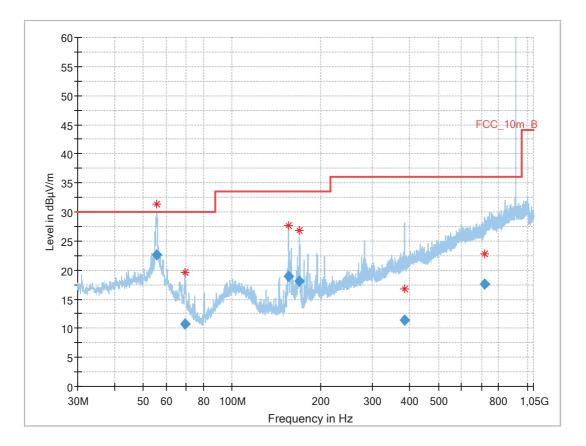


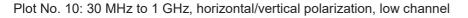
Plot No. 6: 9 kHz to 30 MHz, horizontal/vertical polarization, f_{high}

Plot No. 7: 9 kHz to 30 MHz, horizontal/vertical polarization, dBµA, flow

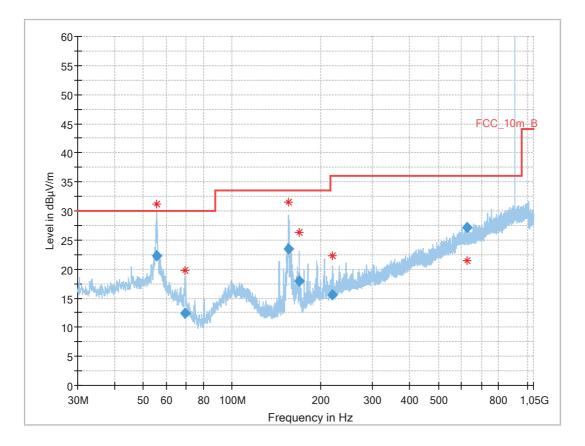


CTC I advanced


Plot No. 8: 9 kHz to 30 MHz, horizontal/vertical polarization, dBµA, f_{mid}



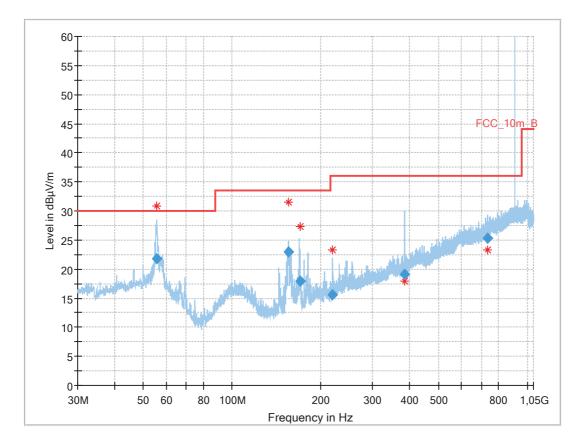
Test report no.: 1-0981/20-01-05


*Z-wave carrier shown at 903 MHz, therefore considered passed *Red stars = Frequency markers; Blue markers = QuasiPeak values

Final_Result

Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
55.448	22.70	30.0	7.3	1000	120.0	136.0	V	232	15
69.538	10.69	30.0	19.3	1000	120.0	183.0	V	280	10
155.424	18.96	33.5	14.5	1000	120.0	103.0	V	24	9
169.533	18.08	33.5	15.4	1000	120.0	101.0	V	0	10
384.076	11.44	36.0	24.6	1000	120.0	341.0	Н	225	16
717.895	17.55	36.0	18.5	1000	120.0	264.0	V	207	21

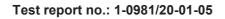
Test report no.: 1-0981/20-01-05

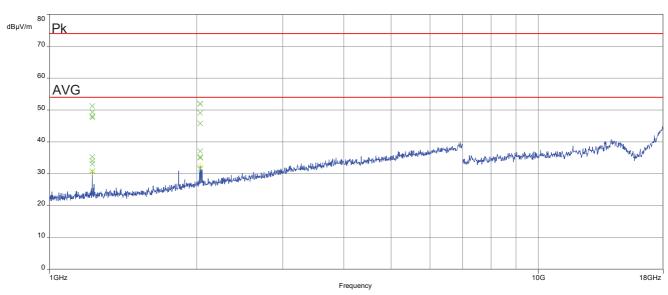

*Z-wave carrier shown at 903 MHz, therefore considered passed *Red stars = Frequency markers; Blue markers = QuasiPeak values

Final_Result

Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
55.756	22.25	30.0	7.8	1000	120.0	170.0	V	78	15
69.251	12.45	30.0	17.6	1000	120.0	170.0	V	247	10
155.460	23.38	33.5	10.1	1000	120.0	98.0	V	68	9
169.249	17.97	33.5	15.5	1000	120.0	102.0	V	75	10
219.239	15.65	36.0	20.4	1000	120.0	98.0	V	79	12
624.481	27.19	36.0	8.8	1000	120.0	170.0	Н	157	21

Test report no.: 1-0981/20-01-05

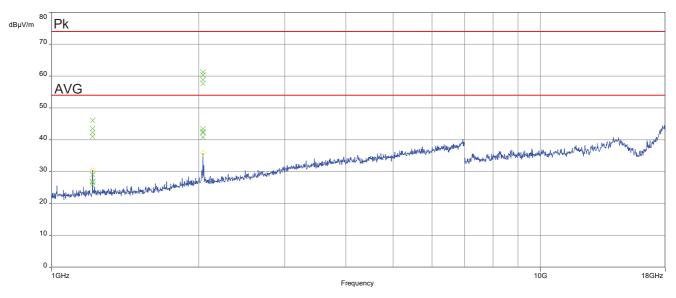




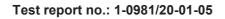
*Z-wave carrier shown at 903 MHz, therefore considered passed *Red stars = Frequency markers; Blue markers = QuasiPeak values

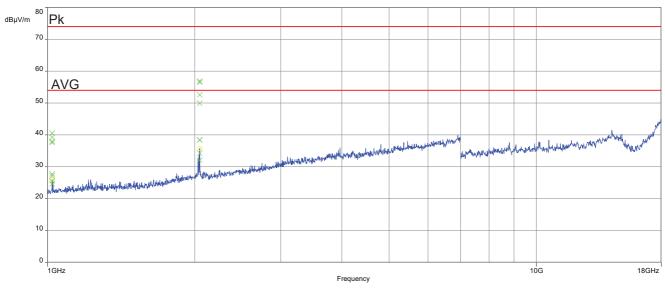
Final_Result

Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
55.781	21.77	30.0	8.2	1000	120.0	133.0	V	292	15
155.452	22.98	33.5	10.5	1000	120.0	98.0	V	176	9
169.567	17.93	33.5	15.6	1000	120.0	101.0	V	292	10
219.547	15.51	36.0	20.5	1000	120.0	101.0	V	171	12
383.880	19.11	36.0	16.9	1000	120.0	170.0	Н	67	16
734.513	25.23	36.0	10.8	1000	120.0	170.0	V	-22	22



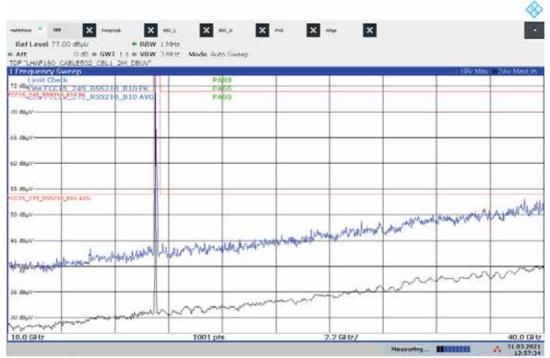
CTC I advanced

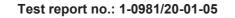

Plot No. 13: 1 GHz to 18 GHz, horizontal/vertical polarization, f_{low}


*shown trace: peak-prescan

Plot No. 14: 1 GHz to 18 GHz, horizontal/vertical polarization, fmid

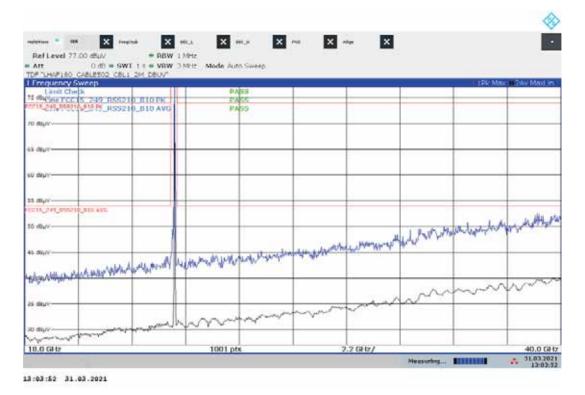
*shown trace: peak-prescan



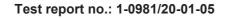

Plot No. 15: 1 GHz to 18 GHz, horizontal/vertical polarization, f_{high}

*shown trace: peak-prescan

Plot No. 16: 18 GHz to 40 GHz, horizontal/vertical polarization, low channel



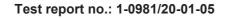
12:57:35 31.03.2021



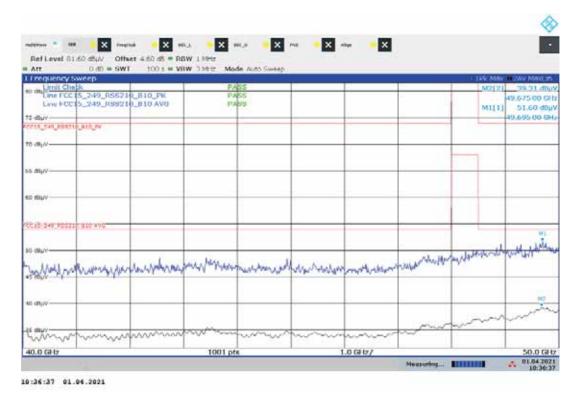
Plot No. 18: 26.5 GHz to 40 GHz, horizontal/vertical polarization, high channel

nalytun 🔹 104 🛛 🗙 forgitak	X m., X m., X P	10 X 100	×		12
Ref Level 77.00 dful/	· RBW 1 MHz				
Att 0 d0 = SWT 200	1 = VBW 31911 Mode Auto Sweep				
TOP "LHAP180 CABLESOD CBL1 2M 6	Xeuv"				
I Frequency Sweep				IPk Mai	24v Mail.in
Lamit Check	PASS				
11 dbutter FCC 15 249 R55210 RT	D PK PASS D AVG PASS				
70 dių/v				-	
93- deµV					
10 M 1					
sto day/			· · · · ·		
55 db ₀ //				_	
CEAS_249_RES210_MIN AVE					
50 d0uV			2.	ALALAN MALAN	and the second
		and the	In the hour of	a subdition in	
45 BU/V	had another when monther	All Charles and the second			
B gutter have been been been and and			12	-	- Martin
11111-1111-1111-1111-1111-1111-1111-1111			- m	m	W
35 daho.		~~~~~	amon and and and and and and and and and an		
10 ddiw	March	1.		_	
Marrie Marrie .					
18.0 GHz	1001 pts	7.2 GHz/			40.0 GHz
			Measuring.	and the second se	101.04.7071 00:07:00

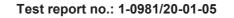
08:07:01 01.04.2021



Plot No. 20: 40 GHz to 50 GHz, horizontal/vertical polarization, mid channel

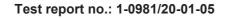

-× regist X III.I X H.r. X re X rig × Ref Level 01.50 dBul/ Offset 4.50 dB = RBW 1 MHz 0.40 = SWT ATT. 100 t - VRW 3 Meter Mode Auto Swee Li requency Sy to the Unit Check Line FCC15_249_R55210_810_PK Line FCC15_249_R55210_810_AVQ PAR MILL 49,69500 GHz JP.A M2[2] 39.22 dBµV 15-dbuV U.485 00 GH 10 db///ss diav so days CC10-249 PD5210 010 XVG and an and a second a second and the second LMA will all more way we have been all and my prover a presenting and 10 (11) tim mann 40.0 GHz 1.0 GHz/ 1001 pts 50.0 GHz A 01.04.2021 10:35:20 Measuring ...

10:35:28 01.04.2021

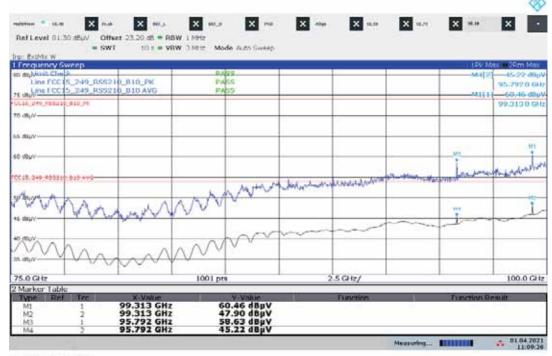


Plot No. 22: 50 GHz to 75 GHz, horizontal/vertical polarization, low channel

Frequency Sweep PASS Link Cohà PASS 0 di Unit Cohà PASS 10 di Unit Cohà PASS 11 di Unit Cohà PASS 12 di Unit Cohà PASS 13 di Unit Cohà PASS 15 di Unit Cohà PASS 15 di Unit Cohà PASS 15 di Unit Cohà PASS 16 di Unit Cohà PASS 10 di Unit Cohà PASS 10 di Unit Cohà PASS 10 di Unit Cohà PASS	MSC MWC 0 CBrm Mwc M1[3] 63,922 dlij 72,459 0 cg M2[2] 51,96 dlij 73,2140 gl
Line FCC15_249_RS5210_010 AVG PADS	M2[2] 51.96 dB
1 dtμ/ 1 dtμ	
dqp/	
dig//	
dig//	
31_344_k3549716_k111_01/	
14_544_E35916_415_99	
m _k v	
an a	
an a	
an	
an	June .
and and a second and and	allow the state of the state of the
Solale March hard and the state of the state	MMALANA
NY MY WELLAND THE AND THE MELLEN THE	
28/244/2020/12/111/14/9/	
	102
diur-	
any?	

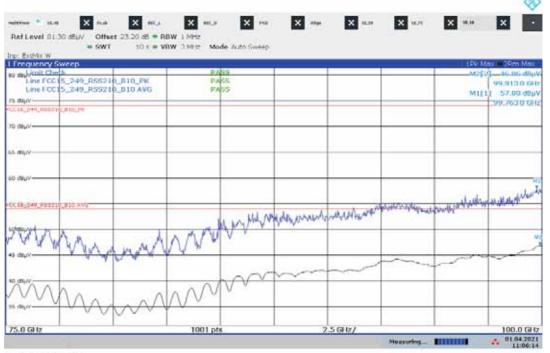


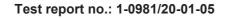
× HL X 10,0 X re X rites X 16.89 X an × ----× reals Ref Level 92.00 dBi// Offset 33.90 dB = RBW 1 MHz Mode Auto Sweep = SWT 10 s . VBW 3 MHz Http: Extension Sweep Limit Chesk 10 dbg/se FCC15_249_R55210_810_PK Line FCC15_249_R55210_810 AVG 64.31 d6p 73.339 0 G4 PASS M1[1] PASS M2[2] 52.02 dBuy 73.2140.GH IS SHOW to de 75 dBy/-TO diluci 45 db./ male 10 614 - and a market and a start of a start of the same start and a start of the same start of the same start of the Taxta and all and the second and the second 1.54.049 I. SU ditu as a 50.0 GHz 1001 pts 7.5 GHz/ 75.0 GHz 10:59:13 10:59:13 01.04.2021


Plot No. 23: 50 GHz to 75 GHz, horizontal/vertical polarization, mid channel

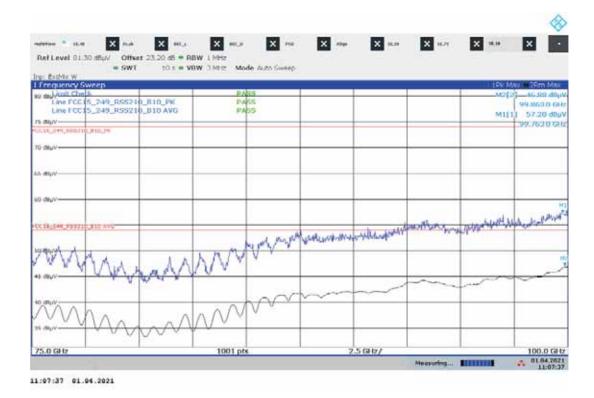
Plot No. 24: 50 GHz to 75 GHz, horizontal/vertical polarization, high channel

e: BoMix V Frequency Sweep					LPK Max 2Pm Max
Lamit Check	PARS				M1[1] 63.34 db
d94%ine FCC15_249_R55210_	TTO_PK PASS				73.2390 G
Line FCC15_249_RS5210_	BID AVG PASS				M2[2] 52.03 dB
dillo/					73.2140.G
1.CON					
deuv-					
dis//-					
18_249_835718_812_89					
di _{ti} v-					
					1
dbu/V					
	-sounder developedation		1		
				1.1.1.1	in all makes yours
ditt's		and the second second second second	1	ithurd by the	hornau
1112 1111 1121	a strander where we have	Without the Walter and	have able	1 HAVE A AND A	
Margellonden and 1 margaret	- Manufar Manufart Contract	and the second second second second	MAN MAG.		
reflected in the start of the second start of					192
					1
dilµv					
				~	
asprime					
			100 C		
0.0 GHz	1001 pts		5 GHz/		75.0 G

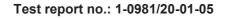



Plot No. 25: 75 GHz to 100 GHz, horizontal/vertical polarization, low channel

11:09:26 01.04.2021


Plot No. 26: 75 GHz to 100 GHz, horizontal/vertical polarization, mid channel

11:06:14 01.04.2021

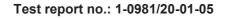


Plot No. 27: 75 GHz to 100 GHz, horizontal/vertical polarization, high channel

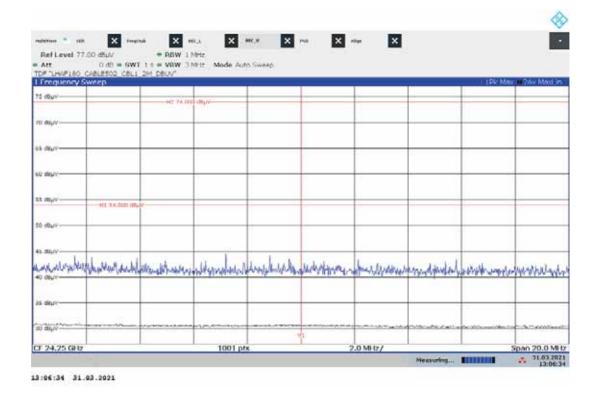
Plot No. 28: Band-Edge-Compliance, low frequency mode, low edge

× regist X H.A X rea X rise × Ref Level 77.00 dBµl/ · RBW 1 MHz 0 d0 = SWT 1 t = VBW 3 Milt Mode Auto Sweep = ATT 02 CBLI 1 Frequ 15 dbu/ 15-08 ių de 13 dlub \$5 db. , dvaina, aphiliaid a cariebili daini iidin na bhladh aite alithin abilities A THE AND ID dliv CF 24.0 GHz 1001 pts 2.0 MHz/ Span 20.0 MHz A 31.03.2021 12:40:50 Measuring...

12:48:56 31.03.2021

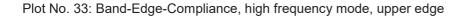

Plot No. 29: Band-Edge-Compliance, low frequency mode, upper edge

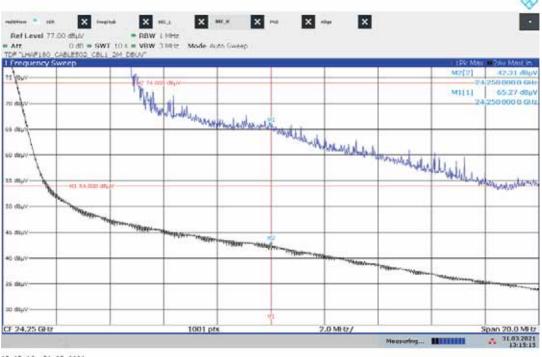
× ma X -in × × × ant.w X re Ref Level 77.00 dBuM · RBW 1 MHz 0.d0 = SWT 1.t = VBW 3.MHz Mode Auto Sweep ATT ETO2 CELL CRIN Frequ 15 d0µV ro duin 45 deut 60 deut 3.5 clba/ \$5 dby/ 45 51 work and a star funding where we we we we we we have a fully a second of a fully and a second of a star a second march 15.0 ID diaw CF 24.25 GHz 1001 pts 2.0 MHz/ Span 20.0 MHz 31.03.2021 20 12:49:13 31.03.2021


Plot No. 30: Band-Edge-Compliance, middle frequency mode, low edge

× regina X H.A. X Pill X sha × Ref Level 77.00 dBµl/ · RBW 1 MHz 0 d0 = SWT 1 t = VBW 3 Milt Mode Auto Sweep - ATT DO CELL 1.Frequ 15 dbu/ 15-08 ių dis 13 dlub 10 33.000 05 \$5 db. المالية المتعادية المتعادية والمتعالية والمتعادية المتعادية المتعادية المتعادية والمتعادية والمتعادية والمتعاد han belle ith is di ID BUV CF 24.0 GHz 1001 pts 2.0 MHz/ Span 20.0 MHz . 31.03.2021 Measuring...

13:04:49 31.03.2021




Plot No. 31: Band-Edge-Compliance, middle frequency mode, upper edge

Plot No. 32: Band-Edge-Compliance, high frequency mode, low edge

× maine X m.r. X re X -ite × Ref Level 77.00 dBµl/ RBW 1 MHz 0 d0 = SWT 1 t = VBW 3 Milt Mode Auto Sweep ATT. CBLI 1 Frequ 15 dbu/ 15-08 ių de 13 dlub \$5 :45 inter the second dil chi di attanni di dia ID diluo CF 24.0 GHz 1001 pts 2.0 MHz/ Span 20.0 MHz * 31.03.2021 Measuring... 13:13:27 31.03.2021

13:15:16 31.03.2021

11.4 Conducted emissions < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

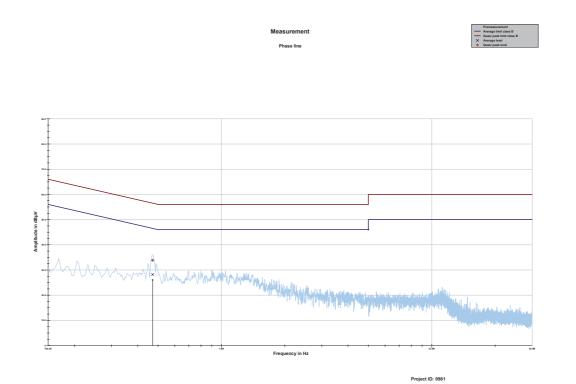
Measurement:

Parameter				
Detector:	Peak - Quasi Peak / Average			
Sweep time:	Auto			
Video bandwidth:	F < 150 kHz:200 HzF > 150 kHz:9 kHz			
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace-Mode:	Max Hold			

Limits:

FCC			IC
CFR Part 15.207(a)			RSS-Gen 8.8
	Conducted Spurious	Emissions < 30 MHz	
Frequency (MHz)	Quasi-Peak (dBµV/m)		Average (dBµV/m)
0.15 – 0.5	66 to 56*		56 to 46*
0.5 – 5	56		46
5 – 30.0	60		50

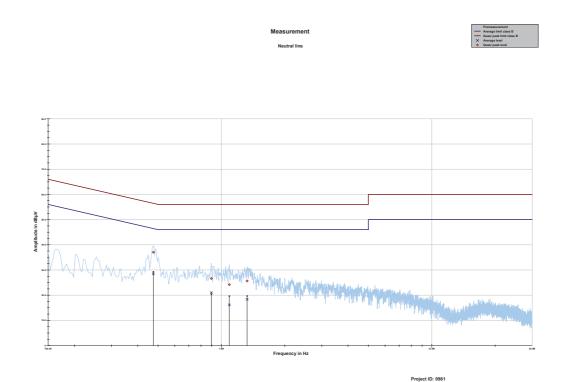
*Decreases with the logarithm of the frequency


Measurement results:

See plots below.

Test report no.: 1-0981/20-01-05

Plot 34: Phase line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.470888	33.87	22.63	56.498	28.20	18.63	46.832

Test report no.: 1-0981/20-01-05

Plot 35: Neutral line

Frequency Quasi Margin Limit QP Average Margin Limit AV peak quasi peak level Average level dBµV MHz dBµV dB dBµV dBµV dB 37.04 19.40 0.474619 56.433 28.45 18.28 46.725 0.896250 26.61 29.39 56.000 21.00 25.00 46.000 1.090275 56.000 46.000 24.18 31.82 16.12 29.88 1.325344 25.64 30.36 56.000 18.31 27.69 46.000

11.5 Frequency Stability

Description:

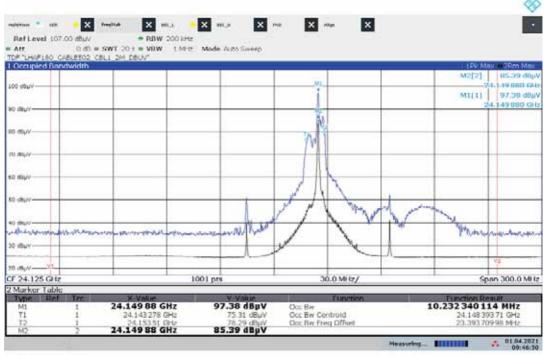
§15.215(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Measurement:

Parameter		
Detector:	Pos-Peak	
Sweep time:	10 s	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Trace-Mode:	Max Hold	
Measurement uncertainty	Span/1000	

Limits:

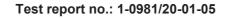
FCC IC				
CFR Part 15.215(c) RSS-Gen 8.11				
Frequency Stability				
As specified in Section 15.215(c), the bandwidth of the fundamental emission must be contained within the frequency band over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage.				


Test Conditions	Frequency (GHz)	Bandwidth (MHz)
+5 °C / F _{low} / V _{nom}	24.054 (f _L), 24.063 (f _H)	9.66
+5 °C / F _{mid} / V _{nom}	24.143 (f _L), 24.154 (f _H)	10.23
+5 °C / F _{high} / V _{nom}	24.233 (f _L), 24.244 (f _H)	10.77
+15 °C / F _{low} / V _{nom}	24.053 (f _L), 24.063 (f _H)	10.20
+15 °C / F _{mid} / V _{nom}	24.143 (f _L), 24.154 (f _H)	10.50
+15 °C / F _{high} / V _{nom}	24.233 (f _L), 24.244 (f _H)	10.59
+20 °C / F _{low} / V _{min}	24.053 (f _L), 24.063 (f _H)	10.42
+20 °C / F _{mid} / V _{min}	24.143 (f _L), 24.153 (f _H)	10.68
+20 °C / F _{high} / V _{min}	24.233 (f _L), 24.244 (f _H)	10.71
+20 °C / Flow / Vnom	24.053 (f _L), 24.063 (f _H)	10.26
+20 °C / F _{mid} / V _{nom}	24.143 (f _L), 24.153 (f _H)	10.42
+20 °C / Fhigh /Vnom	24.233 (f _L), 24.244 (f _H)	10.67
+20 °C / Flow / Vmax	24.253 (f _L), 24.063 (f _H)	10.40
+20 °C / F _{mid} / V _{max}	24.143 (f _L), 24.154 (f _H)	10.90
+20 °C / F _{high} /V _{max}	24.233 (f _L), 24.243 (f _H)	10.54
+25 °C / Flow / Vnom	24.053 (f _L), 24.063 (f _H)	10.41
+25 °C / F _{mid} / V _{nom}	24.143 (f _L), 24.153 (f _H)	10.31
+25 °C / F _{high} /V _{nom}	24.233 (f _L), 24.244 (f _H)	10.71
+35 °C / Flow / Vnom	24.053 (f _L), 24.063 (f _H)	10.38
+35 °C / F _{mid} / V _{nom}	24.143 (f _L), 24.154 (f _H)	10.59
+35 °C / F _{high} /V _{nom}	24.233 (f _L), 24.234 (f _H)	10.60

Plot 37: +5 °C, middle frequency mode, Vnom

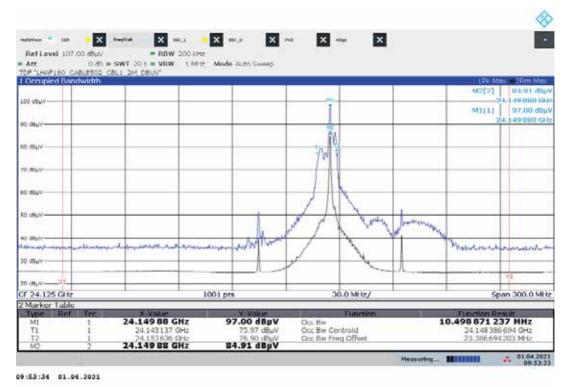
09:46:51 01.04.2021

Plot 38: +5 °C, high frequency mode, V_{nom}



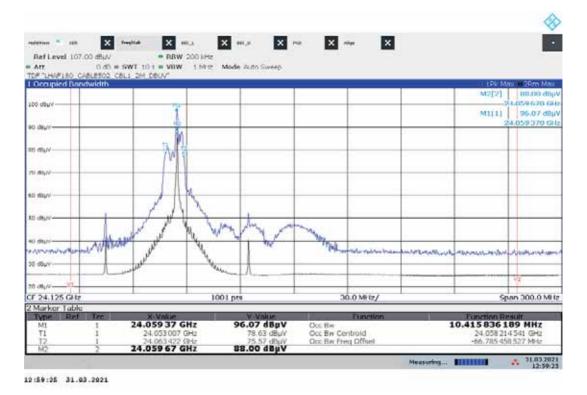
09:45:06 01.04.2021

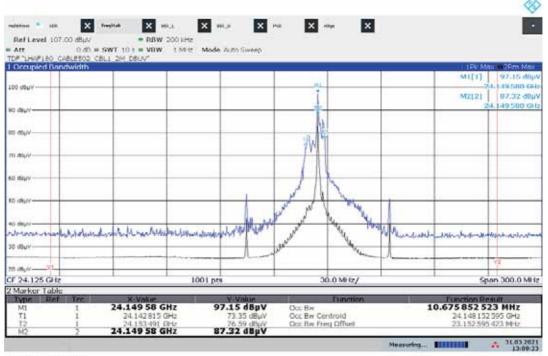
Plot 39: +15 °C, low frequency mode, V_{nom}

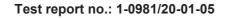


10:10:25 01.04.2021

Plot 40: +15 °C, middle frequency mode, V_{nom}

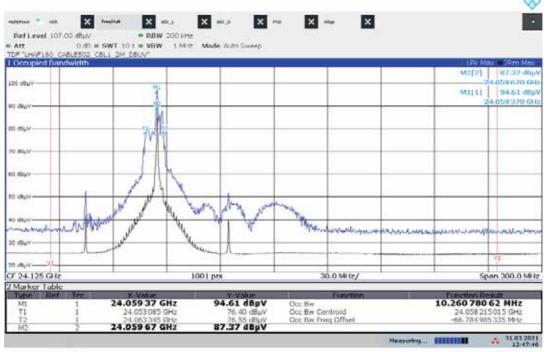

Plot 41: +15 °C, high frequency mode, V_{nom}

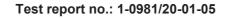

09:37:00 01.04.2021


Plot 42: +20 °C, low frequency mode, V_{min}

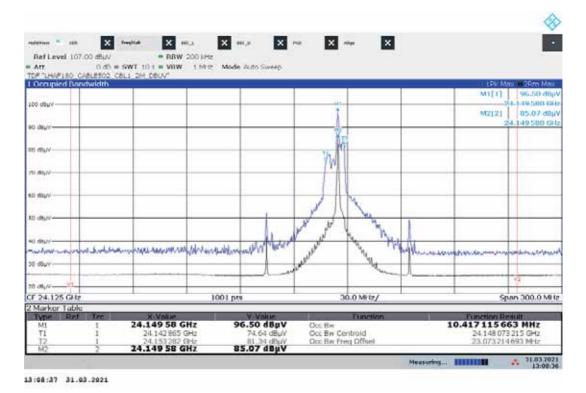
Plot 43: +20 °C, middle frequency mode, Vmin

13:09:24 31.03.2021



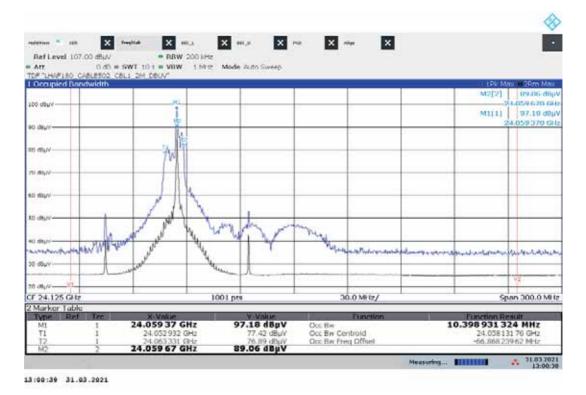

Plot 44: +20 °C, high frequency mode, V_{min}

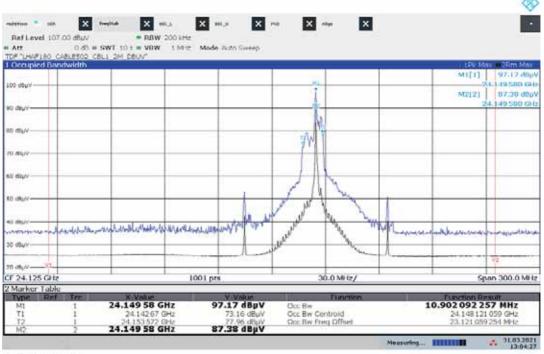
Plot 45: +20 °C, low frequency mode, V_{nom}



12:47:46 31.03.2021

Plot 46: +20 °C, middle frequency mode, V_{nom}

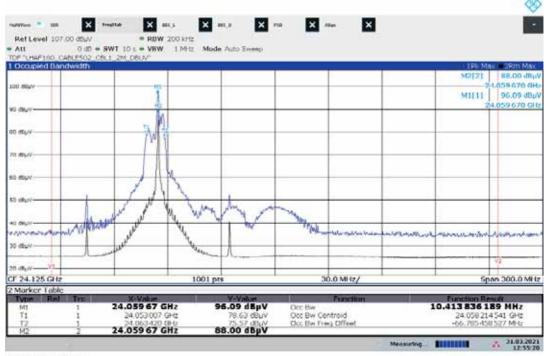

Plot 47: +20 °C, high frequency mode, Vnom


13:17:42 31.03.2021

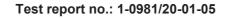
Plot 48: +20 °C, low frequency mode, V_{max}

Plot 49: +20 °C, middle frequency mode, V_{max}

13:04:28 31.03.2021

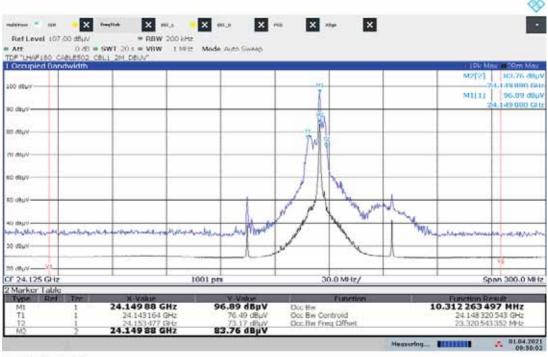


Plot 50: +20 °C, high frequency mode, V_{max}



13:18:18 31.03.2021

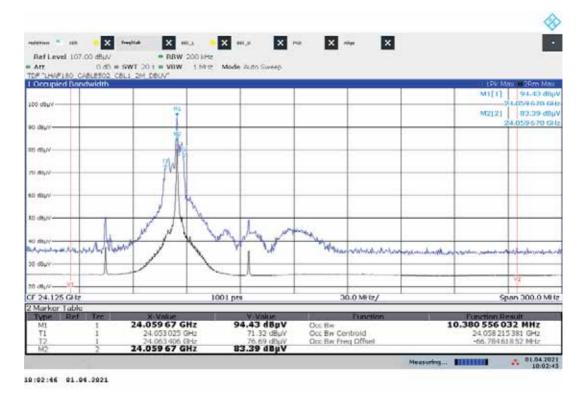
Plot 51: +25 °C, low frequency mode, V_{nom}

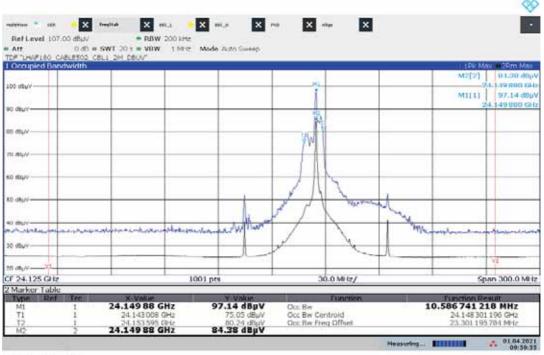


12:55:21 31.03.2021

Plot 52: +25 °C, middle frequency mode, V_{nom}

09:58:02 01.04.2021


Plot 53: +25 °C, high frequency mode, V_{nom}


09:32:46 01.04.2021

Plot 54: +35 °C, low frequency mode, V_{nom}

Plot 55: +35 °C, middle frequency mode, V_{nom}

09:59:55 01.04.2021

Plot 56: +35 °C, high frequency mode, V_{nom}

09:29:40 01.04.2021

Test report no.: 1-0981/20-01-05

Annex A Glossary

EUT	Equipment under test	
DUT	Device under test	
UUT	Unit under test	
GUE	GNSS User Equipment	
ETSI	European Telecommunications Standards Institute	
EN	European Standard	
FCC	Federal Communications Commission	
FCC ID	Company Identifier at FCC	
IC	Industry Canada	
PMN	Product marketing name	
HMN	Host marketing name	
HVIN	Hardware version identification number	
FVIN	Firmware version identification number	
EMC	Electromagnetic Compatibility	
HW	Hardware	
SW	Software	
Inv. No.	Inventory number	
S/N or SN	Serial number	
С	Compliant	
NC	Not compliant	
NA	Not applicable	
NP	Not performed	
PP	Positive peak	
QP	Quasi peak	
AVG	Average	
OC	Operating channel	
OCW	Operating channel bandwidth	
OBW	Occupied bandwidth	
OOB	Out of band	
DFS	Dynamic frequency selection	
CAC	Channel availability check	
OP	Occupancy period	
NOP	Non occupancy period	
DC	Duty cycle	
PER	Packet error rate	
CW	Clean wave	
MC	Modulated carrier	
WLAN	Wireless local area network	
RLAN	Radio local area network	
DSSS	Dynamic sequence spread spectrum	
OFDM	Orthogonal frequency division multiplexing	
FHSS	Frequency hopping spread spectrum	
GNSS	Global Navigation Satellite System	
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz	

CTC I advanced

Annex B Document history

v	/ersion	Applied changes	Date of release
	-/-	Initial release	2021-04-15

Annex C Accreditation Certificate – D-PL-12076-01-04

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

Annex D Accreditation Certificate – D-PL-12076-01-05

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf