

TEST REPORT

Test report no.: 1-0981/20-01-10

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Building 36 Technologies, LLC

150 A Street, Suite 104

02494-0249 Needham / UNITED STATES

Phone: 781-474-0500
Contact: Daniel Goodman
e-mail: dan@building36.com

Manufacturer

MEC electronics Entwicklung und Produktion GmbH

Dresdner Straße 45 1200 Vienna / AUSTRIA

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs)

and Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Display
Model name: ADC-T40-HD

FCC ID: 2AC3T-B36T40HDRA
IC: 12323A-B36T40HDRA
Frequency band: 902 MHz – 928 MHz
Technology tested: Z-Wave longrange
Antenna: Integrated antenna

Power supply: 5 V DC by external power supply TT electronics DSA-13PFC-05 F

Temperature range: +5°C to +35°C

Lab Manager

Radio Communications

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Christoph Schneider	Tobias Wittenmeier

Testing Manager

Radio Communications

Table of contents

1	Table	of contents	
2		al information	
-	2.1	Notes and disclaimer	
	2.1	Application details	
	2.3	Test laboratories sub-contracted	3
3	Test s	tandard/s, references and accreditations	4
4	Repoi	ting statements of conformity – decision rule	
5	-	environment	
6		tem	
•			
	6.1 6.2	General description	
7	_	iption of the test setup	
•			
	7.1 7.2	Shielded semi anechoic chamber	
	7.3	AC conducted	
	7.4	Conducted measurements	13
8	Seque	ence of testing	14
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	14
	8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	15
	8.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	
9	Meas	urement uncertainty	17
10	Sun	nmary of measurement results	18
11	RF	measurements	19
	11.1	Additional comments	19
12	Mea	surement results	20
	12.1	Maximum output power	
	12.2	Antenna gain	
	12.3	Power spectral density	
	12.4	Spectrum bandwidth – 6 dB bandwidth and 99% bandwidth	
	12.5 12.6	Detailed spurious emissions @ the band edge – conducted and radiated	28
	12.7	Spurious Emissions Conducted	
	12.7	Spurious Emissions Radiated > 30 MHz	
	12.8.1	•	
	12.8.2		
	12.1	Spurious emissions conducted below 30 MHz (AC conducted)	
13	Obs	servations	44
14	Glo	ssary	4
15	Doc	cument history	46
16		reditation Certificate – D-PL-12076-01-04	
17		reditation Certificate – D-PL-12076-01-05	
	- 100	······································	

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

 Date of receipt of order:
 2021-01-27

 Date of receipt of test item:
 2021-05-06

 Start of test:*
 2021-05-14

 End of test:*
 2021-05-10

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

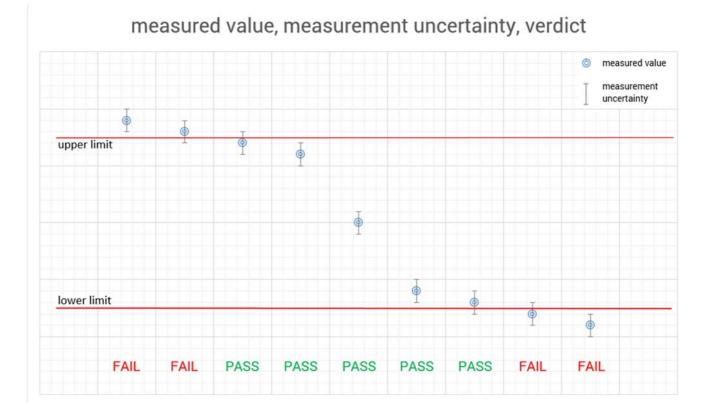
None

© CTC advanced GmbH Page 3 of 47

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description				
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices				
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices				
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus				
Guidance	Version	Description				
KDB 558074 D01 ANSI C63.4-2014 ANSI C63.10-2013	v05r02 -/- -/-	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices				
Accreditation	Descriptio	n				
D-PL-12076-01-04		unication and EMC Canada akks.de/as/ast/d/D-PL-12076-01-04e.pdf DakkS Deutsche Akkreditierungsstelle D-PL-12076-01-04				
D-PL-12076-01-05		Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf				


© CTC advanced GmbH Page 4 of 47

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 47

Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No testing under extreme temperature conditions required No testing under extreme temperature conditions required
Relative humidity content			42 %
Barometric pressure			1006 hpa
Power supply	:	V _{nom} V _{max} V _{min}	5.0 V DC by external power supply TT electronics DSA-13PFC- 05 F No testing under extreme temperature conditions required No testing under extreme temperature conditions required

Test item

General description

Kind of test item :	Display
Model name :	ADC-T40-HD
HMN :	n/a
PMN :	Display
HVIN :	ADC-T40-HD
FVIN :	n/a
S/N serial number :	Rad. 1264999921110013 Cond. 1264999921110001
Hardware status :	B36-T40-HD-Z-A
Software status :	v1.0
Firmware status :	-/-
Frequency band :	902 MHz – 928 MHz
Type of radio transmission: Use of frequency spectrum:	Modulated carrier
Type of modulation :	(O)QPSK
Number of channels :	2
Antenna :	Integrated antenna
Power supply :	5.0 V DC by external power supply TT electronics DSA-13PFC-05 F
Temperature range :	+5°C to +35°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-0981/20-01-01_AnnexA

1-0981/20-01-01_AnnexB 1-0981/20-01-01_AnnexD

© CTC advanced GmbH Page 6 of 47

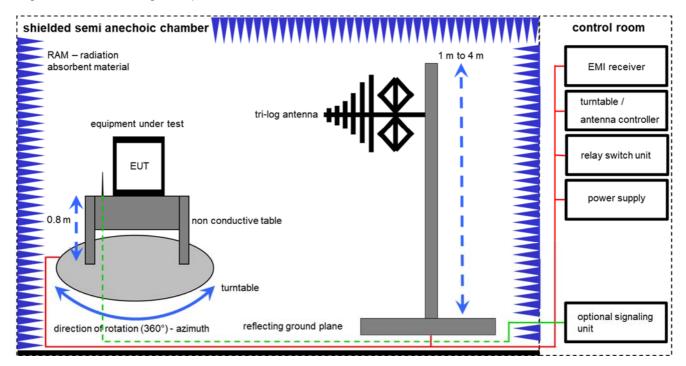
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 47

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

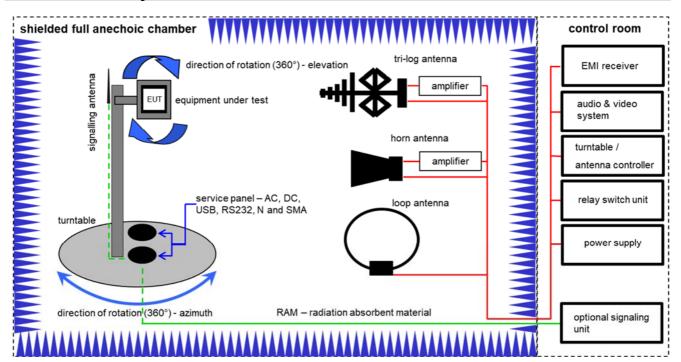
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

© CTC advanced GmbH Page 8 of 47


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Semi anechoic chamber	3000023	MWB AG		300000551	ne	-/-	-/-
3	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vlKl!	17.01.2020	16.01.2022
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKl!	19.02.2021	18.02.2023
8	Α	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
9	Α	PC	TecLine	F+W		300004388	ne	-/-	-/-
10	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.06.2022

© CTC advanced GmbH Page 9 of 47

7.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS [dB μ V/m] = 40.0 [dB μ V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB μ V/m] (71.61 μ V/m)

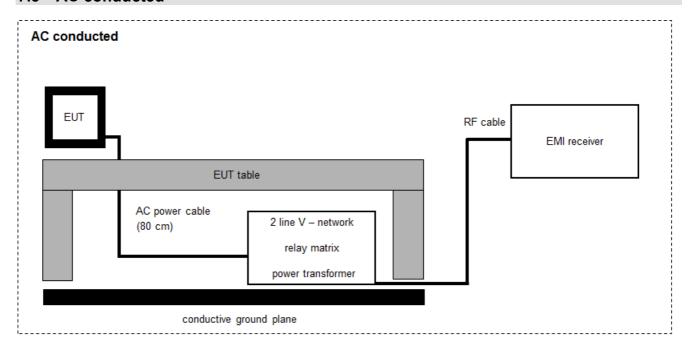
OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

 $\overline{OP [dBm]} = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 \mu W)$

© CTC advanced GmbH Page 10 of 47


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021
2	С	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3696	300001604	vIKI!	12.03.2021	11.03.2023
3	С	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
4	С	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
5	A,B,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
6	A,B,C	Computer	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	-/-
7	С	Highpass Filter	WHKX2.6/18G- 10SS	Wainwright	12	300004651	ne	-/-	-/-
8	A,B,C	NEXIO EMV- Software	BAT EMC V3.20.0.17	EMCO		300004682	ne	-/-	-/-
9	A,B,C	Anechoic chamber		TDK		300003726	ne	-/-	-/-
10	С	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011571	300005240	ev	-/-	-/-
11	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	01029	300005379	vIKI!	02.07.2019	01.07.2021

© CTC advanced GmbH Page 11 of 47

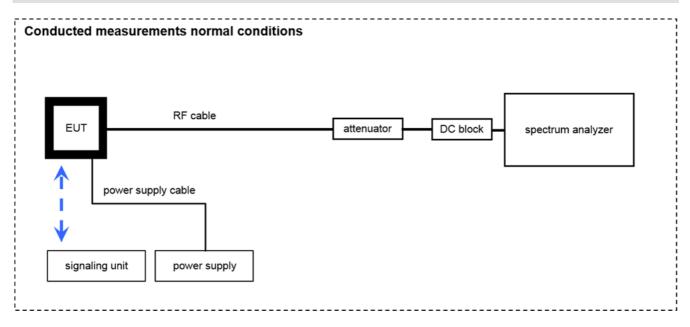
7.3 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	11.12.2019	10.12.2021
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	9.12.2021	8.12.2022
4	A	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
5	Α	PC	TecLine	F+W	-/-	300003532	ne	-/-	-/-

© CTC advanced GmbH Page 12 of 47

7.4 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Equipment table:

No.	Setup	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	RF-Cable SRD021 No. 1	Enviroflex 316 D	Huber & Suhner		400001311	ev	-/-	-/-
2	Α	Spectrum Analyzer	FSV30	Rohde & Schwarz	104365	300005923	k	16.12.2020	15.12.2021

© CTC advanced GmbH Page 13 of 47

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 14 of 47

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 47

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 16 of 47

9 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Carrier frequency separation	± 21.5 kHz				
Number of hopping channels	-/-				
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Detailed conducted spurious emissions @ the band edge	± 1 dB				
Band edge compliance radiated	± 3 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				

© CTC advanced GmbH Page 17 of 47

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
	47 CFR Part 15			,
RF-Testing	RSS 210 Issue 10	See table!	2021-05-26	-/-
	RSS Gen Issue 5			

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS 210 / A8.4(2)	Antenna gain	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	Nominal	Nominal	TX single channel	×				-/-
§15.247(a)(2) RSS Gen clause 4.6.1	Spectrum bandwidth 6dB bandwidth	Nominal	Nominal	TX single channel	×				-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance conducted	Nominal	Nominal	TX single channel	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	-/-	×				-/-
§§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	Nominal	Nominal	TX single channel	×				-/-
§15.247(d) RSS-210 / A8.5	TX spurious emissions radiated	Nominal	Nominal	TX single channel	×				-/-
§15.209(a) RSS-Gen	TX spurious emissions radiated < 30 MHz	Nominal	Nominal	TX single channel	×				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 18 of 47

11 RF measurements

11.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: The EUT was set to the maximum possible output power supported by the test

software (value 155). Both channels were tested.

EUT is transmitting pseudo random data by itself

© CTC advanced GmbH Page 19 of 47

12 Measurement results

12.1 Maximum output power

Measurement:

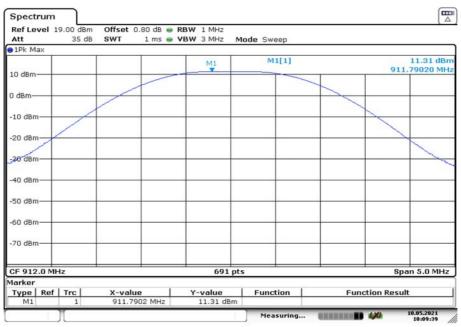
Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	5 MHz			
Trace-Mode:	Max Hold			
Measurement method	According to ANSI C63.10-2013 11.9.1.1 Maximum peak conducted output power			
Used equipment:	See chapter 7.2B & 7.4 A			
Measurement uncertainty:	See chapter 9			

Limits:

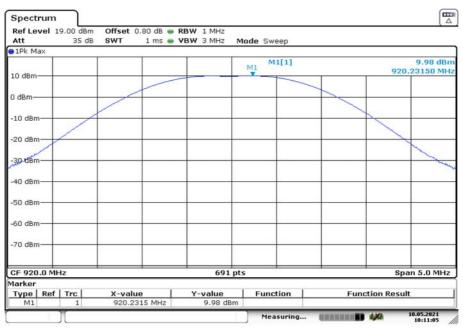
FCC	IC
1 watt (30 dBm) Maximum	Output Power Conducted

Result:

Test Conditions		Maximum Output Power Conducted / dBm		
rest conditions		Low channel -/- High cha		High channel
T_nom	V_{nom}	11.3		10.0


Test Conditions			ERP / dBm		
rest Conditions		Low channel -/- High chan		High channel	
T_nom	V_{nom}	10.4		7.8	

© CTC advanced GmbH Page 20 of 47


Plots:

Plot 1: Low Channel

Date: 10.MAY.2021 10:09:39

Plot 2: High Channel

Date: 10.MAY.2021 10:11:05

© CTC advanced GmbH Page 21 of 47

12.2 Antenna gain

Description:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement:

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	5 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.2 B (radiated) See sub clause 7.4 A (conducted)		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC
Anteni	na gain

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Results:

	Low channel	-/-	High channel
Conducted power / dBm	11.3		10.0
Radiated power / dBm	10.4		7.8
Gain / dBi (Calculated)	-0.9		-2.2

© CTC advanced GmbH Page 22 of 47

12.3 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

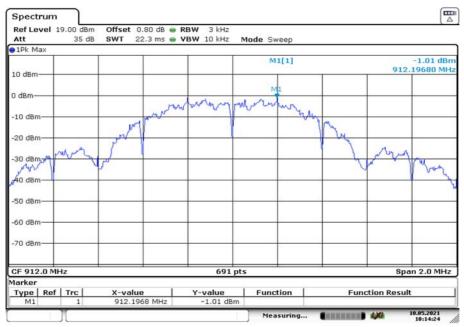
Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	10 kHz		
Resolution bandwidth:	3 kHz		
Span:	1.5 MHz		
Trace-Mode:	Max Hold		
Measurement method	According to ANSI C63.10-2013 11.10.2 Method PKPSD		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 9		

Limits:

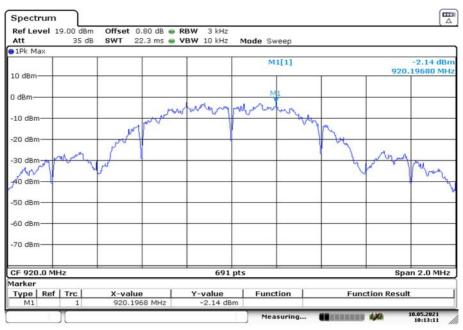
FCC	IC	
Power Spectral Density		
The transmitter nower spectral density conducted from the t	transmitter to the antenna shall not be greater than 8 dRm in	

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration.

Results:


Modulation	Power Spectral density / (dBm/3kHz)			
Channel	Lowest	-/-	Highest	
	-1.01		-2.14	

© CTC advanced GmbH Page 23 of 47


Plots:

Plot 1: Low Channel

Date: 10.MAY.2021 10:14:25

Plot 2: High Channel

Date: 10.MAY.2021 10:13:11

© CTC advanced GmbH Page 24 of 47

12.4 Spectrum bandwidth - 6 dB bandwidth and 99% bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

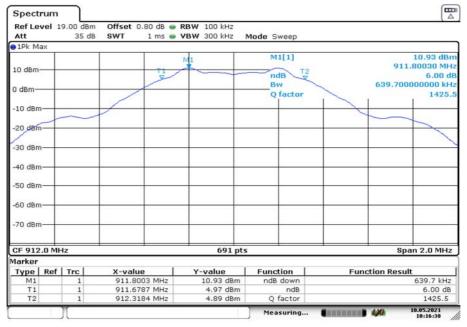
Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	99% OBW: 1% - 5% 0f the OBW 6 dB BW: 100 kHz		
Video bandwidth:	≥ 3 x RBW		
Span:	See plots		
Trace-Mode:	Max Hold		
Measurement method	According to ANSI C63.10-2013 11.8 DTS bandwidth		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 9		

Limits:

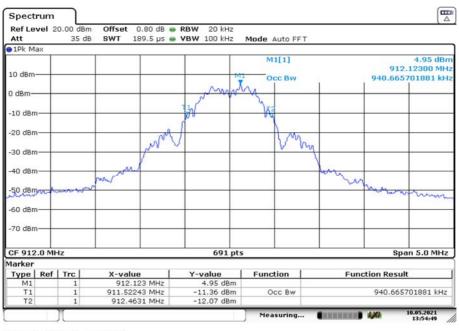
FCC	IC	
Spectrum Bandwidth – 6 dB Bandwidth		
The minimum 6 dB bandwidth shall be at least 500 kHz.		

Results:

Test Conditions		6 dB Bandwidth / kHz		
1001.00	Traitionio	Low channel	-/-	High channel
T _{nom}	V_{nom}	679.7		639.7


Test Conditions		99% Bandwidth / kHz		
		Low channel	-/-	High channel
T_nom	V_{nom}	940.67		933.43

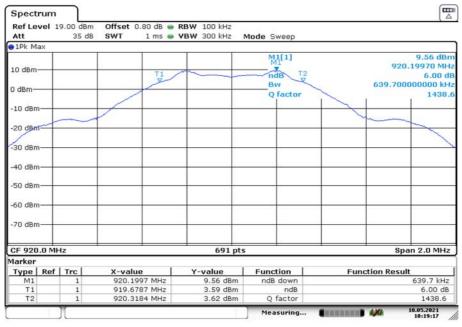
© CTC advanced GmbH Page 25 of 47


Plots:

Plot 1: Low Channel, 6 dB-BW

Date: 10.MAY.2021 10:16:39

Plot 2: Low Channel, 99%OBW



Date: 10.MAY.2021 13:54:49

© CTC advanced GmbH Page 26 of 47

Plot 3: High Channel, 6 dB-BW

Date: 10.MAY.2021 10:19:18

Plot 4: High Channel, 99%OBW

Date: 10.MAY.2021 13:56:12

© CTC advanced GmbH Page 27 of 47

12.5 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel mode.

Measurement:

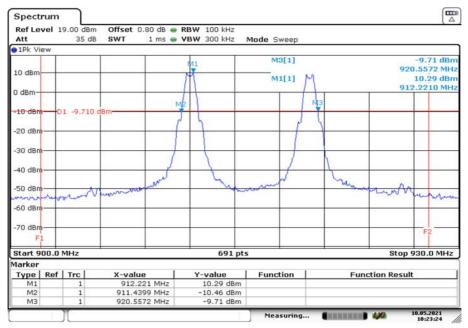
Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz		
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.4 A		
Measurement uncertainty	See sub clause 9		

Limits:

FCC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Results conducted:


Scenario	Spurious band edge conducted / dB		
Modulation	lowest channel	-/-	highest channel
Lower band edge – single channel mode	> 20 dB	-/-	> 20 dB
Upper band edge – single channel mode	> 20 dB	-/-	> 20 dB

© CTC advanced GmbH Page 28 of 47

Plots:

Plot 1: lowest and highest channel

Date: 10.MAY.2021 10:23:24

© CTC advanced GmbH Page 29 of 47

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

© CTC advanced GmbH Page 30 of 47

12.6 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

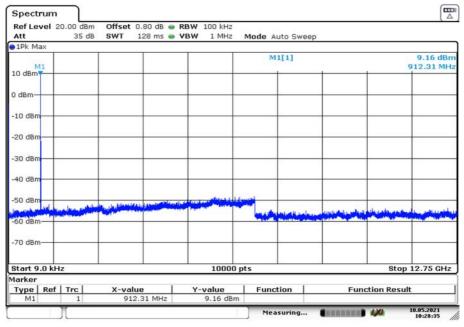
Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	F < 1 GHz: 1 MHz F > 1 GHz: 1 MHz		
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 100 kHz		
Span:	9 kHz to 12.75 GHz		
Trace-Mode:	Max Hold		
Used equipment:	See chapter 7.4A		
Measurement uncertainty:	See chapter 9		

Limits:

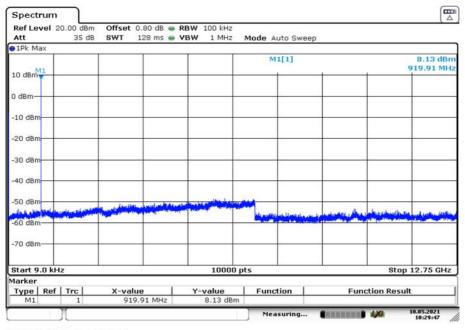
FCC	IC	
TX spurious emissions conducted		

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Result:


Emission Limitation					
Frequency / MHz		Amplitude of emission / dBm	Limit max. allowed emission power	actual attenuation below frequency of operation / dB	Results
912.0		9.16	24 dBm		Operating frequency
·		-20 dBc	No emissions detected!		
920.0		8.13	24 dBm		Operating frequency
	•		-20 dBc	No emissions detected!	

© CTC advanced GmbH Page 31 of 47


Plots:

Plot 1: Low channel, 9 kHz - 12.75 GHz

Date: 10.MAY.2021 10:28:35

Plot 2: High channel, 9 kHz - 12.75 GHz

Date: 10.MAY.2021 10:29:48

© CTC advanced GmbH Page 32 of 47

12.7 Spurious Emissions Radiated < 30 MHz

Description:

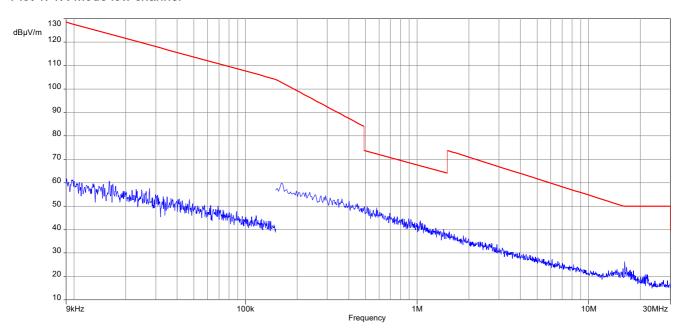
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement:

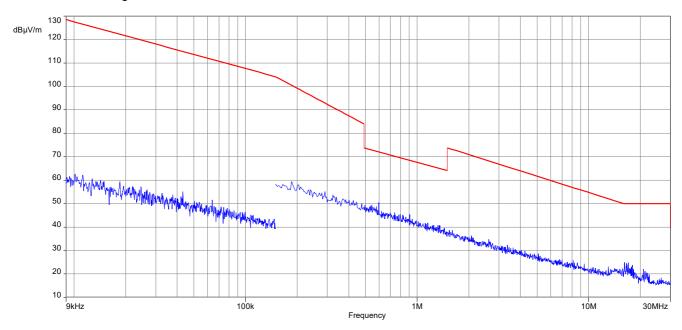
Measurement parameter			
Detector:	Peak / Quasi Peak		
Sweep time:	Auto		
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Span:	9 kHz to 30 MHz		
Trace-Mode:	Max Hold		
Used equipment:	See chapter 7.2 A		
Measurement uncertainty:	See chapter 9		

Limits:

FCC		IC				
	ns radiated < 30 MHz					
Frequency (MHz)	Field strength (dBµV/m)		Field strength (dBµV/m)		Measu	rement distance
0.009 - 0.490	2400/F(kHz)			300		
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)			30
1.705 – 30.0	30			30		


Result:

Spurious emission level								
Lowest channel -//-								
Frequency / MHz	Detector	Level / (dBµV/m)	Frequency / MHz	Detector	Level / (dBµV/m)	Frequency / MHz	Detector	Level / (dBµV/m)
No emissions detected.						No e	missions dete	cted.


© CTC advanced GmbH Page 33 of 47

Plot 1: TX-Mode low channel

Plot 2: TX-Mode high channel

© CTC advanced GmbH Page 34 of 47

12.8 Spurious Emissions Radiated > 30 MHz

12.8.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

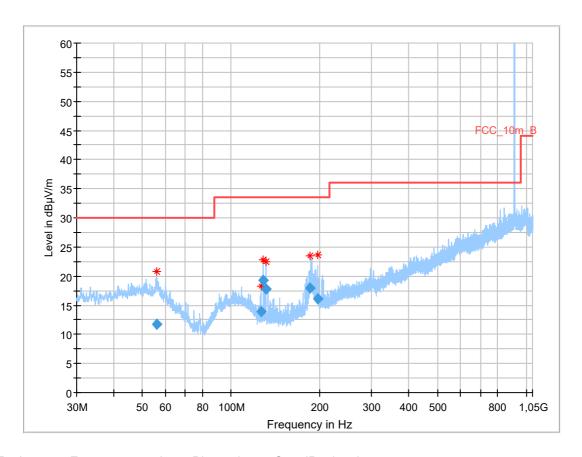
Measurement:

Measurement parameters				
Detector Peak / Quasi Peak				
Sweep time	Auto			
Resolution bandwidth	3 x VBW			
Video bandwidth	120 kHz			
Span	30 MHz to 1 GHz			
Trace mode	Max hold			
Test setup	See sub clause 7.1 A			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC					
Band-edge Compliance of conducted and radiated emissions						

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

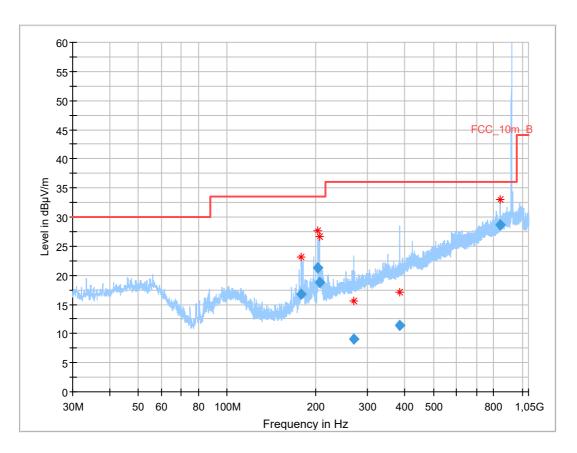

Frequency / MHz	Field Strength / (dBµV/m)	Measurement distance / m
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

Result: See result table below the plots.

© CTC advanced GmbH Page 35 of 47

Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)

Red stars = Frequency markers; Blue points = QuasiPeak values


Final_Result

Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
56.101	11.72	30.0	18.3	1000	120.0	111.0	V	171	15
126.130	13.92	33.5	19.6	1000	120.0	170.0	V	247	9
128.468	19.23	33.5	14.3	1000	120.0	170.0	V	247	9
131.024	17.76	33.5	15.7	1000	120.0	165.0	V	292	9
185.771	17.93	33.5	15.6	1000	120.0	102.0	V	248	11
196.200	16.05	33.5	17.5	1000	120.0	102.0	V	252	12

© CTC advanced GmbH Page 36 of 47

Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Red stars = Frequency markers; Blue points = QuasiPeak values

Final_Result

Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
178.562	16.83	33.5	16.7	1000	120.0	100.0	V	0	10
203.528	21.21	33.5	12.3	1000	120.0	400.0	Н	-22	11
205.324	18.82	33.5	14.7	1000	120.0	400.0	Н	-6	11
268.490	9.04	36.0	27.0	1000	120.0	104.0	V	90	13
383.893	11.36	36.0	24.6	1000	120.0	120.0	V	90	16
840.042	28.69	36.0	7.3	1000	120.0	103.0	Н	161	23

© CTC advanced GmbH Page 37 of 47

12.8.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement:

Measurement parameters					
Detector	Peak / RMS				
Sweep time	Auto				
Resolution bandwidth	1 MHz				
Video bandwidth	3 x RBW				
Span	1 GHz to 12.75 GHz				
Trace mode	Max hold				
Test setup	See sub clause 7.2 C (1 GHz – 12.75 GHz)				
Measurement uncertainty	See sub clause 9				

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

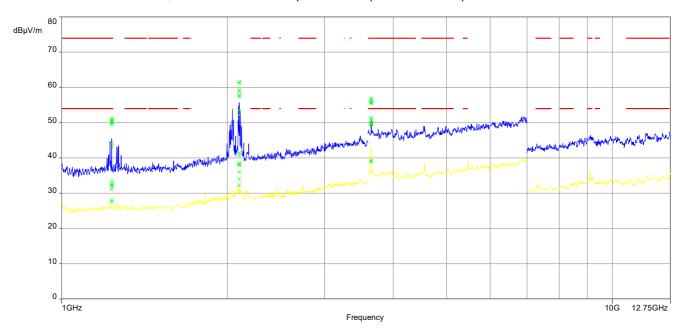
ANSI C63.10

The average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor: $F = 20\log (dwell time/100 ms)$

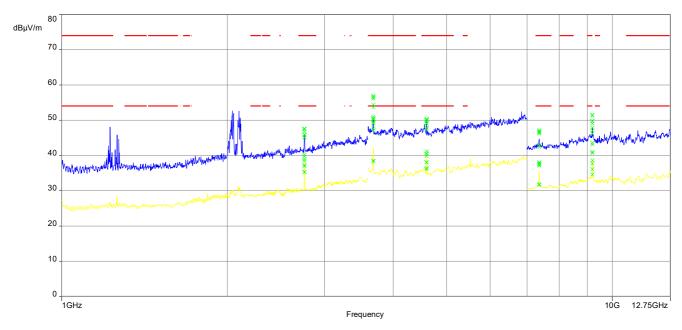
FCC			IC				
TX spurious emissions radiated							
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).							
§15.209							
Frequency / MHz	Field strengt	n / (dBµV/m)	Measurement distance / m				
Above 960	54	.0	3				

© CTC advanced GmbH Page 38 of 47

Result:


	TX spurious emissions radiated							
L	owest chanr	nel	-/-			Highest channel		
Frequency / MHz	Detector	Level / (dBµV/m)	Frequency / MHz	Detector	Level / (dBµV/m)	Frequency / MHz	Detector	Level / (dBµV/m)
		51.0						47.6
	Peak	(23 dB					Peak	(26.4 dB
1234		margin)				2759		margin)
0.		33.3						40.3
	AVG	(20.7 dB					AVG	(13.7 dB
		margin)						margin)
		61.5						56.9
	Peak	(12.5 dB					Peak	(17.1 dB
2101		margin)				3679		margin)
	1) (0	40.8					1) (0	51.0
	AVG	(13.2 dB					AVG	(3.0 dB
		margin)						margin) 50.3
	Peak	55.6 (18.4 dB					Peak	(23.7 dB
	Peak	•						,
3647		margin) 49.8				4601		margin) 41.1
	AVG	(4.2 dB					AVG	(12.9 dB
	AVG	margin)					AVG	margin)
		illargili)						47.1
							Peak	(26.9 dB
							1 Cak	margin)
						7362		38.0
							AVG	(16.0 dB
								margin)
								51.4
							Peak	(22.6 dB
						0407		margin)
						9197		43.5
							AVG	(10.5 dB
								margin)

© CTC advanced GmbH Page 39 of 47



Plots:

Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)

Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

© CTC advanced GmbH Page 40 of 47

12.1 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequency is 2440 MHz. This measurement is representative for all channels and modes. If critical peaks are found frequency 2402 MHz and 2480 MHz will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

Measurement parameters							
Detector	Peak - Quasi peak / average						
Sweep time	Auto						
Resolution bandwidth	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz						
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz						
Span:	9 kHz to 30 MHz						
Trace mode:	Max hold						
Test setup	See chapter 7.3 A						
Measurement uncertainty	See chapter 9						

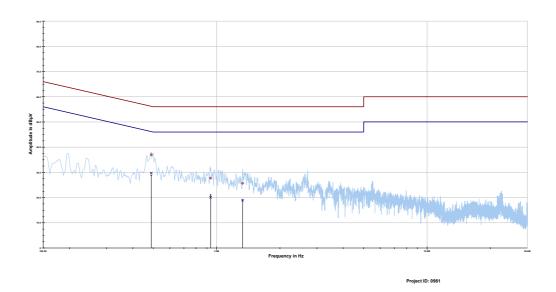
Limits:

FCC			ISED			
TX spurious emissions conducted < 30 MHz						
Frequency (MHz)	Quasi-peak (dBμV/m)		Quasi-peak (dBμV/m)		Average (dBμV/m)	
0.15 – 0.5	66 to 56*		56 to 46*			
0.5 – 5	56		56		46	
5 – 30.0	60		60		50	

^{*}Decreases with the logarithm of the frequency

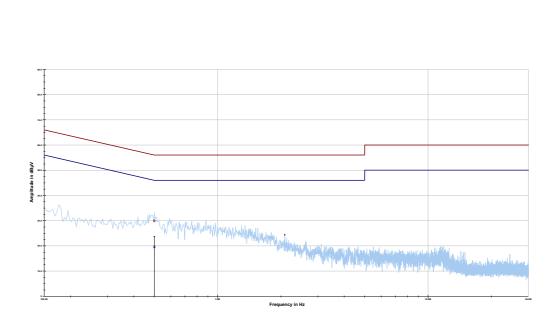
Results:

See result table below the plots.


© CTC advanced GmbH Page 41 of 47

Plots:

Plot 1: 150 kHz to 30 MHz, phase line


Final_Result

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.489544	36.97	19.20	56.176	29.72	16.58	46.299
0.937294	27.71	28.29	56.000	20.10	25.90	46.000
1.329075	25.67	30.33	56.000	18.95	27.05	46.000

© CTC advanced GmbH Page 42 of 47

Plot 2: 150 kHz to 30 MHz, neutral line

Final_Result

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.500737	29.94	26.06	56.000	19.58	26.42	46.000

© CTC advanced GmbH Page 43 of 47

13 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 44 of 47

14 Glossary

EUT	Equipment under test			
DUT				
UUT				
GUE				
ETSI	European Telecommunications Standards Institute			
EN	European Standard			
FCC	Federal Communications Commission			
FCC ID				
IC	Company Identifier at FCC Industry Canada			
PMN	·			
HMN	Product marketing name Host marketing name			
HVIN	Hardware version identification number			
FVIN	Firmware version identification number			
EMC	Electromagnetic Compatibility			
HW	Hardware			
SW	Software			
Inv. No.				
S/N or SN	Inventory number			
3/N 0/ 3N	Serial number Compliant			
NC	Not compliant			
NA NA	Not applicable			
NP	Not applicable Not performed			
PP	Positive peak			
QP	Quasi peak			
AVG	Average			
OC	Operating channel			
ocw	Operating channel bandwidth			
OBW	Occupied bandwidth			
ООВ	Out of band			
DFS	Dynamic frequency selection			
CAC	Channel availability check			
OP	Occupancy period			
NOP	Non occupancy period			
DC	Duty cycle			
PER	Packet error rate			
CW	Clean wave			
MC	Modulated carrier			
WLAN	Wireless local area network			
RLAN	Radio local area network			
DSSS	Dynamic sequence spread spectrum			
OFDM	Orthogonal frequency division multiplexing			
FHSS	Frequency hopping spread spectrum			
GNSS	Global Navigation Satellite System			
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz			

© CTC advanced GmbH Page 45 of 47

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2021-05-20

16 Accreditation Certificate - D-PL-12076-01-04

first page	last page
DAKKS Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following	
fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover shee by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-N-1.2076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-N-1.2076-01-04	accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkAStelleG) of 31 July 2009 (Federal Law Gazettel p. 2659) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Linux 128 of 9 July 2008, 50). DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Formul (RF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.
Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 by order [Jaja Ing. (15) 2016 Egner Head of Division	The up-to-date state of membership can be retrieved from the following websites: EA: www.uropean-accreditation.org: ILAC: www.llac.org IAF: www.laf.nu
The corrificate targether with its annex reflects the status at the time of the date of issue. The current status of the scope of accreditation can be found in the distribute of occreditation before an object of the scope of accreditation with scale of the scope of accreditation with scale of the scope of accreditation o	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

© CTC advanced GmbH Page 46 of 47

17 Accreditation Certificate - D-PL-12076-01-05

first page	last page		
Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH		
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGtW Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig		
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields:			
Telecommunication (FCC Requirements)	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover shee by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette 1p. 2659) and the Regulation (EC) No 765/2008 of the European Parliament and of		
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.05.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-Pt-12076-01-05 Frankfurt am Main, 09.06.2020 by ordy Total-ing, [Pt-12076 Eigner Head of Division]	the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products Official Journal of the European Union 1.28 of 9 July 2008, p. 30). DANS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation formum (IAF) and International Luboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-ot-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.itsc.org IAF: www.itsc.org		
The certificate together with its owner reflects the status at the time of the date of issue. The current status of the scape of accreditation can be found in the distribute of accreditate loaders of Oestache Alkreditionungsstelle GmbH. https://www.doi.ks.de/en/content/accredited-bodies-doi.ks line was writted.			

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 47 of 47