

Shenzhen CTL Testing Technology Co., Ltd. Tel: +86-755-89486194 Fax: +86-755-26636041

Jennifer Ni Jackychen

MPE TEST REPORT

FCC Per 47 CFR 2.1091(b)

Report Reference No.....:: CTL1407301819-WM FCC ID....:: 2AC2Z-898UV

Compiled by

(position+printed name+signature)..: File administrators

Jennifer NI

Name of the organization performing the

tests

Test Engineer Jacky Chen

(position+printed name+signature)...

Approved by

(position+printed name+signature)... Manager Tracy Qi

Date of issue....: Aug. 24, 2014

Test Firm..... Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address....:

Nanshan District, Shenzhen, China 518055

Applicant's name..... Quanzhou Leixen Electronics Co., Ltd

Address....: No.48, Jingiao Road, Changtai Street, Quanzhou City, Fujian

Province, China

CTLTIER

Test specification:

FCC Per 47 CFR 2.1091(b) Standard:

TRF Originator....: Shenzhen CTL Testing Technology Co., Ltd.

Master TRF..... Dated 2011-01

Shenzhen CTL Testing Technology Co., Ltd.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description:: **Mobile Transceiver**

Trade Mark: LEIXEN

Model/Type reference....: VV-898

Listed Models: UV-898, UV-898S, UV-998, UV-998S, JT270M, LX-809

Power Supply.....: DC 13.8V from battery

Modulation....:

Channel Separation..... 12.5KHz

Rated Power....: 10W

Result....: **Positive**

Test Report

Report No.: CTL1407301819-WM

Test Report No. :	CTL1407301819-WM	Aug. 24, 2014
rest Report No	C1 L140/301019-44141	Date of issue

Equipment under Test : Mobile Transceiver

Model /Type : VV-898

Listed Models : UV-898, UV-998, UV-998S, JT270M, LX-809

Difference Description : Only the color and model's name is different.

Applicant : Quanzhou Leixen Electronics Co., Ltd

Address : No.48, Jinqiao Road, Changtai Street, Quanzhou City,

Fujian Province, China

Manufacturer : Quanzhou Leixen Electronics Co., Ltd

Address : No.48, Jinqiao Road, Changtai Street, Quanzhou City,

Fujian Province, China

Tarabas II	air 36 si
Test Result according to the standards on page 4:	Positive
Standards on page in	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Content

<u>1.</u>	SUMMARY	<u> 4</u>
1.1.	EUT configuration	4
1.2.	Equipment Under Test	4
1.3.	Description of the test mode	4
<u>2.</u>	TEST ENVIRONMENT	<u> 5</u>
2.1.	Address of the test laboratory	5
2.2.	Environmental conditions	5
2.3.	Statement of the measurement uncertainty	5
3	METHOD OF MEASUREMENT	6

1. SUMMARY

1.1. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- o supplied by the lab

1.2. Equipment Under Test

Power supply system utilised

Power supply voltage : o 120V / 60 Hz o 115V / 60Hz o 24 V DC

Other (specified in blank below)

DC 13.80V

1.3. Description of the test mode

The Mobile Transceiver, Model: VV-898 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Mobile Transceive	er .		
Model Number	VV-898			
FCC ID	2AC2Z-898UV			
Rated Output Power	10 Watts(40.00dE	Bm)		
Modilation Type	FM for Analog Vo	FM for Analog Voice		
Modilation Type	Analog	F3E for 12.5KHz Channel Separation		
Channel Separation	Analog Voice	12.5KHz		
Antenna Type	External			
Frequency Range 136-174MHz, 400-470MHz				
Maximum Output Power	Analog	10.47W for 12.5 KHz Channel Separation		

Test frequency list

	Modulation Type	Channel Separation (KHz)	Test Channel	Test Frequency (MHz) TX
Frequency Range			A001	136.5000
(MHz)	Analog/FM	12.5	A002	146.0000
			A003	155.5000
			A004	164.0000
			A005	173.5000

	Modulation Type	Channel Separation (KHz)	Test Channel	Test Frequency (MHz)
	Type	(KHZ)		TX
Frequency Range			A006	406.5000
(MHz)	Analog/FM	12.5	A007	418.0000
			A008	435.5000
			A009	453.0000
			A010	469.5000

V1.0 Page 5 of 7 Report No.: CTL1407301819-WM

2. TEST ENVIRONMENT

2.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

2.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Electromagnetic Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	1~12.75GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.22dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3. Method of measurement

3.1. Applicable Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

3.2. **Limit**

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

Frequency Range(MHz)	Electric Field Strength(V/m)	Magnetic Field Strength(A/m)	Power Density (mW/cm²)	Averaging Time (minute)
range(mnz)	• • •	ccupational/Controll	,	(minute)
0.0.00		·	<u> </u>	
0.3 - 3.0	614	1.63	(100) *	6
3.0 – 30	1842/f	4.89/f	(900/f)*	6
30 – 300	61.4	0.163	1.0	6
300 – 1500	1	/	f/300	6
1500 - 100,000	1	/	5	6

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)
	Limits for Oc	cupational/Controll	ed Exposure	
0.3 - 3.0	614	1.63	(100) *	30
3.0 – 30	824/f	2.19/f	(180/f)*	30
30 – 300	27.5	0.073	0.2	30
300 – 1500	/	/	f/1500	30
1500 – 100,000	1	1	1.0	30

F=frequency in MHz

3.3. MPE Calculation Method

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4πR²

Where: S=power density P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

From the peak EUT RF output power, the minimum mobile separation distance, d=1.0m, as well as the gain of the used antenna is 4.1 dBi, the RF power density can be obtained.

^{*=}Plane-wave equivalent power density

TEST RESULTS

V Frequency Band

•	Minimum				Power	Power	
Test Frequency (MHz)	Separation Distance (cm)	Output Power (dBm)	Output Power (mW)	Antenna Gain (Nemeric)	Density Limit (mW/cm²)	Density At 100 cm (mW/cm²)	Test Results
136.5000	100.00	39.59	9099.1327	2.5704	1.000	0.1861	Pass
146.0000	100.00	39.75	9440.6088	2.5704	1.000	0.1931	Pass
155.5000	100.00	39.64	9204.4957	2.5704	1.000	0.1883	Pass
164.0000	100.00	39.52	8953.6476	2.5704	1.000	0.1831	Pass
173.5000	100.00	39.10	8128.3051	2.5704	1.000	0.1663	Pass

U Frequency Band

O i requeric	y Dania						
Test Frequency (MHz)	Minimum Separation Distance (cm)	Output Power (dBm)	Output Power (mW)	Antenna Gain (Nemeric)	Power Density Limit (mW/cm²)	Power Density At 100 cm (mW/cm²)	Test Results
406.5000	100.00	39.65	9225.7143	2.5704	1.355	0.1887	Pass
418.0000	100.00	39.55	9015.7114	2.5704	1.393	0.1844	Pass
435.5000	100.00	39.98	9954.0542	2.5704	1.452	0.2036	Pass
453.0000	100.00	40.20	10471.2854	2.5704	1.510	0.2142	Pass
469.5000	100.00	39.40	8709.6359	2.5704	1.565	0.1782	Pass

4. Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1091 (b) for the controlled RF Exposure.

