

FCC TEST REPORT

According to

FCC CFR Title 47 Part 15 Subpart C (15.247)

Applicant NINGBO DIYA ELECTRIC APPLIANCE CO.,LTD.

Address SIMEN TOWN YUYAO CITY ZHEJIANG CHINA

Manufacturer: NINGBO DIYA ELECTRIC APPLIANCE CO.,LTD.

Address SIMEN TOWN YUYAO CITY ZHEJIANG CHINA

Remote Control Socket Equipment

Model No. DR-1701

FCC ID 2AC2CDR-018

Jun.07th,2018~ Sep.01th, 2018 **Test Period**

- The test result refers exclusively to the test presented test model / sample.
- Without written approval of CERPASS TECHNOLOGY CORPORATION TEST LABORATORY the test report shall not be reproduced exc- ept in full.
- The test report must not be used by the clients to claim product certification approval by **NVLAP** or any agency of the Government.

I HEREBY CERTIFY THAT:

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.10 - 2013&FCC Part15.247 and the energy emitted by this equipment was passed.

Laboratory Accreditation: Approved by:

Mark Liao / Assistant Manager

Cerpass Technology Corporation Test Laboratory

TAF LAB Code:

1439

Page No.

Report No.: TEFM1806020

Report format Revision 01

Issued Date : Sep.03th,2018 : 1 of 4

Radio Frequency Exposure

LIMIT

For 2.4G Band: According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

Cerpass Technology Corporation Test Laboratory

Report format Revision 01 Page No. : 2 of 4

Report No.: TEFM1806020

CERPASS TECHNOLOGY CORPORATION TEST LABORATORY

EUT Specification

EUT	Remote Control Socket				
Frequency band (Operating)					
Device category	☐ Portable (<20cm separation) ☐ Mobile (>20cm separation)				
Exposure classification	 ☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²) 				
Antenna diversity	 Single antenna Multiple antennas Tx diversity Rx diversity Xr/Rx diversity 				
Max. output power for 2.4G Band	IEEE802.11b: 21.79 dBm (0.1510W) IEEE802.11g: 22.11 dBm (0.1626W) IEEE802.11n HT20: 21.13 dBm (0.1297W)				
Antenna gain (Max)	3dBi for 2.4G Band				
Evaluation applied					
Remark:					

Report No.: TEFM1806020

Cerpass Technology Corporation Test Laboratory Issued Date : Sep.03th,2018

^{1.} The maximum output power is <u>22.11dBm (0.1626W)</u> at <u>2462MHz</u> (with <u>numeric 2.00antenna gain.)</u> for 2.4G band

^{2.} DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.

^{3.} For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

^{*}Note: Simultaneous transmission is not applicable for this EUT.

Report No.: TEFM1806020

Issued Date: Sep.03th,2018

: 4 of 4

Page No.

TEST RESULTS FOR 2.4G BAND

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = *Distance in meters*

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Maximum Permissible Exposure

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm²)	Limit (mW/cm2)
IEEE802.11b	2412-2462	21.79	3	20	0.0599	1
IEEE802.11g	2412-2462	22.11	3	20	0.0645	1
IEEE802.11n HT20	2412-2462	21.13	3	20	0.0515	1