

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 Issue 3

TEST REPORT

For

WIFI+BT Module

MODEL NUMBER: WXT42J1001S

FCC ID:2AC23-WXT42S IC:12290A-WXT42S

REPORT NUMBER: 4791129886-1-RF-3

ISSUE DATE: January 8, 2024

Prepared for

Hui Zhou Gaoshengda Technology Co.,LTD No.2,Jin-da Road,Huinan High-tech Industrial Park,Hui-ao Avenue,Huizhou City,Guangdong,China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	January 8, 2024	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC 15.203 RSS-GEN Clause 6.8	Pass
AC Power Line ANSI C63.10-2013 Clause Conducted Emission 6.2		FCC Part 15.207	Pass
	ANSI C63.10-2013 Clause 7.8.5	FCC 15.247 (b) (1) RSS-247 Clause 5.1 (b)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a) RSS-Gen Clause 6.7	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (b)	Pass
	ANSI C63.10-2013 Clause 7.8.3	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
	ANSI C63.10-2013 Clause 7.8.4	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC 15.247 (d) RSS-247 Clause 5.5	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C and ISED RSS-247 Issue 3> when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTESTATION OF TEST RESULTS				
2.	TEST METHODOLOGY	7			
3.	FACILITIES AND ACCREDITATION	7			
4.	CALIBRATION AND UNCERTAINTY	8			
4	.1. MEASURING INSTRUMENT CALIBRATION	8			
4	2.2. MEASUREMENT UNCERTAINTY	8			
5.	EQUIPMENT UNDER TEST	9			
5	.1. DESCRIPTION OF EUT	9			
5	2. CHANNEL LIST	9			
5	3.3. MAXIMUM POWER	9			
5	.4. TEST CHANNEL CONFIGURATION	. 10			
5	5. THE WORSE CASE POWER SETTING PARAMETER	. 10			
5	6. DESCRIPTION OF AVAILABLE ANTENNAS	. 11			
5	7. SUPPORT UNITS FOR SYSTEM TEST	. 12			
6.	MEASURING EQUIPMENT AND SOFTWARE USED	.13			
7.	ANTENNA PORT TEST RESULTS	. 15			
7	.1. CONDUCTED OUTPUT POWER	. 15			
7	20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	. 16			
7	.3. CARRIER HOPPING CHANNEL SEPARATION	. 17			
7	.4. NUMBER OF HOPPING FREQUENCY	. 19			
7	7.5. TIME OF OCCUPANCY (DWELL TIME)	.20			
7	6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION	. 22			
7	7. DUTY CYCLE	.24			
8.	RADIATED TEST RESULTS	. 25			
8	1. RESTRICTED BANDEDGE	. 34			
8	2.2. SPURIOUS EMISSIONS(1 GHZ~3 GHZ)	. 38			
8	3.3. SPURIOUS EMISSIONS(3 GHZ~18 GHZ)	. 44			
8	2.4. SPURIOUS EMISSIONS(9 KHZ~30 MHZ)	. 56			
8	2.5. SPURIOUS EMISSIONS(18 GHZ~26 GHZ)	. 59			
8	6. SPURIOUS EMISSIONS(30 MHZ~1 GHZ)	. 61			
9.	ANTENNA REQUIREMENT	. 63			
10.	AC POWER LINE CONDUCTED EMISSION	. 64			
11.	TEST DATA	. 67			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

<i>11.1.</i> 11.1.1. 11.1.2.	APPENDIX A: 20DB EMISSION BANDWIDTH Test Result Test Graphs	67
<i>11.2.</i> 11.2.1. 11.2.2.	APPENDIX B: OCCUPIED CHANNEL BANDWIDTH Test Result Test Graphs	70
<i>11.3.</i> 11.3.1.	APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER Test Result	
<i>11.4.</i> 11.4.1. 11.4.2.	APPENDIX D: CARRIER FREQUENCY SEPARATION Test Result Test Graphs	74
<i>11.5</i> . 11.5.1. 11.5.2.	APPENDIX E: TIME OF OCCUPANCY Test Result Test Graphs	76
<i>11.6.</i> 11.6.1. 11.6.2.	APPENDIX F: NUMBER OF HOPPING CHANNELS Test Result Test Graphs	79
<i>11.7.</i> 11.7.1. 11.7.2.	APPENDIX G: BAND EDGE MEASUREMENTS Test Result Test Graphs	81
<i>11.8.</i> 11.8.1. 11.8.2.	APPENDIX H: CONDUCTED SPURIOUS EMISSION Test Result Test Graphs	85
<i>11.9.</i> 11.9.1. 11.9.2.	APPENDIX I: DUTY CYCLE Test Result Test Graphs	92

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Hui Zhou Gaoshengda Technology Co.,LTD
Address:	No.2, Jin-da Road, Huinan High-tech Industrial Park, Hui-ao
	Avenue, Huizhou City, Guangdong, China

Manufacturer Information

Company Name:	Hui Zhou Gaoshengda Technology Co.,LTD		
Address:	No.2, Jin-da Road, Huinan High-tech Industrial Park, Hui-ao		
	Avenue, Huizhou City, Guangdong, China		

EUT Information

EUT Name: Model: Sample Received Date: Sample ID: Date of Tested: WIFI+BT Module WXT42J1001S December 20, 2023 6767728 December 20, 2023 to January 8, 2024

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 FCC PART 15 SUBPART C

Pass

ISED RSS-247 Issue 3

Fas

Prepared By:

Lammy Huang

Fanny Huang Engineer Project Associate

Approved By:

Stephen Guo Operations Manager

Checked By:

Aucur Down

Denny Huang Senior Project Engineer

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C ISED RSS-247 Issue 3, KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, ANSI C63.10-2013 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	AOLA (Opertificante No. + 4400.04)
	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	•
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20192 and R-20202
	Shielding Room B, the VCCI registration No. is C-20153 and T-20155

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Conduction emission	3.62 dB			
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB			
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB			
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)			
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)			
Duty Cycle	±0.028%			
20dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%			
Carrier Frequency Separation	±1.9%			
Maximum Conducted Output Power	±0.743 dB			
Number of Hopping Channel	±1.9%			
Time of Occupancy	±0.028%			
Conducted Band-edge Compliance	±1.328 dB			
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)			
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	WIFI+BT Module
Model	WXT42J1001S

Technology	Bluetooth – BR & EDR			
Transmit Frequency Range	2402 MHz ~ 2480 MHz			
Mode	Basic Rate	sic Rate Enhanced Data Rate		
Modulation	GFSK ∏/4-DQPSK 8DPSK		8DPSK	
Packet Type (Maximum Payload):	DH5	2DH5	3DH5	
Data Rate	1 Mbps	2 Mbps	3 Mbps	
Ratings	DC 3.3 V			

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)
GFSK	2402 ~ 2480	0-78[79]	9.36
8DPSK	2402 ~ 2480	0-78[79]	11.63

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK-DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK-3DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
GFSK-DH5	Hopping	
8DPSK-3DH5	Hopping	

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)	
	DH1	27	
GFSK	DH3	183	
	DH5	339	
	2-DH1	54	
∏/4-DQPSK	2-DH3	367	
	2-DH5	679	
	3-DH1	83	
8DPSK	3-DH3	552	
	3-DH5	1021	

5.5. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Se	oftware	WCN_Combo_Tool					
Modulation Type	Transmit Antenna	Test	Test Software setting value				
	Number	CH 00	CH 39	CH 78			
GFSK	1	5	5	5			
8DPSK	1	5 5 5					

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	PIFA Antenna	1.72

Test Mode	Transmit and Receive Mode	Description			
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.			
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.			
Note: 1.BT&WLAN 2.4G, BT & WLAN 5G, WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client)					

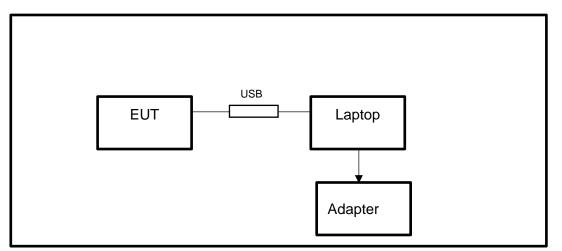
5.7. SUPPORT UNITS FOR SYSTEM TEST

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	E42-80	R303U5AG
2	AC Adaptor	Lenovo	MACS- 1201001202	Input: 100-240 V~50/60 Hz, 0.35 A Output: DC 12V1A
3	UART	/	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

Note: Adapter only use for AC Power Line Conducted Emission testing.

6. MEASURING EQUIPMENT AND SOFTWARE USED

R&S TS 8997 Test System									
Equipment Manu			cturer	Model	No.	Serial No.	Last C	Cal.	Due. Date
Power sensor, Power Meter R&S			OSP1	20	100921	Mar.31,	2023	Mar.30,2024	
Vector Signal Genera	tor	R&\$	S	SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024
Signal Generator		R&\$	6	SMB10	00A	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer		R&\$	6	FSV4	10	101118	Oct.12,	2023	Oct.11, 2024
		I		Softwa	re		I		
Description			Manuf	acturer		Nam	е		Version
For R&S TS 8997 Test	Syste	em Ro	hde 8	Schwai	ſZ	EMC	32		10.60.10
		Тс	onsen	d RF Te	st S	ystem			
Equipment	Man	ufacturer	Мос	del No.	S	Serial No.	Last C	Cal.	Due. Date
Wideband Radio Communication Tester		R&S	CM	IW500	155523		Oct.12, 2023		Oct.11, 2024
Wireless Connectivity Tester		R&S	СМ	W270	120	1.0002N75- 102	Sep.25,	2023	Sep.24, 2024
PXA Signal Analyzer	Ke	eysight	N9	030A	MY	′55410512	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	5182B	ΜY	′56200284	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	5172B	ΜY	⁄56200301	Oct.12,	2023	Oct.11, 2024
DC power supply	Ke	eysight	E3	642A	ΜY	′55159130	Oct.12,	2023	Oct.11, 2024
Temperature & Humidity Chamber	SAN	NMOOD	SG-8	30-CC-2		2088	Oct.12,	2023	Oct.11, 2024
Attenuator	A	glient 84		495B	28	14a12853	Oct.12,	2023	Oct.11, 2024
RF Control Unit	То	onscend JSC		0806-2	23E	380620666	April 18,	2023	April 17, 2024
	Software								
Description		Manufac	turer			Name			Version
Tonsend SRD Test Syst	tem	Tonse	nd	JS1	120-:	3 RF Test S	ystem		V3.2.22

Conducted Emissions								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
EMI Test Receiver	R&S ESR3		101961	Oct.13, 2023	Oct.12, 2024			
Two-Line V- Network	R&S	ENV216	101983	Oct.13, 2023	Oct.12, 2024			
Artificial Mains Networks	Schwarzbeck NSLK 8126		8126465	Oct.13, 2023	Oct.12, 2024			
		So	ftware					
	Description		Manufacturer	Name	Version			
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1			

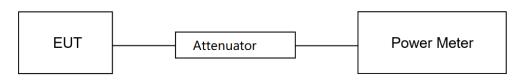
Radiated Emissions								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024			
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024			
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024			
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024			
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024			
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024			
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024			
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024			
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024			
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024			
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024			
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.12, 2023	Oct.11, 2024			
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.12, 2023	Oct.11, 2024			
Software								
[Description		Manufacturer	Name	Version			
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3			
			Frequency Range (MHz)
CFR 47 FCC 15.247 (b) (1) ISED RSS-247 Clause 5.4 (b)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	20.7 ℃	Relative Humidity	39.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST RESULTS

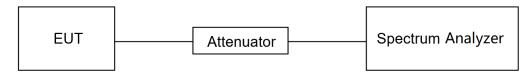
Please refer to section "Test Data" - Appendix C

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit Frequency Range (MHz)			Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth	
VBW	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW	
Span	Approximately 2 to 3 times the 20dB bandwidth	
Trace	Max hold	
Sweep	Auto couple	

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	20.7 ℃	Relative Humidity	39.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST RESULTS

Please refer to section "Test Data" - Appendix A&B

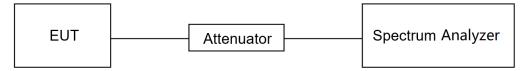
7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1) ISED RSS-247 Clause 5.1 (b)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
RBW	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	20.7 ℃	Relative Humidity	39.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS

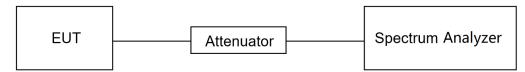
Please refer to section "Test Data" - Appendix D

7.4. NUMBER OF HOPPING FREQUENCY

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit			
CFR 47 15.247 (a) (1) III Number of Hopping ISED RSS-247 Clause 5.1 (d) Frequency		at least 15 hopping channels	

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	20.7 ℃	Relative Humidity	39.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST RESULTS

Please refer to section "Test Data" - Appendix F

7.5. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3			
Section	ction Test Item Limit		
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

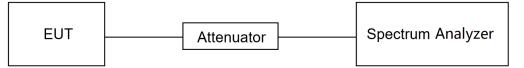
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.


For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel):

DH1/3DH1 Dwell Time: Burst Width * (800/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (800/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (800/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	20.7 ℃	Relative Humidity	39.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST RESULTS

Please refer to section "Test Data" - Appendix E

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3				
Section Test Item Limit				
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power		

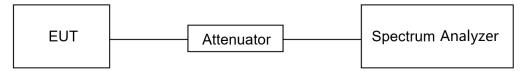
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyzer and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.


Change the settings for emission level measurement:

5030	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

TEST SETUP

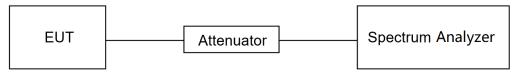
TEST ENVIRONMENT

Temperature	20.7 ℃	Relative Humidity	39.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST RESULTS

Please refer to section "Test Data" - Appendix G&H

7.7. DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	20.7 ℃	Relative Humidity	39.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST RESULTS

Please refer to section "Test Data" - Appendix I

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz				
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m Quasi-Peak		
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		
Above 1000	500	Peak	Average	
	300	74	54	

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz			
Frequency Magnetic field strength (H-Field) (µA/m) Measurement distance (m)			
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300	
490 - 1705 kHz	63.7/F (F in kHz)	30	
1.705 - 30 MHz	0.08	30	

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	158.7 - 158.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 18.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1648.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.87	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 - 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

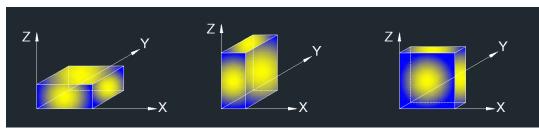
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
NBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.7. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

For Restricted Bandedge:

Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes have been tested, but only the worst data was recorded in the report.

5. dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5

For Radiate Spurious Emission (30 MHz ~ 1 GHz): Note:

1. Result Level = Read Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed

to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (3 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

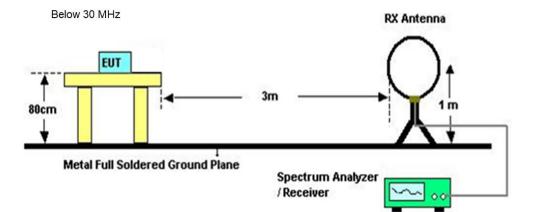
6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

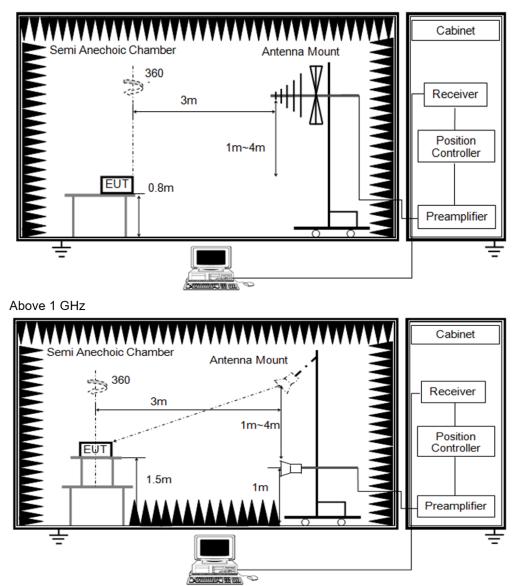
8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz): Note:

1. Measurement = Reading Level + Correct Factor.


2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

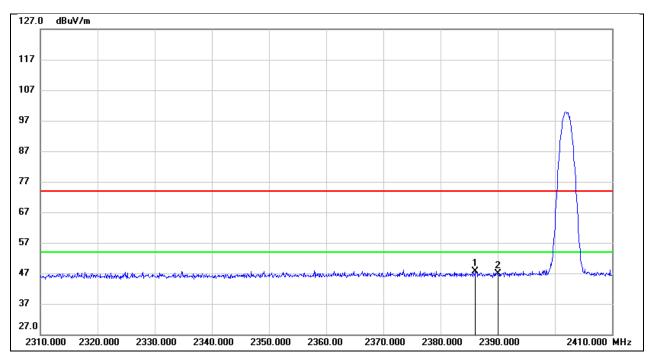

4. All modes have been tested, but only the worst data was recorded in the report.

TEST SETUP

Below 1 GHz and above 30 MHz

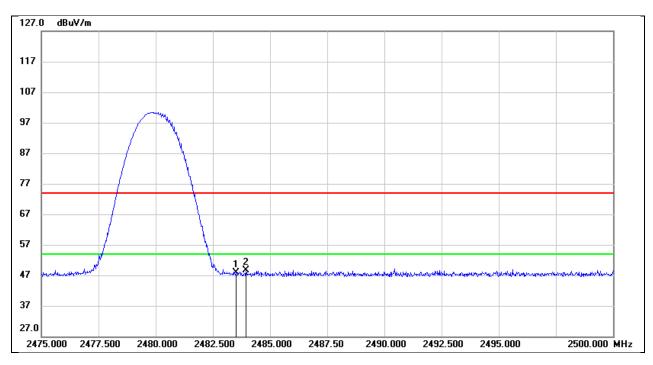
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

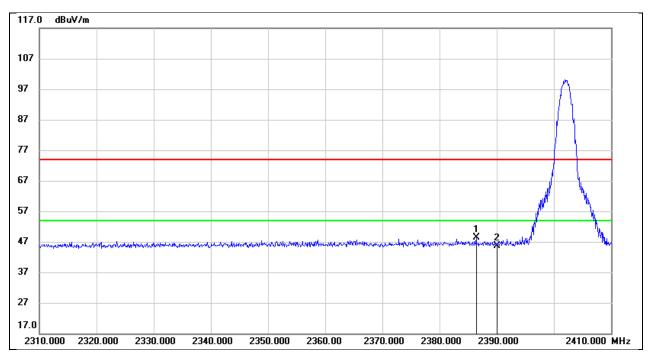

Temperature	24.7 ℃	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

TEST RESULTS

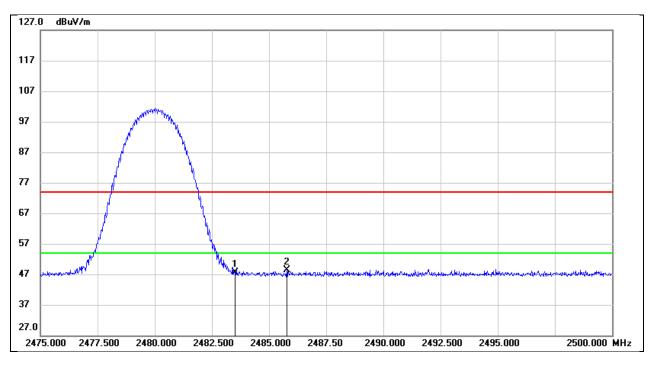
8.1. RESTRICTED BANDEDGE


Test Mode:	GFSK PK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2386.100	15.42	32.14	47.56	74.00	-26.44	peak
2	2390.000	14.67	32.16	46.83	74.00	-27.17	peak

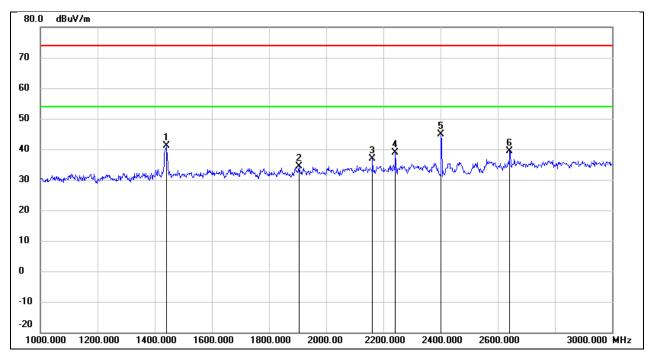

Test Mode:	GFSK PK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.53	32.44	47.97	74.00	-26.03	peak
2	2483.950	16.11	32.44	48.55	74.00	-25.45	peak


Test Mode:	8DPSK PK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

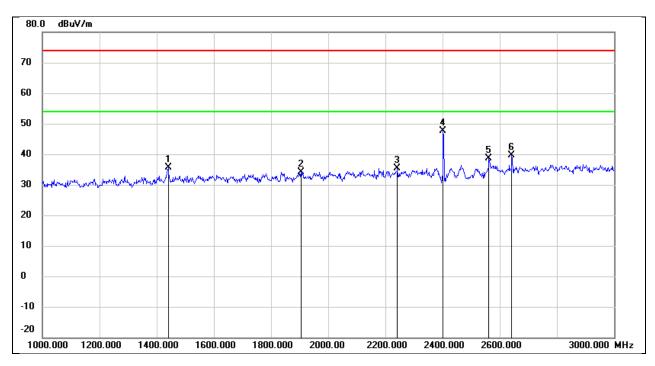
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2386.400	16.36	32.14	48.50	74.00	-25.50	peak
2	2390.000	13.55	32.16	45.71	74.00	-28.29	peak

Test Mode:	8DPSK PK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

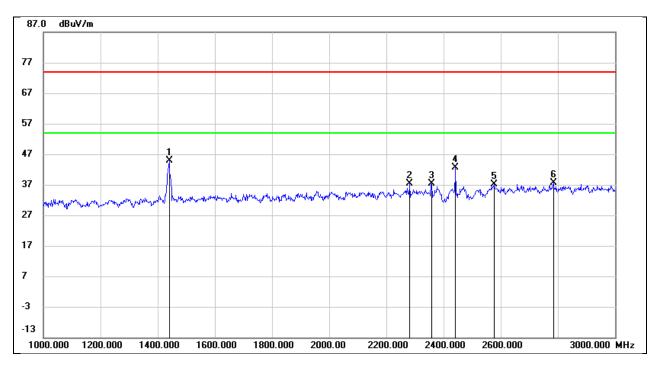


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.21	32.44	47.65	74.00	-26.35	peak
2	2485.775	15.98	32.44	48.42	74.00	-25.58	peak

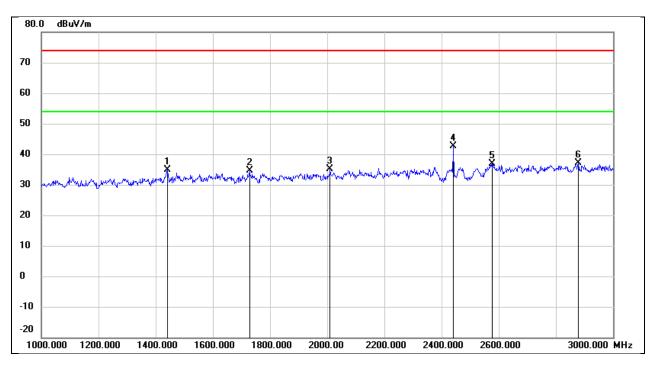
8.2. SPURIOUS EMISSIONS(1 GHZ~3 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

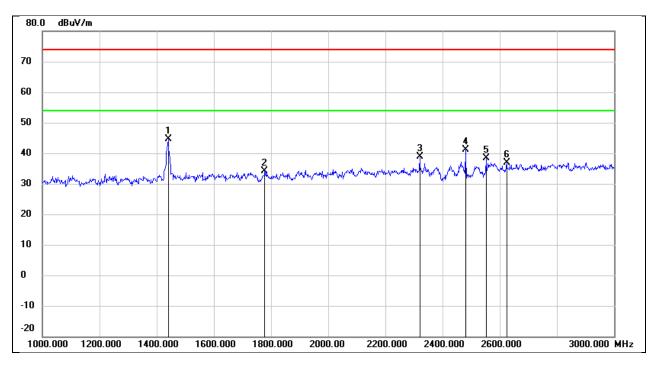
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	54.18	-12.98	41.20	74.00	-32.80	peak
2	1904.000	45.78	-11.38	34.40	74.00	-39.60	peak
3	2162.000	47.10	-10.23	36.87	74.00	-37.13	peak
4	2242.000	48.60	-9.81	38.79	74.00	-35.21	peak
5	2402.000	53.85	-8.99	44.86	1	/	fundamental
6	2642.000	47.39	-8.06	39.33	74.00	-34.67	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

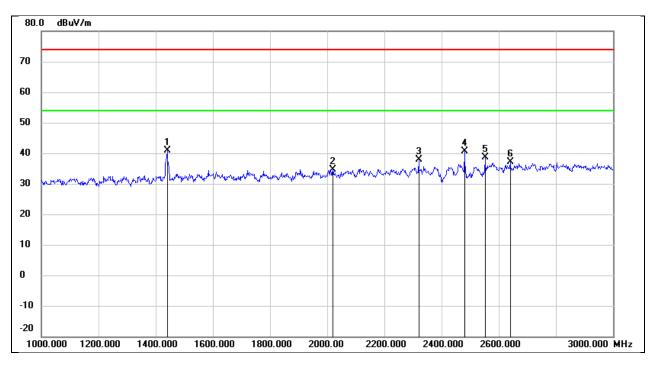
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	48.68	-12.98	35.70	74.00	-38.30	peak
2	1904.000	45.57	-11.38	34.19	74.00	-39.81	peak
3	2242.000	45.14	-9.81	35.33	74.00	-38.67	peak
4	2402.000	56.70	-8.99	47.71	/	/	fundamental
5	2562.000	47.05	-8.31	38.74	74.00	-35.26	peak
6	2642.000	47.60	-8.06	39.54	74.00	-34.46	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	57.75	-12.98	44.77	74.00	-29.23	peak
2	2282.000	47.10	-9.61	37.49	74.00	-36.51	peak
3	2358.000	46.65	-9.22	37.43	74.00	-36.57	peak
4	2441.000	51.49	-8.79	42.70	/	/	fundamental
5	2576.000	45.41	-8.26	37.15	74.00	-36.85	peak
6	2784.000	45.36	-7.63	37.73	74.00	-36.27	peak

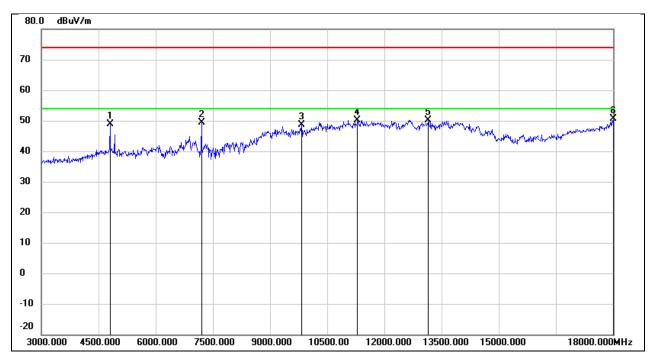

Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	47.85	-12.98	34.87	74.00	-39.13	peak
2	1728.000	46.56	-11.95	34.61	74.00	-39.39	peak
3	2010.000	46.20	-11.00	35.20	74.00	-38.80	peak
4	2441.000	51.44	-8.79	42.65	/	/	fundamental
5	2578.000	45.02	-8.26	36.76	74.00	-37.24	peak
6	2878.000	44.40	-7.35	37.05	74.00	-36.95	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

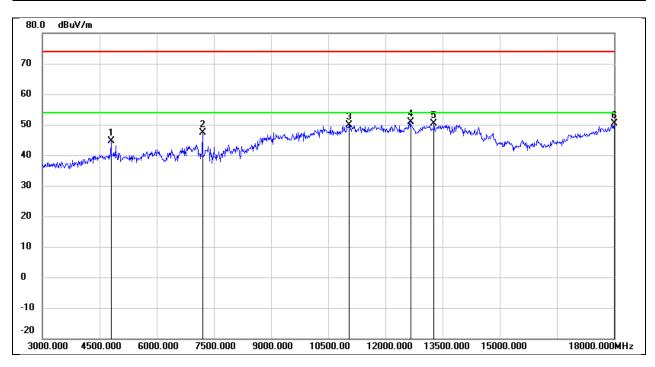
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	57.55	-12.98	44.57	74.00	-29.43	peak
2	1778.000	46.04	-11.79	34.25	74.00	-39.75	peak
3	2320.000	48.39	-9.42	38.97	74.00	-35.03	peak
4	2480.000	49.69	-8.59	41.10	/	/	fundamental
5	2552.000	46.74	-8.33	38.41	74.00	-35.59	peak
6	2624.000	45.12	-8.12	37.00	74.00	-37.00	peak

Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 3.3 V

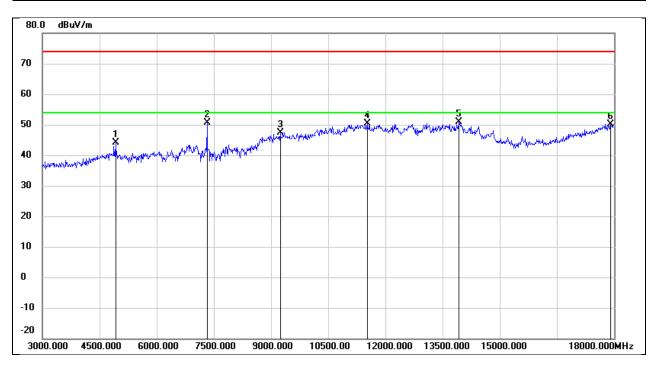


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1440.000	53.88	-12.98	40.90	74.00	-33.10	peak
2	2020.000	45.69	-10.96	34.73	74.00	-39.27	peak
3	2320.000	47.23	-9.42	37.81	74.00	-36.19	peak
4	2480.000	49.15	-8.59	40.56	/	/	fundamental
5	2552.000	46.96	-8.33	38.63	74.00	-35.37	peak
6	2640.000	45.09	-8.07	37.02	74.00	-36.98	peak

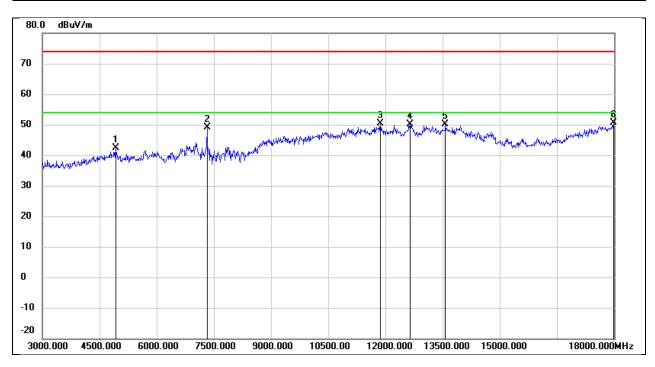
8.3. SPURIOUS EMISSIONS(3 GHZ~18 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

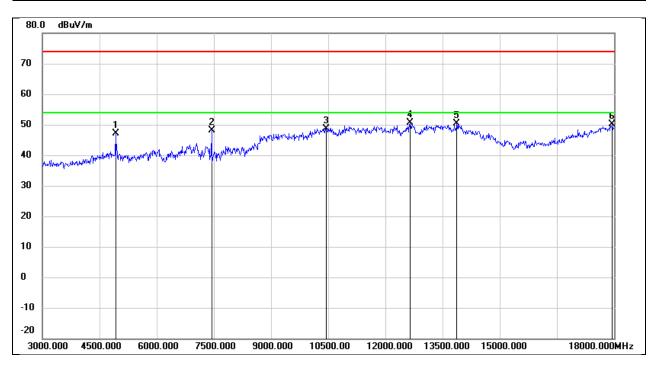
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	49.30	-0.31	48.99	74.00	-25.01	peak
2	7200.000	42.80	6.55	49.35	74.00	-24.65	peak
3	9825.000	37.04	11.56	48.60	74.00	-25.40	peak
4	11295.000	34.27	15.85	50.12	74.00	-23.88	peak
5	13155.000	30.70	19.40	50.10	74.00	-23.90	peak
6	18000.000	24.82	25.69	50.51	74.00	-23.49	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

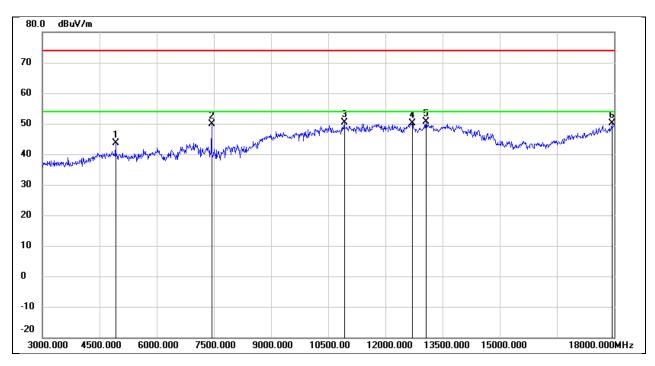
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	44.92	-0.31	44.61	74.00	-29.39	peak
2	7200.000	40.89	6.55	47.44	74.00	-26.56	peak
3	11040.000	34.90	14.91	49.81	74.00	-24.19	peak
4	12660.000	32.95	17.95	50.90	74.00	-23.10	peak
5	13275.000	30.41	19.93	50.34	74.00	-23.66	peak
6	18000.000	24.65	25.69	50.34	74.00	-23.66	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

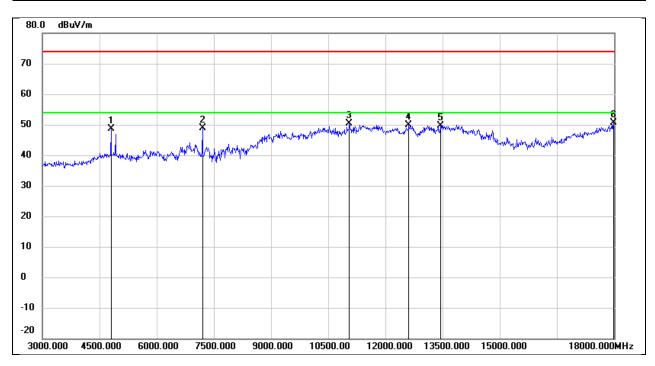
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	43.93	0.14	44.07	74.00	-29.93	peak
2	7320.000	44.28	6.46	50.74	74.00	-23.26	peak
3	9240.000	36.75	10.58	47.33	74.00	-26.67	peak
4	11520.000	33.64	16.65	50.29	74.00	-23.71	peak
5	13920.000	29.17	21.79	50.96	74.00	-23.04	peak
6	17910.000	25.05	25.16	50.21	74.00	-23.79	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 3.3 V

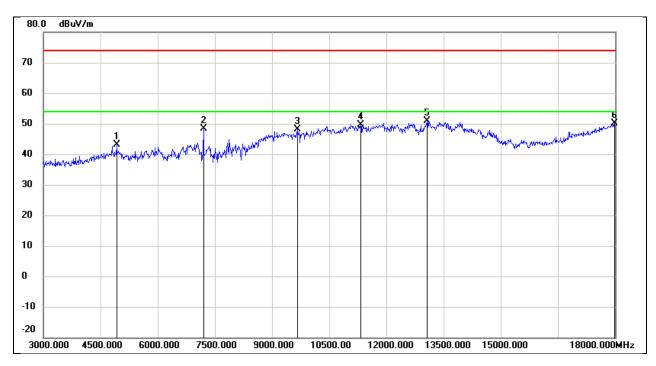
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	42.30	0.14	42.44	74.00	-31.56	peak
2	7320.000	42.60	6.46	49.06	74.00	-24.94	peak
3	11865.000	32.89	17.59	50.48	74.00	-23.52	peak
4	12645.000	32.26	17.92	50.18	74.00	-23.82	peak
5	13575.000	29.04	21.06	50.10	74.00	-23.90	peak
6	17985.000	25.01	25.60	50.61	74.00	-23.39	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

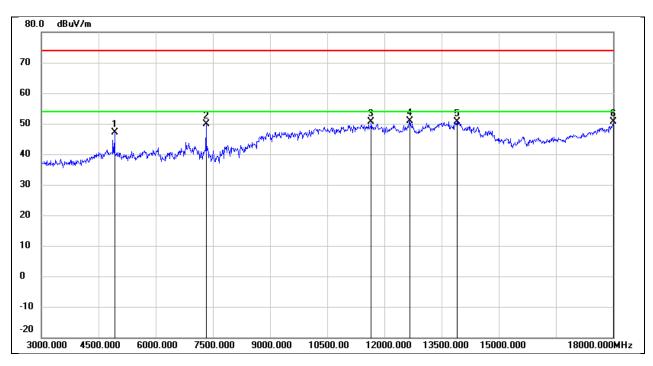
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	46.89	0.14	47.03	74.00	-26.97	peak
2	7440.000	41.64	6.38	48.02	74.00	-25.98	peak
3	10440.000	35.87	12.87	48.74	74.00	-25.26	peak
4	12645.000	32.60	17.92	50.52	74.00	-23.48	peak
5	13875.000	28.63	21.70	50.33	74.00	-23.67	peak
6	17955.000	24.71	25.42	50.13	74.00	-23.87	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 3.3 V

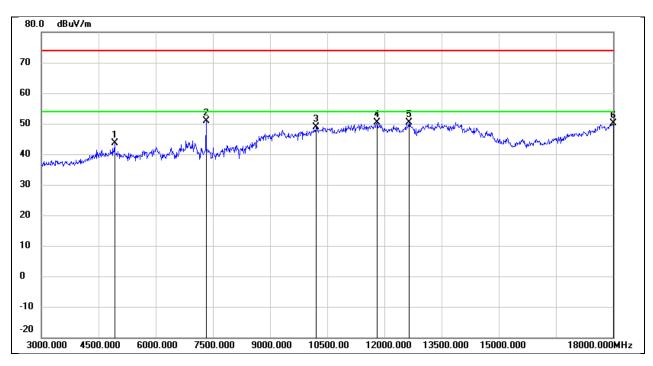
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	43.45	0.14	43.59	74.00	-30.41	peak
2	7440.000	43.58	6.38	49.96	74.00	-24.04	peak
3	10920.000	35.79	14.49	50.28	74.00	-23.72	peak
4	12705.000	32.15	18.06	50.21	74.00	-23.79	peak
5	13065.000	31.69	19.00	50.69	74.00	-23.31	peak
6	17940.000	24.76	25.34	50.10	74.00	-23.90	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

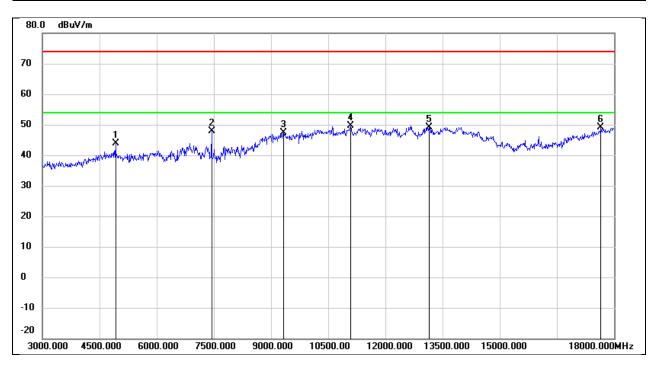
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	48.98	-0.31	48.67	74.00	-25.33	peak
2	7200.000	42.38	6.55	48.93	74.00	-25.07	peak
3	11055.000	35.46	14.96	50.42	74.00	-23.58	peak
4	12615.000	32.07	17.86	49.93	74.00	-24.07	peak
5	13440.000	29.11	20.64	49.75	74.00	-24.25	peak
6	17985.000	25.13	25.60	50.73	74.00	-23.27	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

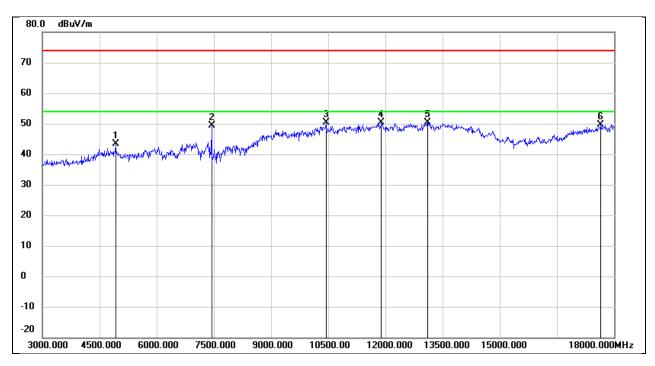
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	43.08	0.14	43.22	74.00	-30.78	peak
2	7200.000	41.90	6.55	48.45	74.00	-25.55	peak
3	9660.000	36.92	11.11	48.03	74.00	-25.97	peak
4	11325.000	33.70	15.95	49.65	74.00	-24.35	peak
5	13065.000	31.98	19.00	50.98	74.00	-23.02	peak
6	17985.000	24.63	25.60	50.23	74.00	-23.77	peak


Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	47.02	0.14	47.16	74.00	-26.84	peak
2	7320.000	43.43	6.46	49.89	74.00	-24.11	peak
3	11655.000	33.69	17.01	50.70	74.00	-23.30	peak
4	12675.000	32.91	17.99	50.90	74.00	-23.10	peak
5	13905.000	28.93	21.76	50.69	74.00	-23.31	peak
6	18000.000	24.88	25.69	50.57	74.00	-23.43	peak

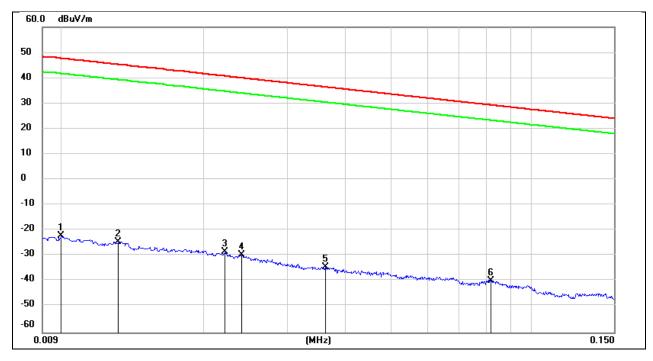

Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	43.52	0.14	43.66	74.00	-30.34	peak
2	7320.000	44.45	6.46	50.91	74.00	-23.09	peak
3	10215.000	36.42	12.43	48.85	74.00	-25.15	peak
4	11805.000	32.87	17.43	50.30	74.00	-23.70	peak
5	12645.000	32.40	17.92	50.32	74.00	-23.68	peak
6	18000.000	24.43	25.69	50.12	74.00	-23.88	peak


Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

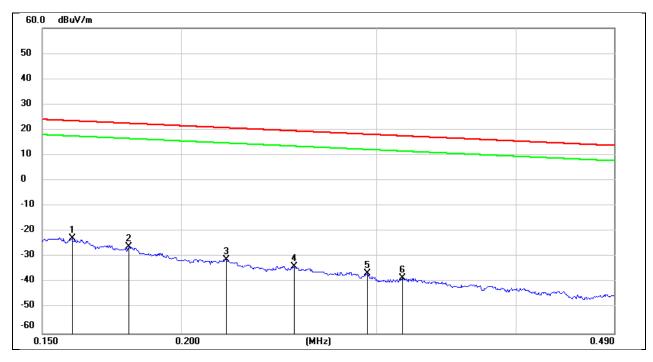
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	43.78	0.14	43.92	74.00	-30.08	peak
2	7440.000	41.50	6.38	47.88	74.00	-26.12	peak
3	9330.000	36.83	10.62	47.45	74.00	-26.55	peak
4	11085.000	34.65	15.08	49.73	74.00	-24.27	peak
5	13140.000	29.79	19.33	49.12	74.00	-24.88	peak
6	17655.000	25.60	23.64	49.24	74.00	-24.76	peak

Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 3.3 V

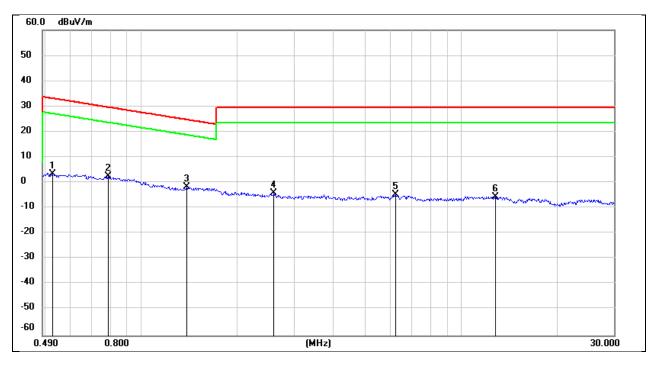


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4920.000	43.17	0.14	43.31	74.00	-30.69	peak
2	7440.000	42.99	6.38	49.37	74.00	-24.63	peak
3	10440.000	37.39	12.87	50.26	74.00	-23.74	peak
4	11895.000	32.59	17.68	50.27	74.00	-23.73	peak
5	13110.000	31.13	19.20	50.33	74.00	-23.67	peak
6	17655.000	26.08	23.64	49.72	74.00	-24.28	peak

8.4. SPURIOUS EMISSIONS(9 KHZ~30 MHZ)

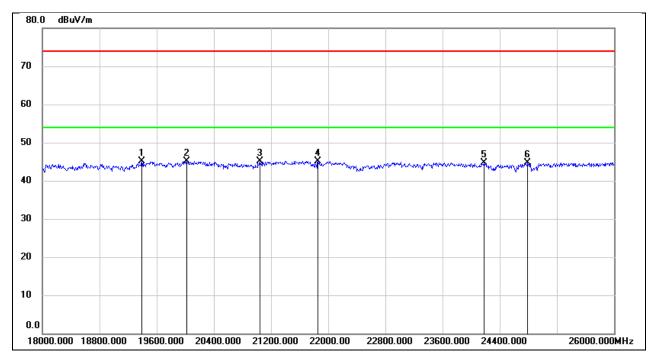

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	79.22	-101.40	-22.18	47.60	-73.68	-3.90	-69.78	peak
2	0.0131	76.97	-101.38	-24.41	45.25	-75.91	-6.25	-69.66	peak
3	0.0221	73.13	-101.35	-28.22	40.71	-79.72	-10.79	-68.93	peak
4	0.0240	71.82	-101.36	-29.54	40.00	-81.04	-11.50	-69.54	peak
5	0.0362	67.01	-101.42	-34.41	36.43	-85.91	-15.07	-70.84	peak
6	0.0819	62.02	-101.65	-39.63	29.34	-91.13	-22.16	-68.97	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

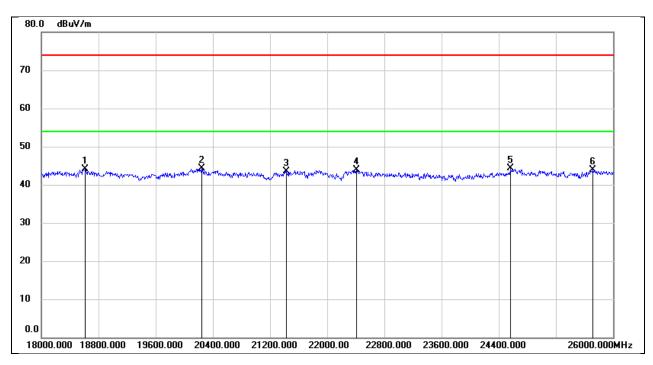
No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1595	78.86	-101.65	-22.79	23.55	-74.29	-27.95	-46.34	peak
2	0.1794	75.77	-101.68	-25.91	22.53	-77.41	-28.97	-48.44	peak
3	0.2197	70.77	-101.75	-30.98	20.76	-82.48	-30.74	-51.74	peak
4	0.2530	68.14	-101.80	-33.66	19.54	-85.16	-31.96	-53.20	peak
5	0.2942	65.32	-101.85	-36.53	18.23	-88.03	-33.27	-54.76	peak
6	0.3163	63.70	-101.87	-38.17	17.60	-89.67	-33.90	-55.77	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V



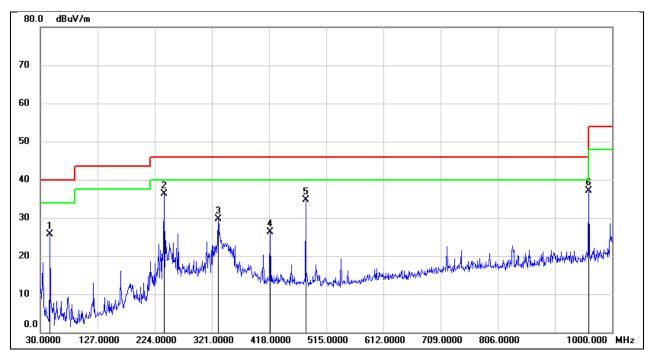
No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5272	65.54	-62.07	3.47	33.16	-48.03	-18.34	-29.69	peak
2	0.7861	64.83	-62.14	2.69	29.69	-48.81	-21.81	-27.00	peak
3	1.3810	60.47	-62.10	-1.63	24.80	-53.13	-26.70	-26.43	peak
4	2.5935	57.61	-61.68	-4.07	29.54	-55.57	-21.96	-33.61	peak
5	6.2445	56.63	-61.32	-4.69	29.54	-56.19	-21.96	-34.23	peak
6	12.7660	55.40	-60.92	-5.52	29.54	-57.02	-21.96	-35.06	peak

8.5. SPURIOUS EMISSIONS(18 GHZ~26 GHZ)

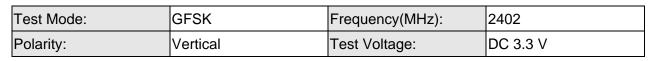

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

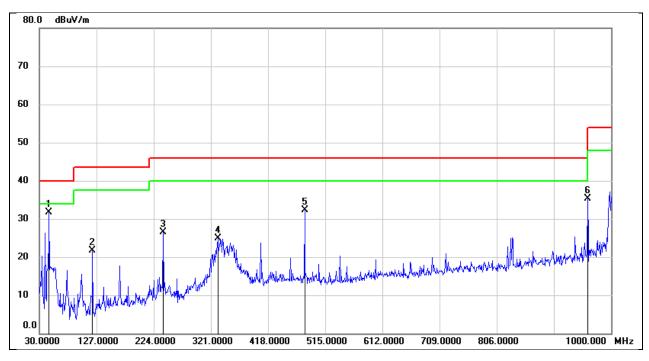
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	19392.000	50.62	-5.57	45.05	74.00	-28.95	peak
2	20016.000	50.56	-5.47	45.09	74.00	-28.91	peak
3	21040.000	50.05	-4.86	45.19	74.00	-28.81	peak
4	21856.000	49.52	-4.39	45.13	74.00	-28.87	peak
5	24184.000	47.43	-2.80	44.63	74.00	-29.37	peak
6	24792.000	46.98	-2.28	44.70	74.00	-29.30	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18616.000	49.39	-5.34	44.05	74.00	-29.95	peak
2	20240.000	49.82	-5.61	44.21	74.00	-29.79	peak
3	21432.000	48.24	-4.71	43.53	74.00	-30.47	peak
4	22408.000	47.87	-4.01	43.86	74.00	-30.14	peak
5	24568.000	46.60	-2.33	44.27	74.00	-29.73	peak
6	25712.000	44.60	-0.79	43.81	74.00	-30.19	peak


8.6. SPURIOUS EMISSIONS(30 MHZ~1 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	46.4900	45.59	-19.81	25.78	40.00	-14.22	QP
2	239.5200	54.09	-17.83	36.26	46.00	-9.74	QP
3	331.6700	43.11	-13.34	29.77	46.00	-16.23	QP
4	419.9400	38.35	-12.08	26.27	46.00	-19.73	QP
5	480.0800	45.50	-10.78	34.72	46.00	-11.28	QP
6	960.2300	41.51	-4.37	37.14	54.00	-16.86	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	46.4900	51.46	-19.81	31.65	40.00	-8.35	QP
2	120.2100	41.06	-19.36	21.70	43.50	-21.80	QP
3	239.5200	44.26	-17.83	26.43	46.00	-19.57	QP
4	332.6400	38.21	-13.30	24.91	46.00	-21.09	QP
5	480.0800	43.13	-10.78	32.35	46.00	-13.65	QP
6	960.2300	39.65	-4.37	35.28	54.00	-18.72	QP

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC part 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

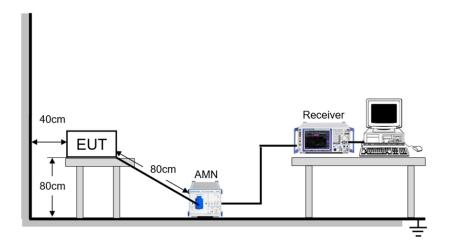
Pass

10. AC POWER LINE CONDUCTED EMISSION

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

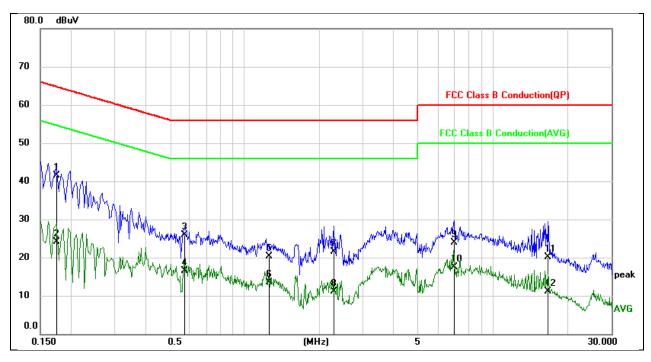

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP


TEST ENVIRONMENT

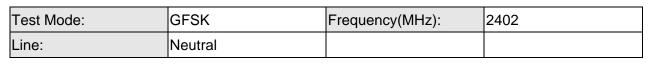
Temperature	23.5 ℃	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V/60 Hz

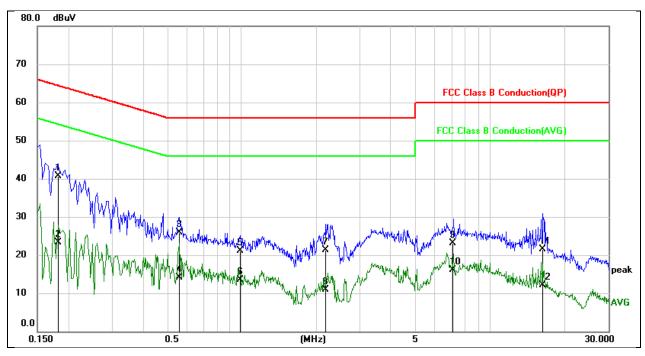
TEST RESULTS

Test Mode:	GFSK	Frequency(MHz):	2402
Line:	L		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1757	31.87	9.59	41.46	64.69	-23.23	QP
2	0.1757	14.60	9.59	24.19	54.69	-30.50	AVG
3	0.5710	16.35	9.60	25.95	56.00	-30.05	QP
4	0.5710	6.92	9.60	16.52	46.00	-29.48	AVG
5	1.2546	10.66	9.61	20.27	56.00	-35.73	QP
6	1.2546	3.97	9.61	13.58	46.00	-32.42	AVG
7	2.2752	11.91	9.64	21.55	56.00	-34.45	QP
8	2.2752	1.43	9.64	11.07	46.00	-34.93	AVG
9	6.9773	14.15	9.73	23.88	60.00	-36.12	QP
10	6.9773	7.83	9.73	17.56	50.00	-32.44	AVG
11	16.6504	10.39	9.77	20.16	60.00	-39.84	QP
12	16.6504	1.32	9.77	11.09	50.00	-38.91	AVG

Note:


1. Result = Reading + Correct Factor.


2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1827	31.08	9.56	40.64	64.36	-23.72	QP
2	0.1827	13.69	9.56	23.25	54.36	-31.11	AVG
3	0.5645	16.33	9.50	25.83	56.00	-30.17	QP
4	0.5645	4.60	9.50	14.10	46.00	-31.90	AVG
5	0.9873	11.69	9.51	21.20	56.00	-34.80	QP
6	0.9873	4.02	9.51	13.53	46.00	-32.47	AVG
7	2.1791	11.67	9.63	21.30	56.00	-34.70	QP
8	2.1791	1.19	9.63	10.82	46.00	-35.18	AVG
9	7.0570	13.46	9.63	23.09	60.00	-36.91	QP
10	7.0570	6.57	9.63	16.20	50.00	-33.80	AVG
11	16.3907	11.77	9.66	21.43	60.00	-38.57	QP
12	16.3907	2.40	9.66	12.06	50.00	-37.94	AVG

Note:

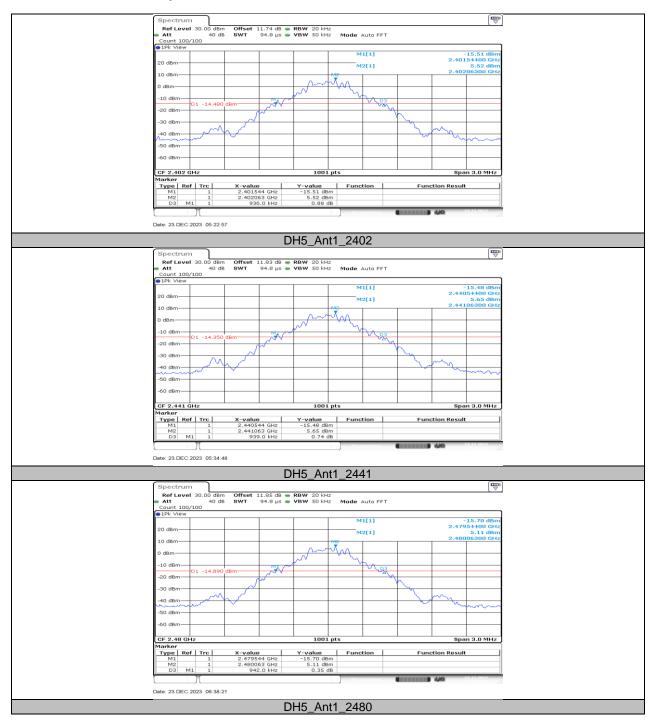
1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

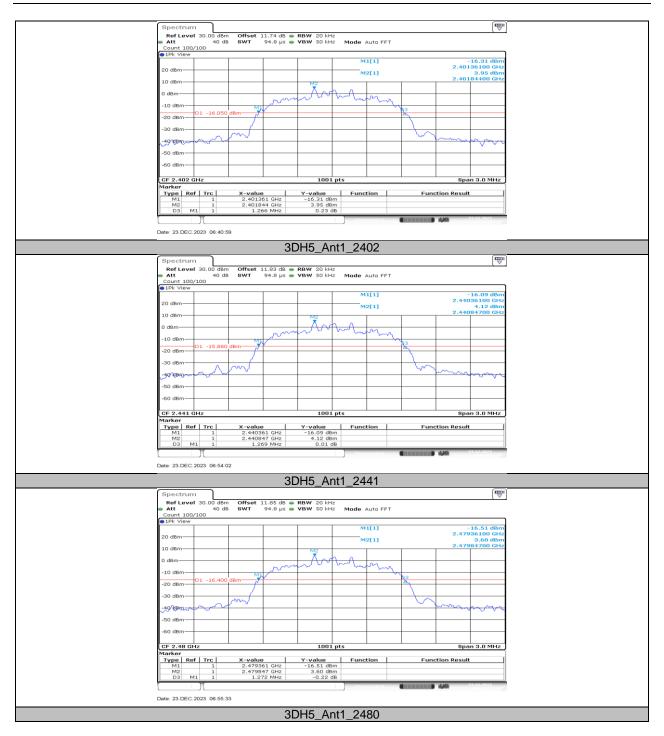
3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

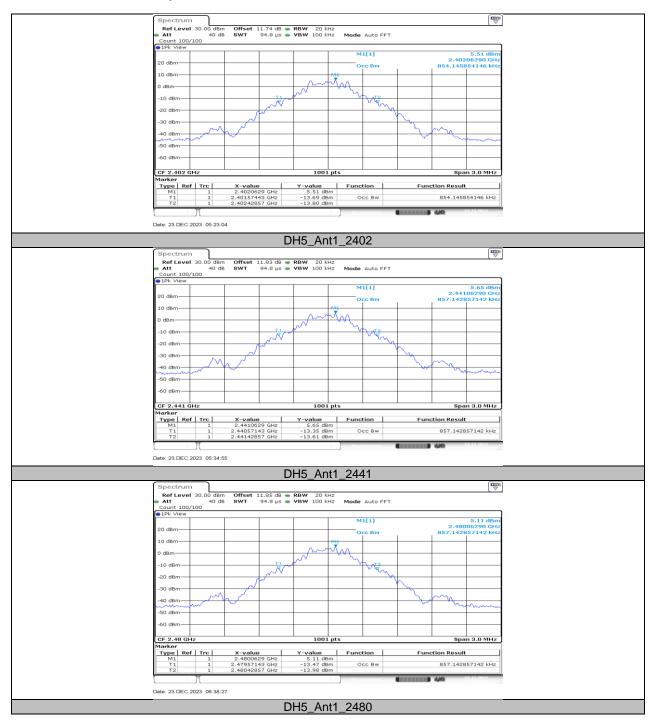
Note: All the modes have been tested, only the worst data was recorded in the report.


11. TEST DATA

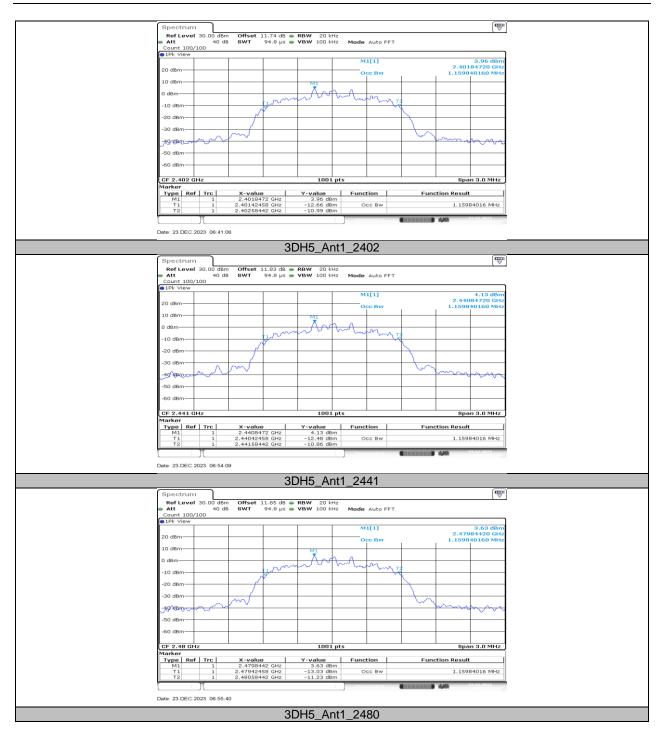
11.1. APPENDIX A: 20DB EMISSION BANDWIDTH 11.1.1. Test Result


Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Verdict
		2402	0.94	2401.54	2402.48	PASS
DH5	Ant1	2441	0.94	2440.54	2441.48	PASS
		2480	0.94	2479.54	2480.49	PASS
		2402	1.27	2401.36	2402.63	PASS
3DH5	Ant1	2441	1.27	2440.36	2441.63	PASS
		2480	1.27	2479.36	2480.63	PASS

11.1.2. Test Graphs



11.2. APPENDIX B: OCCUPIED CHANNEL BANDWIDTH 11.2.1. Test Result


Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
		2402	0.854	2401.5744	2402.4286	PASS
DH5	Ant1	2441	0.857	2440.5714	2441.4286	PASS
		2480	0.857	2479.5714	2480.4286	PASS
		2402	1.16	2401.4246	2402.5844	PASS
3DH5 Ant1	2441	1.16	2440.4246	2441.5844	PASS	
		2480	1.16	2479.4246	2480.5844	PASS

11.2.2. Test Graphs

11.3. APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER 11.3.1. Test Result

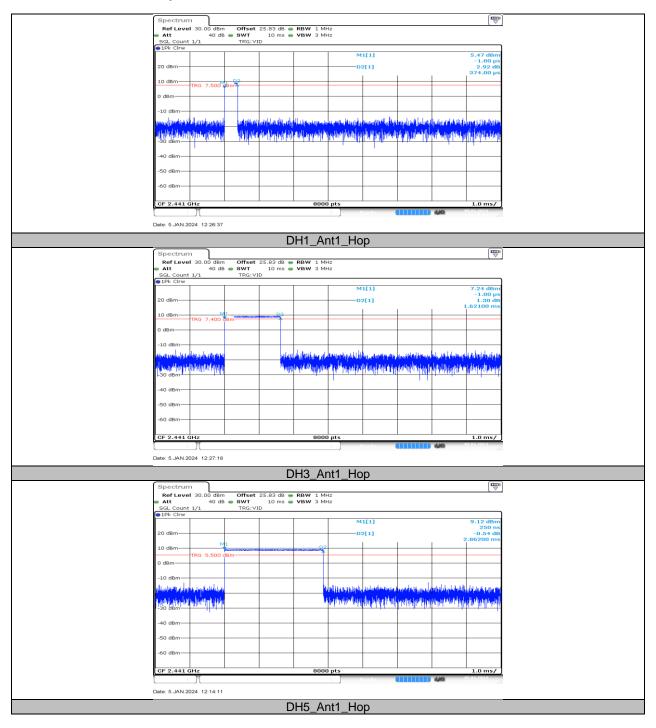
Test Mode	Antenna	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
		2402	9.24	≤30	PASS
DH5	Ant1	2441	9.36	≤30	PASS
		2480	8.85	≤30	PASS
		2402	11.46	≤20.97	PASS
3DH5	Ant1	2441	11.63	≤20.97	PASS
		2480	11.16	≤20.97	PASS

11.4. APPENDIX D: CARRIER FREQUENCY SEPARATION 11.4.1. Test Result

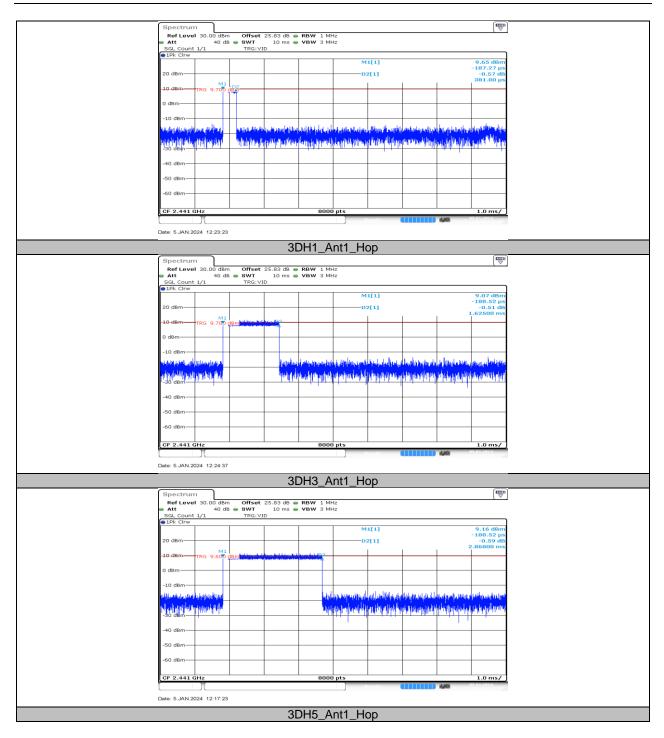
Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.003	≥0.940	PASS
3DH5	Ant1	Нор	1.003	≥1.270	PASS

11.4.2. Test Graphs

							(-	
	Spectrum								
	Ref Level	20.00 dBm Offse 30 dB SWT	et 25.83 dB 👄 RB 6.3 µs 👄 VB	W 300 kHz	de Auto FFT				
	Count 100/1	00	0.5 ps 🚽 VB		as address				
	1Pk View								
			MI		M1[1]	2.44	8.84 dBm 16377 GHz		
	10 dBm		Ť		-D2[1] D2		0.05 dB		
	0 dBm					'	00290 1112		
	0 dBm					\checkmark			
	-10 dBm								
	-20 dBm								
	-30 dBm								
	-40 dBm								
	-50 dBm								
							I		
	-60 dBm								
	-70 dBm								
	-70 ubiii								
	Start 2.4395			691 pts		et 0	.4435 GHz		
	Locare 2.4398	i uniz		091 pts	and the second	Stop 2	05.01.2024		
	L								
	Date: 5.JAN.202	4 12:13:45							
				I5_Ant1_H					
			υH	S_ANU_F	iop				
	Spectrum								
	Ref Level		et 25.83 dB 👄 RB	W 200 kHz			(*)		
	Att	30 dB SWT		W 1 MHz MO	de Auto FET				
	Count 100/1		0.0 ps 9 fb						
	1Pk View								
					D2[1]		-0.02 dB		
					M1	D2 1.	00336 MHz		
	10 dBm				-#11[1]	UZ	-9-44 dBm		
				\sim	1 1	2.441	- 9-44 dBm .84203 GHZ		
	0 dBm				+				
						1			
1	-10 dBm			1					
	-10 dBm								
	-10 dBm								
	-20 dBm				+				
	-20 dBm								
	-20 dBm								
	-20 dBm								
	-20 dBm								
	-20 dBm								
	-20 dBm								
	-20 dBm								
	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm								
	-20 dBm								
	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm								
	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm					Stop 2	.4435 GHz		
	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	i GHz		691 pts					
	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	i GHz		691 pts		Stop 2	.4435 GHz		
	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 2.4395)(691 pts			.4435 GHz		
	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm)(
	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 2.4395)(.4435 GHz		
	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 2.4395)(3DF	691 pts			.4435 GHz		


11.5. APPENDIX E: TIME OF OCCUPANCY 11.5.1. Test Result

	FHSS Mode									
Test Mode	Antenna	Channel	BurstWidth	Result[s]	Limit[s]	Verdict				
Test Mode	rest mode Antenna	Channel	[ms]	Results	Linit(3)	Verdict				
DH1	Ant1	Нор	0.374	0.120	≤0.4	PASS				
DH3	Ant1	Нор	1.621	0.259	≤0.4	PASS				
DH5	Ant1	Нор	2.862	0.305	≤0.4	PASS				
3DH1	Ant1	Нор	0.381	0.122	≤0.4	PASS				
3DH3	Ant1	Нор	1.625	0.260	≤0.4	PASS				
3DH5	Ant1	Нор	2.868	0.306	≤0.4	PASS				


	AFHSS Mode										
Test Mode	Antenna	Channel	BurstWidth [ms]	Result[s]	Limit[s]	Verdict					
DH1	Ant1	Нор	0.374	0.060	≤0.4	PASS					
DH3	Ant1	Нор	1.621	0.130	≤0.4	PASS					
DH5	Ant1	Нор	2.862	0.153	≤0.4	PASS					
3DH1	Ant1	Нор	0.381	0.061	≤0.4	PASS					
3DH3	Ant1	Нор	1.625	0.130	≤0.4	PASS					
3DH5	Ant1	Нор	2.868	0.153	≤0.4	PASS					

11.5.2. Test Graphs

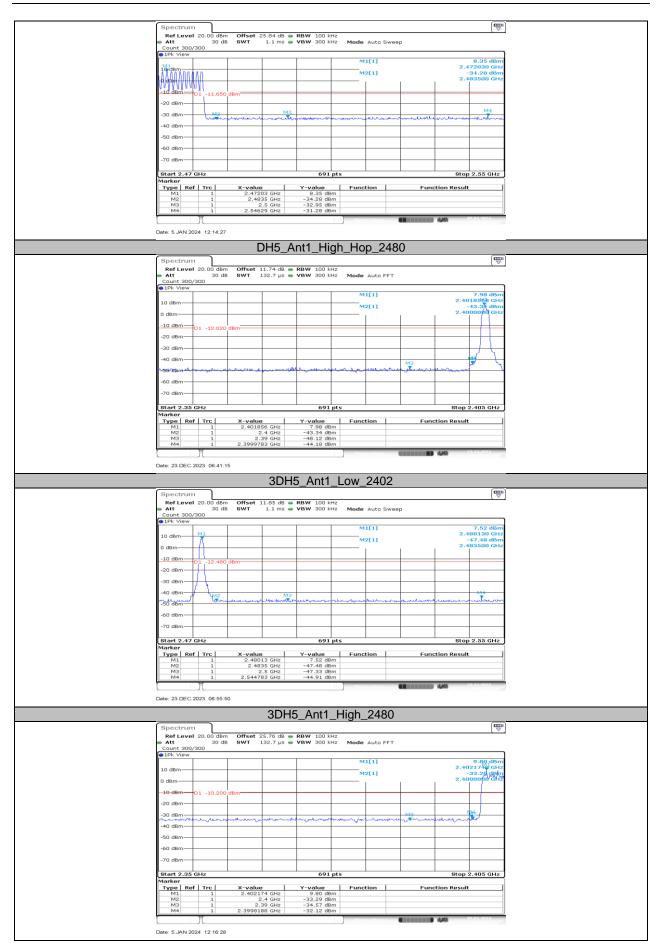
11.6. APPENDIX F: NUMBER OF HOPPING CHANNELS 11.6.1. Test Result

Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS

11.6.2. Test Graphs

6									(IIII)	
Spectrun		- "								
Ref Leve Att	30.00 dBm 40 dB			RBW 100 k	Hz Hz Mode	Auto Swee	n			
Count 100		3441	1 1115	1011 300 K	na moue	Auto swee	þ			
●1Pk View]
20 dBm										-
10 dBm	0.1.0 N.8.4.4	(hattest)					42440410			-
	VIAAVUIADO	DUBABBRAT	INTERNAL	ISLABBIAN	KAANAAHAI	LAAHIIAAAA	UNANANKA	NAABAANA	40864	
o dem III III	INNIKUN	WWWWW	IUUVUIYU	0010000000	KINNNIN	WWWW	innuunnu	WWWW	WINN	
-10 dBm		Idolato	A	In a surfice	01100110	A 8 8 8 8 8 9 4	t i n i i i i n a i	addan fi tu	11.000	
- 0 abm										
-20 dBm										
لي ا									her	·
-30 dBm										-
-40 dBm										
-50 dBm										1
-60 dBm]
-60 dBm										1
Otant 0 1 1				601	-			Otor 2	100E 01/-	4
Start 2.4 0	GHZ			691	pts				4835 GHz	1
					510.0	suring		4,40		
Date: 5.JAN.20	024 12:13:55									
			_							
					5+1 LO	n				
				וא_כחי		μ				
 Coostman			L	H5_Ar		Υ			(BD)	1
Spectrum		Officiat				μ			(
	n 1 30.00 dBm 40 dB		25.74 dB 👄	RBW 100 k VBW 300 k	Hz	•			Ţ]
Ref Leve Att Count 100	1 30.00 dBm 40 dB		25.74 dB 👄	RBW 100 k	Hz	Auto Swee	p]
Ref Leve	1 30.00 dBm 40 dB		25.74 dB 👄	RBW 100 k	Hz	•	p]
Ref Leve Att Count 100	1 30.00 dBm 40 dB		25.74 dB 👄	RBW 100 k	Hz	•	P		₹	<u>)</u>
Ref Leve Att Count 100	1 30.00 dBm 40 dB		25.74 dB 👄	RBW 100 k	Hz	•	p			
Ref Leve Att Count 1000 1Pk View 20 dBm-	1 30.00 dBm 40 dB		25.74 dB 👄	RBW 100 k	Hz	•	p			
Ref Leve Att Count 1000 1Pk View 20 dBm-	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		<u>האחגגווג</u> ה		
Ref Leve Att Count 1000 Pk View 20 dBm 10 dBm 10 dBm	1 30.00 dBm 40 dB	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		nunur		
Ref Leve Att Count 1000 1Pk View 20 dBm-	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		nunu		
Ref Leve Att Count 1000 1Pk View 20 dBm- 10 dBm- 0 dBm-	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		บบูญบูญ		
Ref Leve Att Count 1000 Pk View 20 dBm 10 dBm 10 dBm	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		VIVVIIVL		
Ref Leve Att Count 100 1Pk View 20 dBm 19 dBm 0 dBm -10 dBm	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		งแงงนึงเ		
Ref Leve Att Count 1000 1Pk View 20 dBm- 10 dBm- 0 dBm-	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		บบุญญา		
Ref Leve Att Count 100 1Pk View 20 dBm 19 dBm 0 dBm -10 dBm	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		WWW		
Ref Leve Att Count 1000 1Pk View 20 dBm 19 dBm 10 dBm -10 dBm -20 dBm -30 dBm	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		VUWUV		
Ref Leve Att Count 100 1Pk View 20 dBm 0 dBm -10 dBm -20 dBm-	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		VUVVUVL		
Ref Leve Att Count 100 P1Pk View 20 dBm 19 dBm -0 dBm -0 dBm -30 dBm -40 dBm	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee				
Ref Leve Att Count 1000 1Pk View 20 dBm 19 dBm 10 dBm -10 dBm -20 dBm -30 dBm	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee				
Ref Leve Att Count 1000 P1Pk View 20 dBm 19 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee				
Ref Leve Att Count 100 P1Pk View 20 dBm 19 dBm -0 dBm -0 dBm -30 dBm -40 dBm	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		WWWW		
Ref Leve Att Count 100 PIPk View 20 dBm 10 dBm 10 dBm 20 dBm -10 dBm -30 dBm -50 dBm -50 dBm	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee				
Ref Leve Att Count 1000 P1Pk View 20 dBm 19 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee	MARAY	Stop 2		
Ref Leve Att Count 100 PIPk View 20 dBm 10 dBm 10 dBm 20 dBm -10 dBm -30 dBm -50 dBm -50 dBm	4 30.00 dBm 40 dB 0/1000	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee		Stop 2		
Ref Leve Att Count 100 PIPk View 20 dBm 10 dBm 10 dBm 20 dBm -10 dBm -30 dBm -50 dBm -50 dBm	4 30.00 dBm 40 dB 90/1000 MM/M/M/ MM/M/M/ 1112	SWT	25.74 dB 👄 1 ms 👄	RBW 100 k VBW 300 k	Hz Mode	Auto Swee	MARAY	Stop 2		
Ref Leve Att Count 1000 P1Pk View 20 dBm 19.48m 0 dBm -10 dBm -30 d	4 30.00 dBm 40 dB 90/1000 MM/M/M/ MM/M/M/ 1112	SWT	25.74 db 1 ms	RBW 100 k VBW 300 k	H2 H2 W(WWW Pts	Auto Swee	MARAY	Stop 2		
Ref Leve Att Count 1000 P1Pk View 20 dBm 19.48m 0 dBm -10 dBm -30 d	4 30.00 dBm 40 dB 90/1000 MM/M/M/ MM/M/M/ 1112	SWT	25.74 db 1 ms	RBW 100 k VBW 300 k	Hz Mode	Auto Swee	MARAY	Stop 2		

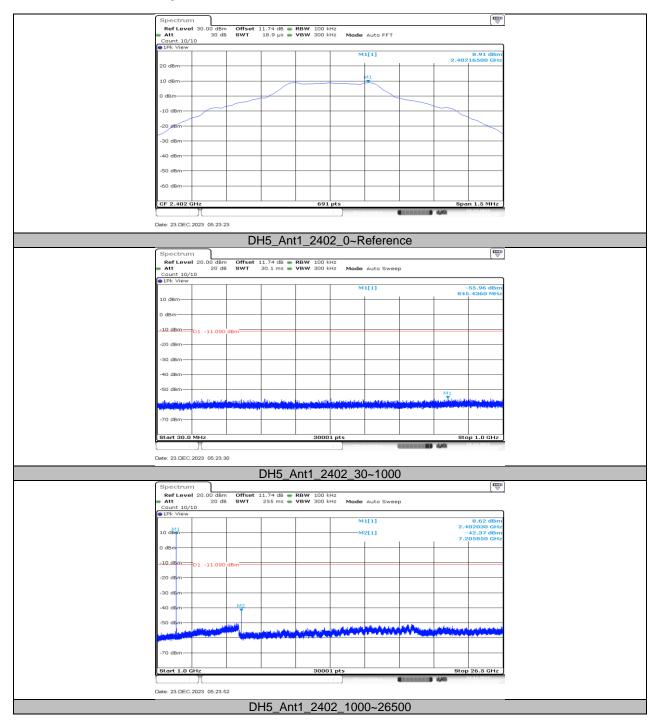
11.7. APPENDIX G: BAND EDGE MEASUREMENTS 11.7.1. Test Result


Test Mode	Antenna	ChName	Frequency [MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	8.91	-45.59	≤-11.09	PASS
DH5	Ant1	High	2480	8.49	-44.45	≤-11.51	PASS
DHD	Anti	Low	Hop_2402	8.22	-32.06	≤-11.78	PASS
		High	Hop_2480	8.35	-31.28	≤-11.65	PASS
		Low	2402	7.98	-44.18	≤-12.02	PASS
3DH5	Ant1	High	2480	7.52	-44.91	≤-12.48	PASS
3005	Anti	Low	Hop_2402	9.80	-32.12	≤-10.2	PASS
		High	Hop_2480	9.55	-31.16	≤-10.45	PASS

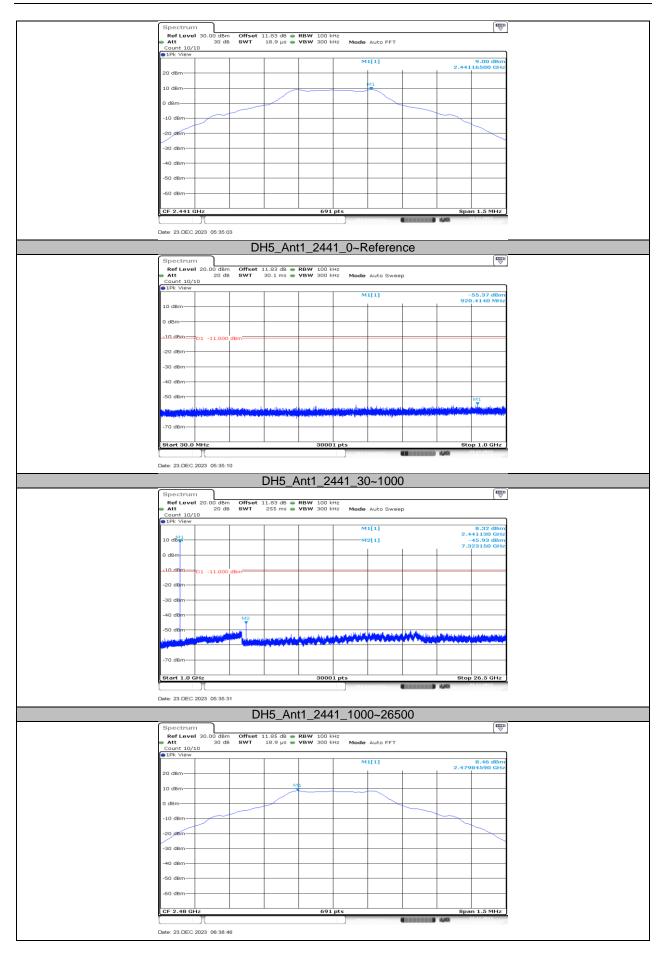
11.7.2. Test Graphs

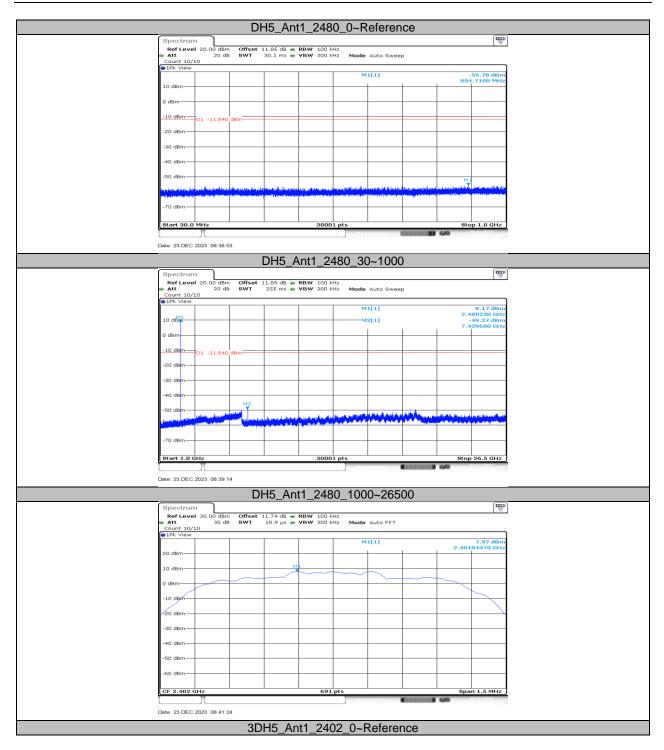
	Spectrum Ref Level 20.00 dBm Offset 11.74 dB ● RBW 100 kHz
	👄 Att 30 dB SWT 132.7 μs 👄 VBW 300 kHz Mode Auto FFT
	Count 300/300 1Pk View
	M1[1] 9.91 dBm
	10 dBm 2,4018db GHz 0 dBm 2,4008db GHz 2,40000db GHz
	-10.dBm 01 -11.090 dBm
	-20 dBm
	-30 dBm
	-60 dBm
	-70 dBm-
	Start 2.35 GHz 691 pts Stop 2.405 GHz
	Marker Type Ref Trc X-value Y-value Function Function Result
	M1 1 2.401856 GHz 9.01 dBm M2 1 2.4 GHz -45.54 dBm
	M3 1 2.399 GHz -48.50 dBm M4 1 2.399 GHz -45.59 dBm -
	Date: 23.DEC.2023 05:23:14
	DH5_Ant1_Low_2402
	Spectrum (W)
	Ref Level 20.00 dBm Offset 11.85 dB RBW 100 kHz Att 30 dB SWT 1.1 ms VBW 300 kHz Mode Auto Sweep
	Count 300/300 @1Pk View
	10 dgm M1 2.400m 2.400130 GHz
	M2[1] -47.53 dBm
	-10.0 dBm = 01 -11.510 dBm
	-20 dBm
	-30 dBm / /
	-50 dBm
	-60 dBm
	-70 dBm
	Start 2.47 GHz 691 pts Stop 2.55 GHz
	Marker Type Ref Trc X-value Y-value Function Function Result
	M1 1 2.46013 GHz 8.49 dBm M2 1 2.4635 GHz -47.55 dBm
	M3 1 2.5 GHz -46.56 dBm M4 1 2.537362 GHz -44.45 dBm
	Date: 23 DEC 2023 06:38:37
	DH5_Ant1_High_2480
	Spectrum (₩) Ref Level 20.00 dBm Offset 25.76 dB ● RBW 100 kHz
	→ Att 30 dB SWT 132.7 µs → VBW 300 kHz Mode Auto FFT
	Count 300/300
	10 d8m M1[1] 8.22 dBm 2.40297.00'GHz
	10 dBm 2.4029 700 (SH2 0 dBm 2.400000 (Parts 2.400000 (Parts
	-10 dBm 01 -11.780 dBm
	-20 dBm
	-30 dam
	-50 dBm
	-60 dBm
	-70 dBm
	Stort 2.35 GHz 691 pts Stop 2.405 GHz
	Marker Type Ref Trc X-value Y-value Function Function Result
	M1 1 2.40297 GHz 8.22 dBm M2 1 2.4 GHz -35 80 dBm
	M3 1 2.39 GHz -35.64 dBm M4 1 2.3912899 GHz -32.06 dBm
	Date: 5.JAN 2024 12:13:24
	DH5_Ant1_Low_Hop_2402

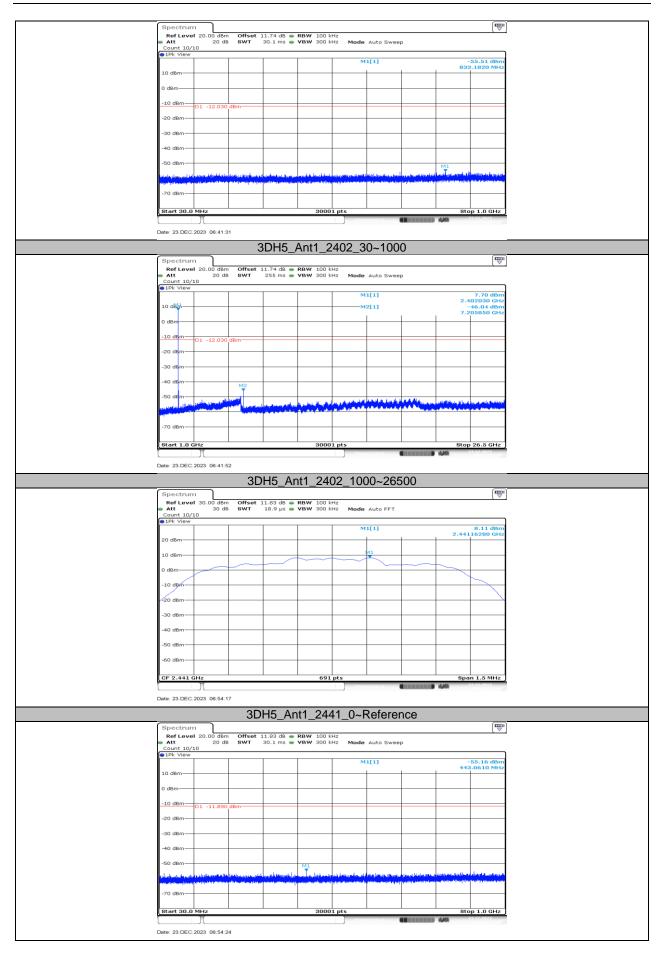
	31	DH5_Ant1_Lo	w_Hop_24	.02	
Spectrum					
Ref Level	20.00 dBm Offset 2	5.84 dB 👄 RBW 100 kHz	,	(÷	1
 Att 		1.1 ms - VBW 300 kHz		зер	
Count 300/3	00				
• 1Pk View					
M1			M1[1]	9.55 dBm 2.475150 GHz	
19089000	N		M2[1]	-32.17 dBm	
0 dBm	-			2.483500 GHz	
10 40-					
-10-98wD	1 -10.450 dBm				
-20 dBm					
-30 dBm	M2	MB		14	
-30 dBii	transmin	and the second s	him man shi new yestingut	which you and any and Indone way	
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
Start 2.47 G	Hz	691 p	ts	Stop 2.55 GHz]
Marker]
Type Ref	Trc X-value 1 2.4751		Function	Function Result	
M1 M2		35 GHz -32.17 dBm			
M3	1 2.	.5 GHz -31.98 dBm			
M4	1 2.54281	12 GHz -31.16 dBm			1
	Л		Measuring	444	
Date: 5.JAN.202	4 12:18:58				
					_
	30	DH5_Ant1_Hig	gh Hop 24	80	

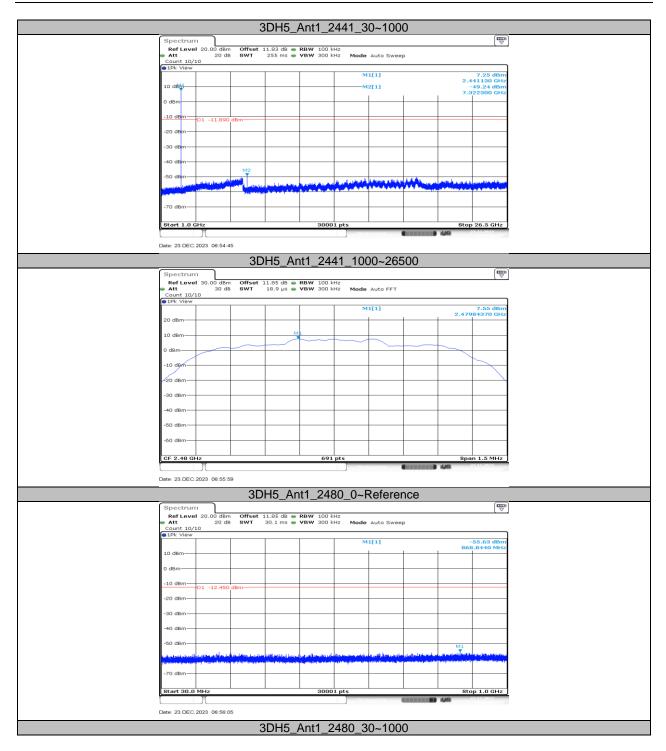


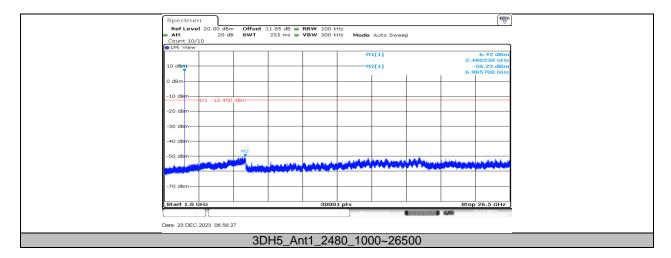
11.8. APPENDIX H: CONDUCTED SPURIOUS EMISSION 11.8.1. Test Result


Test Mode	Antenna	Frequency [MHz]	FreqRange [MHz]	Result [dBm]	Limit [dBm]	Verdict
			Reference	8.91		PASS
		2402	30~1000	-55.96	≤-11.09	PASS
			1000~26500	-42.37	≤-11.09	PASS
			Reference	9.00		PASS
DH5	Ant1	2441	30~1000	-55.37	≤-11	PASS
			1000~26500	-45.93	≤-11	PASS
		2480	Reference	8.46		PASS
			30~1000	-55.78	≤-11.54	PASS
			1000~26500	-49.27	≤-11.54	PASS
			Reference	7.97		PASS
		2402	30~1000	-55.51	≤-12.03	PASS
			1000~26500	-46.04	≤-12.03	PASS
			Reference	8.11		PASS
3DH5	Ant1	2441	30~1000	-55.16	≤-11.89	PASS
			1000~26500	-49.24	≤-11.89	PASS
			Reference	7.55		PASS
		2480	30~1000	-55.63	≤-12.45	PASS
			1000~26500	-50.22	≤-12.45	PASS


11.8.2. Test Graphs







11.9. APPENDIX I: DUTY CYCLE 11.9.1. Test Result

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
DH5	2.87	3.74	0.7674	76.74	1.15	0.35	1
3DH5	2.87	3.73	0.7694	76.94	1.14	0.35	1

Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

11.9.2. Test Graphs

END OF REPORT