

FCC ID: 2AC23-WT39M2011

FCC 47 CFR Part 15 Subpart C RSS 247 Issue 1:2015

Product : WIFI+BT Module

Trade Name : GSD

Model Number: WT39M2011

Firmware Version Identification Number (FVIN): 1.0

Issued for

Hui Zhou Gaoshengda Technology Co.,LTD

NO.75 Zhongkai Development Area, Huizhou, Guangdong, China

Issued by

Shenzhen ATL Testing Technology Co., Ltd. F/4, Building 10, Dayuan Industrial Zone, Xili Town, Nanshan District, Shenzhen, China Tel.: +86-0755-26909822 Fax.: +86-0755-61605504 Website: www.atllab.org

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen ATL Testing Technology Co., Ltd.. This document may be altered or revised by Shenzhen ATL Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

TEST RESULT CERTIFICATION

Product	:	WIFI+BT Module				
Applicant	:	Hui Zhou Gaoshengda Technology Co.,LTD				
Address	:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China				
Manufacturer	:	: Hui Zhou Gaoshengda Technology Co.,LTD				
Address	:	NO.75 Zhongkai Devel	opment A	rea,	Huizhou, Guangdong, China	
Model No	:	WT39M2011				
Standards	:	FCC Part 15 Subpar RSS 247 Issue 1: 20	rt C (15.)	247)		
			515			
Test Method						
		•			ng Technology Co., Ltd.	
•		e requirements set for				
		e 1			to the product/system, broduce the same results	
		and measurement unco				
Test						
-		2016-01-04 t	o 2016-0	1-25		
Test Result						
		C.C.C-				
Testing by	:	Sifeifei	Date	:	2016-01-25	
		(Si feifei)		-		
Check by	:	Xielingling	Date	:	2016-01-25	
		(Xie Lingling)		-		
		(****				
Approved by	:	Xu Perg	Date	:	2016-01-26	
		(Xu Peng)		-		
		(),				

Page 3 of 35

Table of Contents	Page
1. TEST SUMMARY	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 DESCRIPTION OF TEST SETUP	9
2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	10
2.5 EUT Exercise Software	10
3 . CONDUCTED EMISSION TEST	11
3.1 CONDUCTED EMISSION MEASUREMENT (Frequency Range 150KHz-3	-
3.2 TEST PROCEDURE	11
3.3 TEST SETUP	12
3.4 TEST INSTRUMENTS 3.5 EUT OPERATING CONDITIONS	12
3.6 TEST RESULTS	12 13
	-
4 . RADIATED EMISSION MEASUREMENT	15
4.1 RADIATED EMISSION LIMIT (Frequency Range 9KHz-1000MHz) 4.2 TEST PROCEDURE	15 15
4.2 TEST PROCEDORE 4.3 TEST SETUP	15 16
4.4 TEST INSTRUMENTS	10
4.5 EUT OPERATING CONDITIONS	17
4.6 TEST RESULTS	18
5 . MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	22
5.1 LIMITS	22
5.2 TEST PROCEDURE	22
5.3 TEST SETUP	22
5.4 TEST INSTRUMENTS	22
5.5 EUT OPERATING CONDITIONS	22
5.6 TEST RESULTS	22
6 . OCCUPIED BANDWIDTH MEASUREMENT	25
6.1 LIMITS	25
6.2 TEST PROCEDURE	25

Table of Contents	Page
6.3 TEST SETUP	25
6.4 TEST INSTRUMENTS	25
6.5 EUT OPERATING CONDITIONS	25
6.6 TEST RESULTS	25
7 . POWER SPECTRAL DENSITY	28
7.1 LIMITS	28
7.2 TEST PROCEDURE	28
7.3 TEST SETUP	28
7.4 TEST INSTRUMENTS	28
7.5 EUT OPERATING CONDITIONS	28
7.6 TEST RESULTS	28
8 . ANTENNA CONDUCTED SPURIOUS EMISSION	31
8.1 LIMITS	31
8.2 TEST PROCEDURE	31
8.3 TEST SETUP	31
8.4 TEST INSTRUMENTS	31
8.5 EUT OPERATING CONDITIONS	31
8.6 TEST RESULTS	31
9 . ANTENNA REQUIREMENT	35
9.1 REQUIREMENT	35
9.2 ANTENNA CONNECTOR CONSTRUCTION	35

1. TEST SUMMARY

Test procedures according to the technical standards:

FCC Part 15 Subpart C (15.247)/RSS 247 Issue 1: 2015

Standard Section				
FCC	IC	Test Item	Judgment	Remark
15.207	RSS Gen	AC Power Conducted Emission	PASS	
15.247(d)	RSS 247 Section 5.5	Antenna Conducted Spurious Emissions	PASS	
15.247(b)(3)	RSS 247 Section 5.4(4)	Output Power	PASS	
15.247(a)(2)	RSS 247 Section 5.2(1)	6dB RF Bandwidth	PASS	
15.247(e)	RSS 247 Section 5.2(2)	Power Spectral Density	PASS	
15.209/ 15.205	RSS 247 Section 5.5 RSS Gen	Transmitter Radiated Emissions	PASS	
15.203	/	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2)The test results of this report relate only to the tested sample(s) identified in this report.

1.1 TEST FACILITY

Shenzhen ATL Testing Technology Co., Ltd. Add. : F/4, Building 10, Dayuan Industrial Zone, Xili Town, Nanshan District, Shenzhen, China

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

A. Conducted Emission : The measurement uncertainty is evaluated as \pm 3.2 dB.

B. Radiated Measurement : The measurement uncertainty is evaluated as \pm 3.7 dB.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	WIFI+BT Module	
Model Name	WT39M2011	
Additional Model	N/A	
Number(s)		
Model Difference	N/A	
Frequency Range	2402~2480 MHz	
Modulation Type	Bluetooth BLE: GFSK	
Data Rate	Up to 3Mbps	
RF Output Power	GFSK: 2.15 dBm	
Antenna Type	FPC Antenna (Max. Gain: 3.96 dBi)	
Power Source	DC Powered by host system.	
Power Rating	DC 5V from USB interference.	
Remark	More details EUT technical specifications, please refer to the User's Manual.	

Note:

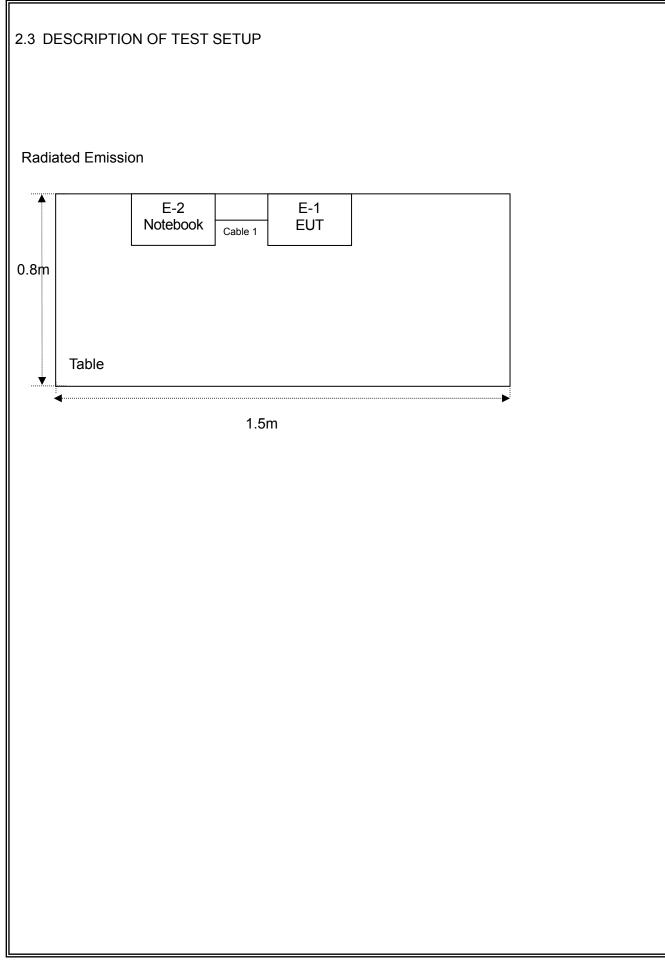
- (1) This Test Report is FCC Part 15 Subpart C, 15.247 for Bluetooth BLE. And the Test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v03r02.
- (2) More information about the Wifi, please refer to other test report.
- (3) Transmitting mode with antennas

Mode	TX Antenna (s)	
BLE	1	

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode Description			
Mode 1 BLE TX(GFSK) Mode			
For Conducted Test			
Final Test Mode Description			
Mode 1	Mode 1 BLE TX(GFSK) Mode		


For Radiated Test			
Final Test Mode	Description		
Mode 1	BLE TX(GFSK) Mode		

Note:

(1) Software used to control the EUT for staying in continuous transmitting mode was programmed. After verification, all tests were carried out with the worst case test modes as shown below.

- (2) Bluetooth BLE Mode: Channel (2402/2440/2480MHz) with GFSK modulation were chosen for full testing.
- (3) By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	WIFI+BT Module	GSD	WT39M2011	N/A	EUT
E-2	Notebook	LENOVO	P405	DOC	

Item	Shielded Type	Ferrite Core	Length	Note
1	NO	NO	15cm	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (3) "YES" means "shielded" "with core"; "NO" means "unshielded" "without core".

2.5 EUT Exercise Software

Power Parameters for Testing				
Test Software Version Media Tek BT Tool.exe				
Mode		Frequency/ Parameters		
	2402 MHz	2440 MHz	2480 MHz	
BLE	DEF	DEF	DEF	

3. CONDUCTED EMISSION TEST

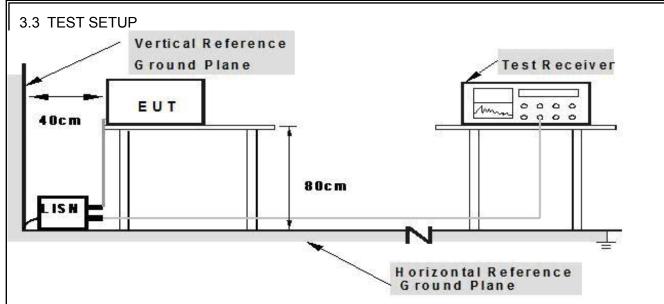
3.1 CONDUCTED EMISSION MEASUREMENT (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Quasi-peak	Average
FREQUENCT (MITZ)	dBuV	dBuV
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

3.2 TEST PROCEDURE

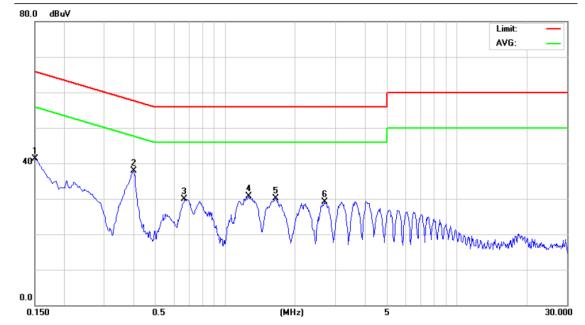
- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.4 TEST INSTRUMENTS

Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
LISN	R&S	NSLK81	8126466	Jul. 05, 2015	Jul. 04. 2016	1 year
LISN	R&S	NSLK81	8126487	Dec. 24, 2014	Dec. 23, 2015	1 year
50Ω Switch	ANRITSU CORP	MP59B	6200983704	Jul. 05, 2015	Jul. 04. 2016	1 year
Test Cable	N/A	C01	N/A	Jul. 05, 2015	Jul. 04. 2016	1 year
Test Cable	N/A	C02	N/A	Jul. 05, 2015	Jul. 04. 2016	1 year
Test Cable	N/A	C03	N/A	Jul. 05, 2015	Jul. 04. 2016	1 year
EMI Test Receiver	R&S	ESCI	1166.595	Jul. 05, 2015	Jul. 04. 2016	1 year
Passive Voltage Probe	ESH2-Z3	R&S	100196	Jul. 05, 2015	Jul. 04. 2016	1 year

3.5 EUT OPERATING CONDITIONS


The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

3.6 TEST RESULTS

EUT:	WIFI+BT Module		Model Name. :	WT3	9M2011	
Temperature :	26 °C		Relative Humidit	ty : 56%		
Pressure :	ssure : 1010hPa		Terminal:			
Test Mode:	BLE TX	Mode (2402	MHz)			
Test Voltage : 120V/ 60Hz						
No. Mk.	Freq.	Reading Level	Correct Factor		Limit	Over

			LOVO	i dotoi	ment			
-		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
-	1	0.1500	31.41	9.92	41.33	66.00	-24.67	peak
-	2 *	0.4020	27.81	10.02	37.83	57.81	-19.98	peak
-	3	0.6660	19.88	10.10	29.98	56.00	-26.02	peak
-	4	1.2660	20.58	10.06	30.64	56.00	-25.36	peak
-	5	1.6580	20.01	10.06	30.07	56.00	-25.93	peak
-	6	2.6860	19.12	10.04	29.16	56.00	-26.84	peak

EUT :	WIFI+BT	Module		Nodel Name.		WT39M2011		
Temperature :	26 ℃		F	Relative Humi	56%			
Pressure :	1010hPa		Т	Terminal: Neutral				
Fest Mode :	BLE TX N	Node (2402	MHz)					
Fest Voltage :	120V/ 60	Hz						
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Lin	nit Over		
	MHz	dBuV	dB	dBuV	dBu	V dB	Detector	
1	0.1500	31.69	10.12	41.81	66.0	00 -24.19	peak	
2 *	0.3980	27.29	10.05	37.34	57.9	-20.56	peak	
3	0.6700	20.02	10.02	30.04	56.0	00 -25.96	peak	
4	1.2700	20.32	10.13	30.45	56.0	00 -25.55	peak	
5	2.7300	19.50	10.06	29.56	56.0	00 -26.44	peak	
6	3.2060	19.62	10.06	29.68	56.0	00 -26.32	peak	
80.0 dBuV						Lim		
40		3	×~~~~	5 6	Â	AVI AVI WWW.wayyywawa		
0.0	0.5		(MHz)	5			30.000	
0.150	0.5	,	[[[112]	5			30.000	

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMIT (Frequency Range 9KHz-1000MHz)

20 dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a) and RSS-210 Section 2.2&A8.5, then the 15.209(a) and RSS-General limit in the table below has to be followed.

FREQUENCY (MHz)	Field Strength	Measurement Distance
FREQUENCT (IVITZ)	(uV/m at meter)	(meters)
0.009 -0.490	2400/F(KHz)	300
0.490 -1.705	24000/F(KHz)	30
1.705 -30.0	30	30
30 -88	100	3
88 -216	150	3
216~960	200	3
Above 960	500	3

RADIATED EMISSION LIMITS (Above 1000MHz)

FREQUENCY (MHz)	Class A (dBu	V/m)(at 3 M)	Class B (dBuV/m)(at 3 M)		
	Peak	Average		Peak	
Above 1000	80	60	74	54	

Note:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

The following table is the setting of the receiver

Receiver Parameter	Setting		
Attenuation	Auto		
Start Frequency~ Stop Frequency	9kHz~150kHz/ RB 200Hz for QP		
Start Frequency~ Stop Frequency	150kHz~30MHz/ RB 9kHz for QP		
Start Frequency~ Stop Frequency	30MHz~1000MHz/ RB120kHz for QP		

The following table is the setting of the spectrum

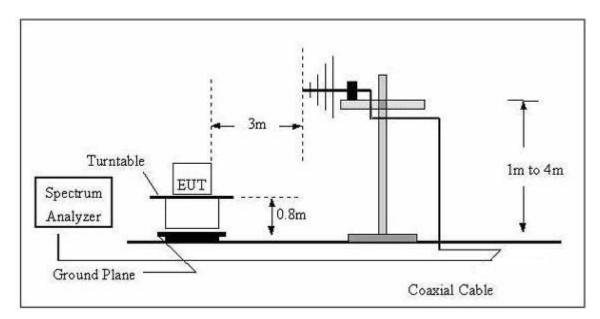
Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10 th carrier harmonic				
RB/ VB (emission in restricted band)	1MHz/ 3 MHz for Peak, 1MHz/ 10Hz for Average				

4.2 TEST PROCEDURE

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

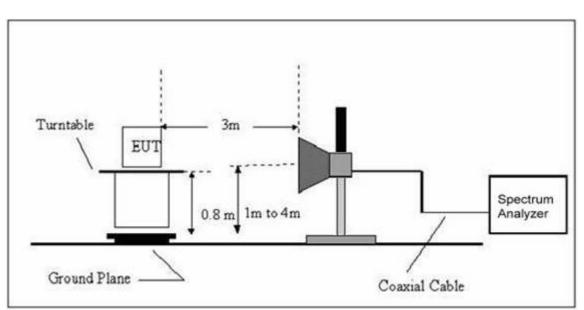
b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.

- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured, above 1G Average detector mode will be instead.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


Note:

Both horizontal and vertical antenna polarities were tested.

And performed pretest to three orthogonal axis. The worst case emissions were reported.


4.3 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(B) Radiated Emission Test Set-Up Frequency Above 1GHz

4.4 TEST INSTRUMENTS

Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
Broadband Antenna	R&S	VULB 9168	VULB 9168-456	Jul. 05, 2015	Jul. 04. 2016	1 year
Test Cable	N/A	R-01	N/A	Dec. 24, 2014	Dec. 23, 2015	1 year
Test Cable	N/A	R-02	N/A	Dec. 24, 2014	Dec. 23, 2015	1 year
EMI Test Receiver	R&S	ESCI	101324	Jul. 05, 2015	Jul. 04. 2016	1 year
Antenna Mast	EM	SC100_1	N/A	N/A	N/A	N/A
Turn Table	EM	SC100	060531	N/A	N/A	N/A
50Ω Switch	Anritsu Corp	MP59B	6200983705	Jul. 05, 2015	Jul. 04. 2016	1 year
Spectrum Analyzer	R&S	FSP40	100154	Jul. 05, 2015	Jul. 04. 2016	1 year
Horn Antenna	R&S	HF906	10029	Jul. 05, 2015	Jul. 04. 2016	1 year
Amplifier	EM	EM-30180	060538	Jul. 05, 2015	Jul. 04. 2016	1 year

4.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

4.6.1 TEST RESULTS (Bellow 1GHz)

EUT:	WIFI+BT Module	Model Name. :	WT39M2011
Temperature :	26 ℃	Relative Humidity:	56%
Pressure :	1010hPa	Ant. Pol.:	Horizontal
Test Mode :	BLE TX Mode (2402MHz)		
Test Voltage :	DC 5V		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		82.3800	53.73	-22.64	31.09	40.00	-8.91	QP
2		143.4900	51.83	-19.07	32.76	43.50	-10.74	QP
3	*	176.4700	54.45	-19.04	35.41	43.50	-8.09	QP
4		248.2500	53.01	-18.46	34.55	46.00	-11.45	QP
5		382.1100	52.59	-15.88	36.71	46.00	-9.29	QP
6		653.7100	43.14	-12.06	31.08	46.00	-14.92	QP

Remark:

Factor = Antenna Factor + Cable Loss.

EUT :	WIFI+BT I	Module		Model Name.	: N	/T39M2011		
Temperature :	26 ℃			Relative Humi	dity : 5	56%		
Pressure :	1010hPa			Ant. Pol.:	V	Vertical		
Test Mode :	BLE TX M	ode (2402N	ИHz)					
Test Voltage :	DC 5V							
No. Mk.	Freq.	Reading Level	Correc Facto		Lim	it Over		
	MHz	dBuV	dB	dBuV/m	dBuV/	m dB	Detector	
1 5	2.3100	50.63	-20.85	29.78	40.00	0 -10.22	QP	
2 6	2.0100	51.51	-21.42	30.09	40.00	0 -9.91	QP	
3 * 14	1.5500	53.79	-19.03	34.76	43.50	0 -8.74	QP	
4 26	9.5900	51.63	-17.31	34.32	46.00	0 -11.68	QP	
5 37	2.4100	51.07	-15.96	35.11	46.00	0 -10.89	QP	
6 57	2.2300	49.43	-12.62	36.81	46.00	0 -9.19	QP	

Remark:

4.6.2 TEST RESULTS (Above 1GHz)

EUT :	WIFI+BT Mod	ule		Model N	lame.	: WT3	39M2011	
Temperature :	26 ℃			Relative	e Humid	ity : 56%)	
Pressure :	1010hPa			Ant. Po	l.:	Hori	zontal	
Test Mode :	BLE TX Mode	z)			•			
Test Voltage :	DC 5V							
No. Mk. Fr	Reading eq. Level		leasure ment	e- Limit	Over			
M	Hz dBuV	dB d	lBuV/m	dBuV/m	dB	Detector	Comment	
1 2390.0	000 44.75	-1.49 4	43.26	74.00	-30.74	peak		
2 2390.0	40.04	-1.49 3	38.55	54.00	-15.45	AVG		
3 X 2402.1	00 90.22	-1.50 8	38.72	74.00	14.72	peak	Fundamen	tal Frequency
4 * 2402.2	200 88.44	-1.50 8	36.94	54.00	32.94	AVG	Fundamen	tal Frequency
No. Mk. F	Readin req. Level	g Correct Factor		easure- ment	Limit	Over		
	MHz dBuV	dB	dE	BuV/m	dBuV/m	dB	Detector	Comment
1 4804	.100 44.01	5.65	4	9.66	74.00	-24.34	peak	
2 * 4804	.100 37.86	5.65	4	3.51	54.00	-10.49	AVG	

Remark:

Factor = Antenna Factor + Cable Loss.

EUT :			WIF	+BT Mod	ule		Model N	Name.	: WT3	9M2011		
Temper	atu	re :	26 °	С			Relative	e Humid	lity : 56%			
Pressur	e:		1010)hPa			Ant. Po	l.:	Verti	Vertical		
Test Mo	de	:	BLE	TX Mode	e (2402N	1Hz)						
Test Vo	Itag	е	: DC 5	5V								
No	. Mł	٢.	Freq.	Reading Level	Correct Factor	Measu ment	1	Over				
			MHz	dBuV	dB	dBuV/m	n dBuV/m	dB	Detector	Comment		
1		23	90.000	47.62	-1.49	46.13	74.00	-27.87	peak			
2		23	90.000	44.07	-1.49	42.58	54.00	-11.42	AVG			
3	Х	24	02.200	90.84	-1.50	89.34	74.00	15.34	peak	Fundamen	tal Frequency	
4	*	24	02.300	88.73	-1.50	87.23	54.00	33.23	AVG	Fundamen	tal Frequency	
No	. M	k.	Freq.	Readin Level	-		leasure- ment	Limit	Over			
			MHz	dBu∨	dE	3 (dBuV/m	dBuV/m	dB	Detector	Comment	
1		4	804.100	41.38	5.	65 4	47.03	74.00	-26.97	peak		
2	*	4	804.100	36.03	5.	65 4	41.68	54.00	-12.32	AVG		

Remark:

EUT :	WIFI+BT Module	Model Name. :	WT39M2011
Temperature :	26 ℃	Relative Humidity:	56%
Pressure :	1010hPa	Ant. Pol.:	Horizontal
Test Mode :	BLE TX Mode (2440MHz)		
Test Voltage :	DC 5V		

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.100	42.57	5.89	48.46	74.00	-25.54	peak	
2	*	4880.100	36.76	5.89	42.65	54.00	-11.35	AVG	

Remark:

Factor = Antenna Factor + Cable Loss.

EUT :	WIFI+BT Module	Model Name. :	WT39M2011
Temperature :	26 ℃	Relative Humidity:	56%
Pressure :	1010hPa	Ant. Pol.:	Vertical
Test Mode :	BLE TX Mode (2440MHz)		
Test Voltage :	DC 5V		

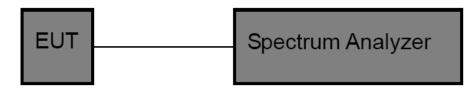
No.	Mk	. Freq.			Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.100	41.35	5.89	47.24	74.00	-26.76	peak	
2	*	4880.100	35.41	5.89	41.30	54.00	-12.70	AVG	

Remark:

EUT	Г∶			I VV	WIFI+BT Module				Model Name.			WT39M2011		
Tem	npera	atu	re :	26	3 ℃				Relative	e Humid	lity:56%	, 0		
Pres	ssure	; ;		10)10h	Pa			Ant. Po	l.:	Hor	izontal		
Tes	t Moo	de	:	BI	ET	X Mode	e (2480	MHz)						
Tes	t Volt	tag	je	: D	C 5V	/								
-	No.	M٢	۲.	Freq.		eading _evel	Correct Factor	Measur ment	e- Limit	Over				
_				MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
_	1	Х	248	30.200	Ş	90.86	-1.58	89.28	74.00	15.28	peak	Fundament	al Frequency	
_	2	*	248	30.300	8	38.77	-1.58	87.19	54.00	33.19	AVG	Fundament	al Frequency	
-	3		248	3.500	5	50.62	-1.58	49.04	74.00	-24.96	peak			
_	4		248	33.500	4	46.90	-1.58	45.32	54.00	-8.68	AVG			
_	No.	М	k.	Fre	q.	Readin Level	•		easure- ment	Limit	Over			
				MH	Z	dBuV	d	B d	BuV/m	dBuV/m	dB	Detector	Comment	
_	1		49	60.10	00	42.73	6.	15 4	8.88	74.00	-25.12	peak		
	2	*	10	00.40	~	36.26	G	15 4	2.41	54.00	-11.59	AVG		
Fa	nark: ictor :	:		960.10 enna I			ble Los							
Fa	nark: ictor :	:		enna I	acto		ble Los		Model N			39M2011		
Fa EU1	nark: ictor :	: = /	Ante	enna I W	acto	or + Ca	ble Los		Model N	Name.		39M2011		
Fa EU Terr	mark: ictor = T :	: = A	Ante	enna I W 26	Facto	or + Ca BT Moo	ble Los		Model N	Name. e Humid	: WT:	39M2011		
Fa EUT Tem Pres	nark: ictor = T : npera	: = / atu e :	Ante	enna I W 26	Facto IFI+ 5 °C 010h	or + Ca BT Moo	ble Los	S.	Model N Relative	Name. e Humid	: WT: lity: 56%	39M2011		
Fa EUT Terr Pres	mark: ictor = T : npera ssure	: = A atu e : de	Ante re:	enna I W 26 10 BI	Facto IFI+ 5 °C 010h	or + Ca BT Moo Pa X Mode	ble Los Jule	S.	Model N Relative	Name. e Humid	: WT: lity: 56%	39M2011		
Fa EU Terr Pres Test	mark: ictor = T : npera ssure t Moo	: = A atu e : de tag	Ante	enna I W 26 10 BI E BI Freq.	Facto IFI+ 5 ℃ 010h LE T C 5V	or + Ca BT Mod Pa X Mode / leading Level	ble Los dule e (2480) Correct Factor	s. MHz) Measur ment	Model N Relative Ant. Po	Name. e Humid I.: Over	: WT: ity: 56% Vert	39M2011 6 iical		
Fa EU Terr Pres Test	mark: lctor = npera ssure t Moo t Volt No.	: = A atu e : de tag	Ante re: je k.	enna I 26 10 BI : D0 Freq. MHz	Facto IFI+ 3 ℃ 010h _E T C 5V	or + Ca BT Mod Pa X Mode / eading Level dBuV	ble Los dule e (2480) Correct Factor dB	S. MHz) Measur ment dBuV/m	Model N Relative Ant. Po e- Limit	Vame. e Humid I.: Over	: WT: lity: 56% Vert	39M2011 6 tical		
Fa EU Tem Pres Tes	mark: ictor = npera ssure t Moo t Volt No.	: atu e : de tag	Ante	enna I W 26 10 BI BI E D0 Freq. MHz 30.100	Factor IFI+ 5 °C 110h LE T C 5V R I R	or + Ca BT Mode Pa X Mode / eading Level dBuV 89.51	ble Los dule e (2480) Correct Factor dB -1.58	S. MHz) Measur ment dBuV/m 87.93	Model N Relative Ant. Po e- Limit dBuV/m 74.00	Vame. e Humid I.: Over dB 13.93	: WT; ity: 56% Vert	39M2011 6 tical	tal Frequency	
Fa EU Tem Pres Tes	mark: ictor = npera ssure t Moo t Volt No.	: = A atu e : de tag	Ante re : je k. 244	enna I 26 10 BI : D0 Freq. MHz 30.100 30.200	Factor IFI+ 3 ℃ 110h _E T C 5V R I	or + Ca BT Mod Pa X Mode / eading Level dBuV 89.51 87.82	ble Los dule e (2480) e (2480) correct Factor dB -1.58 -1.58	S. MHz) Measur ment dBuV/m 87.93 86.24	Model N Relative Ant. Po e- Limit dBuV/m 74.00 54.00	Vame. e Humid I.: Over dB 13.93 32.24	: WT: ity: 56% Vert	39M2011 6 tical	tal Frequency tal Frequency	
Fa EU Tem Pres Tes	mark: lotor = npera ssure t Moo t Volt No.	: atu e : de tag	Ante re : je k. 244 244	enna I 26 10 81 81 50 70 80.100 33.500	Facto IFI+ 3 °C 110h LE T C 5V R I	or + Ca BT Mode Pa X Mode / Level dBuV 89.51 87.82 48.56	ble Los dule e (2480) correct Factor dB -1.58 -1.58 -1.58	S. MHz) Measur ment dBuV/m 87.93 86.24 46.98	Model N Relative Ant. Po e- Limit dBuV/m 74.00 54.00 74.00	Vame. e Humid I.: Over dB 13.93 32.24 -27.02	: WT3 ity: 56% Vert Detector peak AVG peak	39M2011 6 tical		
Fa EU Tem Pres Tes	mark: ictor = npera ssure t Moo t Volt No.	: atu e : de tag	Ante re : je k. 244 244	enna I 26 10 BI : D0 Freq. MHz 30.100 30.200	Facto IFI+ 3 °C 110h LE T C 5V R I	or + Ca BT Mod Pa X Mode / eading Level dBuV 89.51 87.82	ble Los dule e (2480) e (2480) correct Factor dB -1.58 -1.58	S. MHz) Measur ment dBuV/m 87.93 86.24	Model N Relative Ant. Po e- Limit dBuV/m 74.00 54.00	Vame. e Humid I.: Over dB 13.93 32.24	: WT: ity: 56% Vert	39M2011 6 tical		
Fa EU Tem Pres Tes	mark: lotor = npera ssure t Moo t Volt No.	= A atu a: de tag Mi	Ante re : je 244 244 244	enna I W 26 10 BI BI : D0 Freq. 30.100 33.500 33.500 33.500	Facto IFI+) °C)10h LE T C 5V R I I E T C 5V	or + Ca BT Mode Pa X Mode / Level dBuV 89.51 87.82 48.56 43.97 Readi Leve	ble Los dule e (2480) e (2480)	S. MHz) Measur ment dBuV/m 87.93 86.24 46.98 42.39 rrect N actor	Model N Relative Ant. Po Limit dBuV/m 74.00 54.00 54.00 con 54.00 leasure- ment	Vame. e Humid I.: Over dB 13.93 32.24 -27.02 -11.61 Limit	: WT3 ity: 56% Vert Detector peak AVG peak AVG	39M2011 6 tical		
Fa EU Terr Pres Test	mark: ictor = npera ssure t Moo t Volt No. 1 2 3 4	= A atu a: de tag Mi	Ante re : je 244 244 244	enna I 26 10 BI Ereq. MHz 30.200 33.500 33.500	Facto IFI+) °C)10h LE T C 5V R I I E T C 5V	or + Ca BT Mod Pa X Mode / eading Level dBuV 89.51 87.82 48.56 43.97 Readi	ble Los dule e (2480) e (2480)	S. MHz) Measur ment dBuV/m 87.93 86.24 46.98 42.39 rrect N actor	Model N Relative Ant. Po e- Limit dBuV/m 74.00 54.00 54.00 54.00	Vame. e Humid I.: Over dB 13.93 32.24 -27.02 -11.61	: WT3 ity: 56% Vert Detector peak AVG peak AVG	39M2011 6 tical		
Fa EU Tem Pres Tes	mark: ictor = npera ssure t Moo t Volt No. 1 2 3 4	= A atu atu a: de tag Mi X	Ante re : je k. 244 244 244 244 244 244	enna I W 26 10 BI BI : D0 Freq. 30.100 33.500 33.500 33.500	Factor IFI+ 3 °C 110h LE T C 5V R I C 5V R I 2 5V R I 2 2 4 2 2 4 2	or + Ca BT Mode Pa X Mode / Level dBuV 89.51 87.82 48.56 43.97 Readi Leve	ble Los dule e (2480) correct Factor dB -1.58 -1.58 -1.58 -1.58 -1.58 -1.58	S. MHz) Measur ment dBuV/m 87.93 86.24 46.98 42.39 rrect N actor	Model N Relative Ant. Po Limit dBuV/m 74.00 54.00 54.00 con 54.00 leasure- ment	Vame. e Humid I.: Over dB 13.93 32.24 -27.02 -11.61 Limit	: WT3 ity: 56% Vert Detector peak AVG peak AVG	39M2011 6 tical Comment Fundamen Fundamen	tal Frequency	

5. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT

5.1 LIMITS


FCC Part 15.247, subpart C/ RSS 247 Section 5.4(4)				
Frequency Range (MHz)	2400~2483.5			
Limits	30			

5.2 TEST PROCEDURE

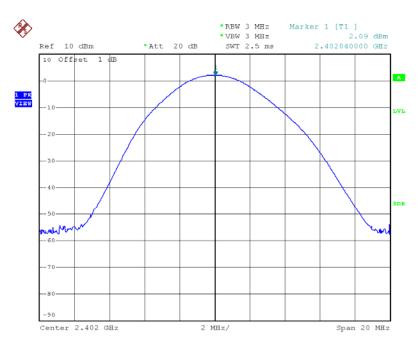
The measurement is according to section 9.1.2 of FCC KDB 558074 D01 DTS Meas Guidance v03r02.

The EUT was directly connected to the power meter and antenna output port as show in the block diagram as bellow.

5.3 TEST SETUP

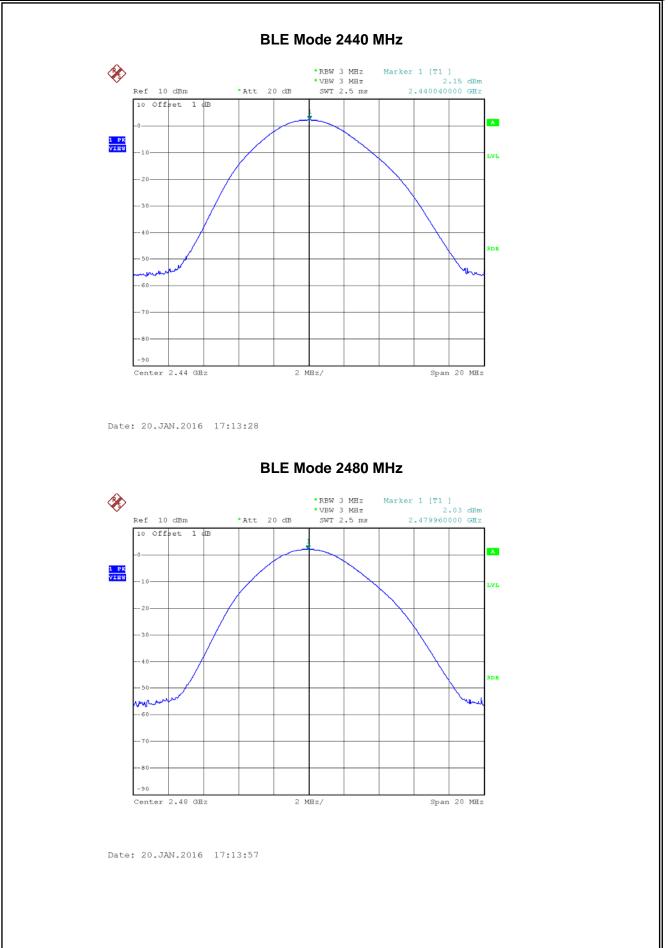
5.4 TEST INSTRUMENTS

Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
Spectrum Analyzer	R&S	FSP40	100154	Jul. 05, 2015	Jul. 04. 2016	1 year


5.5 EUT OPERATING CONDITIONS

The EUT was set to continuously transmitting in the maximum power during the test.

5.6 TEST RESULTS

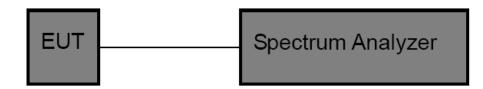

	Bluetooth BLE Mode							
	GFSK							
Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)					
01	2402 MHz	2.09						
19	2440 MHz	2.15	30					
40	2480 MHz	2.03						

BLE Mode 2402 MHz

Date: 20.JAN.2016 17:12:46

6. OCCUPIED BANDWIDTH MEASUREMENT

6.1 LIMITS


FCC Part 15.247, subpart C/ RSS 247 Section 5.2(1)					
Frequency Range (MHz)	2400~2483.5				
Limits	6 dB Bandwidth>500 KHz				

6.2 TEST PROCEDURE

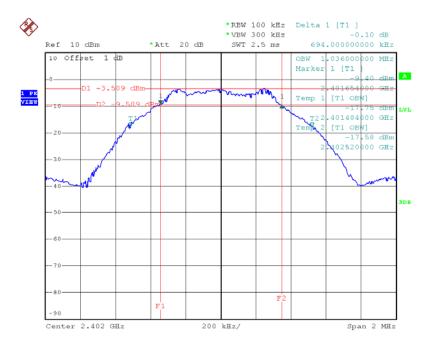
The EUT was directly connected to the power meter and antenna output port as show in the block diagram as bellow.

Spectrum Parameters	Setting
Attenuation	Auto
Span	>6 dB Bandwidth
RBW	100 kHz
VBW	≥3RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

6.3 TEST SETUP

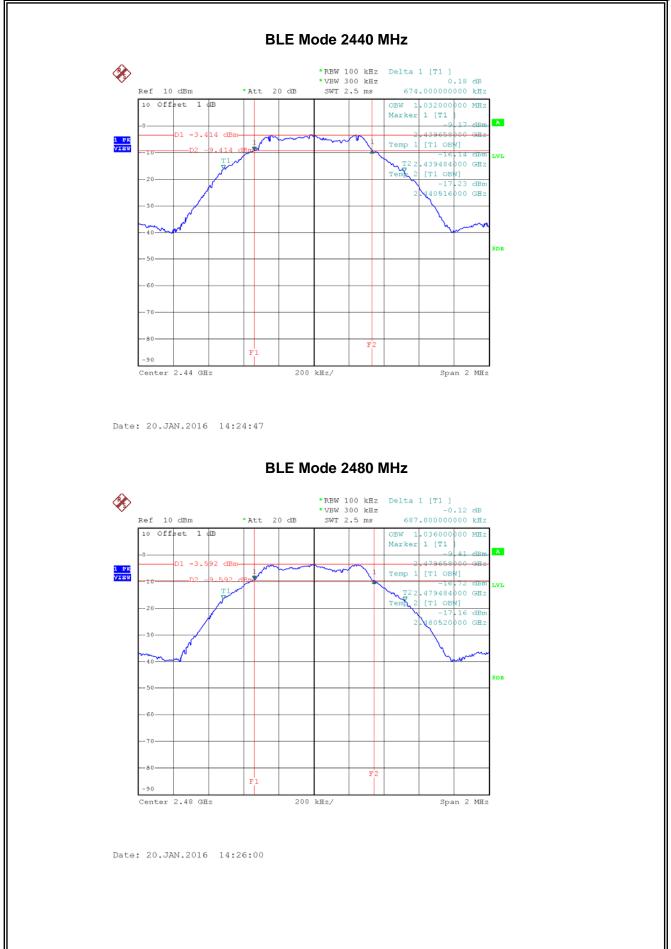
6.4 TEST INSTRUMENTS

Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
Spectrum Analyzer	R&S	FSP40	100154	Jul. 05, 2015	Jul. 06. 2016	1 year


6.5 EUT OPERATING CONDITIONS

The EUT was set to continuously transmitting in the maximum power during the test.

6.6 TEST RESULTS

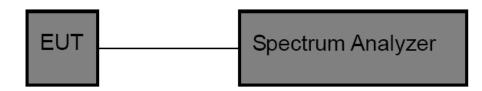

Bluetooth BLE Mode				
Frequency (MHz)	6dB Bandwidth (kHz)	99% OBW (MHz)	Limit	
2402	694.00	1.036		
2440	674.00	1.032	>=500 kHz	
2480	687.80	1.036		

BLE Mode 2402 MHz

Date: 20.JAN.2016 14:23:07

7. POWER SPECTRAL DENSITY

7.1 LIMITS


FCC Part 15.247, Subpart C/ RSS 247 Section 5.2(2)		
Frequency Range (MHz)	2400~2483.5	
99% Occupied Bandwidth	8 dBm in any 3 kHz	

7.2 TEST PROCEDURE

The EUT was directly connected to the power meter and antenna output port as show in the block diagram as bellow.

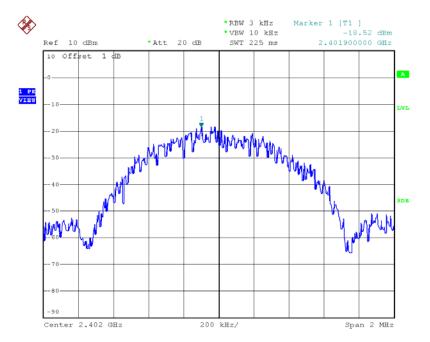
Spectrum Parameters	Setting
Attenuation	Auto
Span	Set the span to 1.5 times the DTS channel bandwidth
RBW	3 kHz
VBW	≥3RBW
Detector	Reak
Trace	Max Hold
Sweep Time	Auto

7.3 TEST SETUP

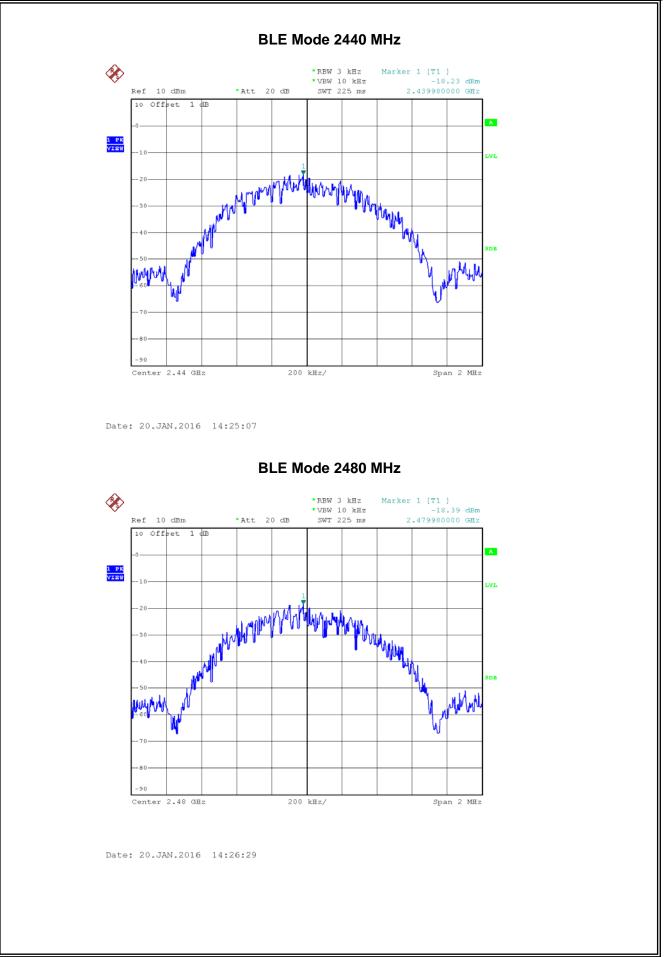
7.4 TEST INSTRUMENTS

Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
Spectrum Analyzer	R&S	FSP40	100154	Jul. 05, 2015	Jul. 04. 2016	1 year

7.5 EUT OPERATING CONDITIONS


The EUT was set to continuously transmitting in the maximum power during the test.

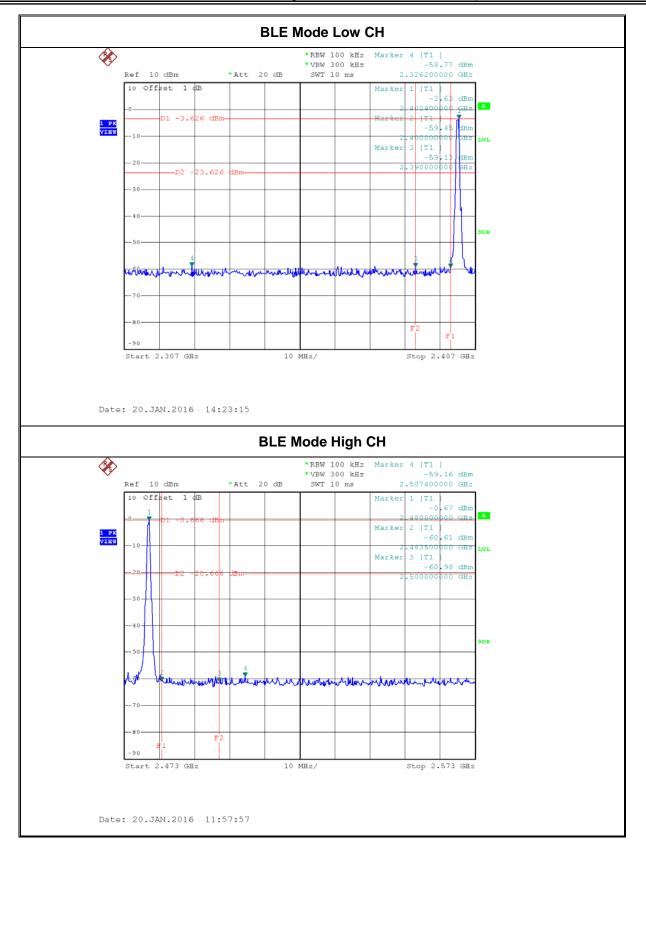
7.6 TEST RESULTS


Bluetooth BLE Mode				
Frequency (MHz)	Power Density (3 kHz/dBm)	Limit (dBm/3KHz)	Result	
2402	-18.52			
2440	-18.23	8	Pass	
2480	-18.39			

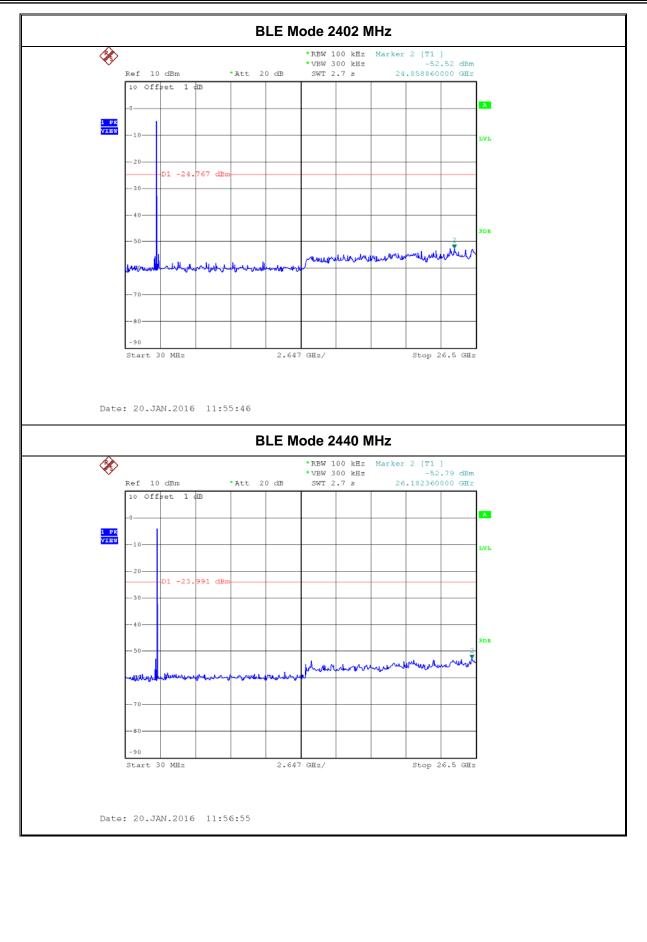
Date: 20.JAN.2016 14:23:35

8. ANTENNA CONDUCTED SPURIOUS EMISSION

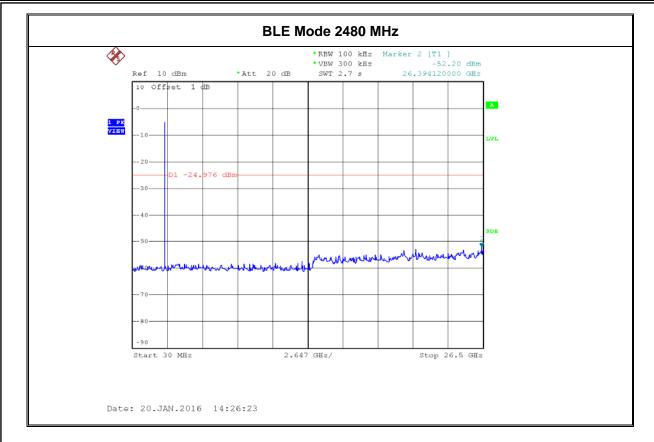
8.1 LIMITS


	50				n 5 5		
_	FCC Part 15.247, Subpart C/ RSS 247 Section 5.5						
Fre	equency Range (MHz)		2400~2483.5				
	Limit	frequency dB below th an RF o	band, the radi the highest leve conducted me	idth outside the o frequency pow el of the desired asurement, prov e with the peak c	ver shall be at le power, based o vide the transm	east 20 on either itter	
The EUT the block a. Set fr up ba b. For lo band	a diagram as b requency rang and-edge from ow band-edge -edge set the ne VBW≥3 RI	ellow. e to capture lo 2483.5 MHz set the equip equipment tra	ow band-edg up to 2500 M ment transm ansmit at the	it at the lowest highest channe conducted mea	Hz up to 2390 channel, and) MHz, ar for up	
	adiated measu surements and			MHz, and the irement	VBW set to 1	MHz for	
meas 8.3 TEST S	surements and	10 Hz for av	erage measu			MHz for	
meas 8.3 TEST S Conducted	SUREMENTS and SETUP Emission Test	10 Hz for av	erage measu	irement		MHz for	
meas 8.3 TEST S Conducted	EUT	10 Hz for av	erage measu	irement	/zer	MHz for	

The EUT was set to continuously transmitting in the maximum power during the test.


8.6 TEST RESULTS

Only showed the worst mode data of ANT 0 transmitting.



9. ANTENNA REQUIREMENT

9.1 REQUIREMENT

Antenna Requirement (15.203)	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
Antenna Requirement (15.247)	If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

9.2 ANTENNA CONNECTOR CONSTRUCTION

The EUT antenna is a FPC Antenna. And the maximum gain of this antenna is 3.96 dBi. It complies with the standard requirement.