

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 Issue 3

TEST REPORT

For

WIFI+BT Module

MODEL NUMBER: WKCT15R2501

REPORT NUMBER: 4791009906-1-RF-2

ISSUE DATE: November 28, 2023

FCC ID:2AC23-WKCT15 IC:12290A-WKCT15

Prepared for

Hui Zhou Gaoshengda Technology Co.,LTD No.2,Jin-da Road,Huinan High-tech Industrial Park,Hui-ao Avenue,Huizhou City,Guangdong,China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
VO	November 28, 2023	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC 15.203 RSS-GEN Clause 6.8	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC 15.247 (b) (1) RSS-247 Clause 5.1 (b)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a) RSS-Gen Clause 6.7	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (b)	Pass
Number of Hopping Frequency	ANSI C63.10-2013 Clause 7.8.3	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC 15.247 (d) RSS-247 Clause 5.5	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C

ISED RSS-247 Issue 3> when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTES	TATION OF TEST RESULTS	6
2.	TEST N	IETHODOLOGY	7
3.	FACILI	TIES AND ACCREDITATION	7
4.	CALIBI	RATION AND UNCERTAINTY	8
4	4.1.	MEASURING INSTRUMENT CALIBRATION	8
4	4.2.	MEASUREMENT UNCERTAINTY	8
5.	EQUIP	MENT UNDER TEST	9
5	5.1.	DESCRIPTION OF EUT	9
5	5.2.	CHANNEL LIST	9
5	5.3.	MAXIMUM POWER	9
5	5.4.	TEST CHANNEL CONFIGURATION	10
5	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
5	5.7.	SUPPORT UNITS FOR SYSTEM TEST	12
6.	MEASU	JRING EQUIPMENT AND SOFTWARE USED	13
7.	ANTEN	INA PORT TEST RESULTS	16
7	7.1.	CONDUCTED OUTPUT POWER	16
7	7.2.	20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	17
7	7.3.	CARRIER HOPPING CHANNEL SEPARATION	19
7	7.4.	NUMBER OF HOPPING FREQUENCY	21
7	7.5.	TIME OF OCCUPANCY (DWELL TIME)	23
7	7.6.	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	25
7	7.7.	DUTY CYCLE	27
8.	RADIA	TED TEST RESULTS	28
8	3.1.	RESTRICTED BANDEDGE	36
8	3.2.	SPURIOUS EMISSIONS(1 GHZ~3 GHZ)	40
8	3.3.	SPURIOUS EMISSIONS(3 GHZ~18 GHZ)	46
8	3.4.	SPURIOUS EMISSIONS(9 KHZ~30 MHZ)	58
8	8.5.	SPURIOUS EMISSIONS(18 GHZ~26 GHZ)	61
8	8.6.	SPURIOUS EMISSIONS(30 MHZ~1 GHZ)	63
9.	ANTEN	INA REQUIREMENT	65
10.		AC POWER LINE CONDUCTED EMISSION	66
11.		TEST DATA	70

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

<i>11.1.</i> 11.1.1. 11.1.2.	APPENDIX A: 20DB EMISSION BANDWIDTH Test Result Test Graphs	.70
<i>11.2.</i> 11.2.1. 11.2.2.	APPENDIX B: OCCUPIED CHANNEL BANDWIDTH Test Result Test Graphs	.73
<i>11.3.</i> 11.3.1.	APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER Test Result	
<i>11.4.</i> 11.4.1. 11.4.2.	APPENDIX D: CARRIER FREQUENCY SEPARATION Test Result Test Graphs	.77
<i>11.5</i> . 11.5.1. 11.5.2.	APPENDIX E: TIME OF OCCUPANCY Test Result Test Graphs	.79
<i>11.6.</i> 11.6.1. 11.6.2.	APPENDIX F: NUMBER OF HOPPING CHANNELS Test Result Test Graphs	.82
<i>11.7.</i> 11.7.1. 11.7.2.	APPENDIX G: BAND EDGE MEASUREMENTS Test Result Test Graphs	.84
<i>11.8.</i> 11.8.1. 11.8.2.	APPENDIX H: CONDUCTED SPURIOUS EMISSION Test Result Test Graphs	.88
<i>11.9</i> . 11.9.1. 11.9.2.	APPENDIX I: DUTY CYCLE Test Result Test Graphs	.95

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Hui Zhou Gaoshengda Technology Co.,LTD
Address:	No.2, Jin-da Road, Huinan High-tech Industrial Park, Hui-ao
	Avenue,Huizhou City,Guangdong,China

Manufacturer Information

Company Name:	Hui Zhou Gaoshengda Technology Co.,LTD
Address:	No.2, Jin-da Road, Huinan High-tech Industrial Park, Hui-ao
	Avenue,Huizhou City,Guangdong,China

EUT Information

EUT Name:	WIFI+BT Module
Model:	WKCT15R2501
Brand:	GSD
Sample Received Date:	November 7, 2023
Sample Status:	Normal
Sample ID:	6710149
Date of Tested:	November 7, 2023 to November 28, 2023

APPLICABLE STANDARD	S
STANDARD	TEST RESULTS
CFR 47 FCC PART 15 SUBPART C	Pass
ISED RSS-247 Issue 3	F 455

Prepared By:

fammy . Huang

Checked By:

Denny

Fanny Huang **Engineer Project Associate**

Denny Huang Senior Project Engineer

Bucur

Approved By:

Applientino

Stephen Guo Operations Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C ISED RSS-247 Issue 3, KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, ANSI C63.10-2013 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Contificate No. : 4402.04)
	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20192 and R-20202
	Shielding Room B, the VCCI registration No. is C-20153 and T-20155
	Snielding Room B, the VCCI registration No. is C-20153 and 1-20155

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62 dB
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)
Duty Cycle	±0.028%
20dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%
Carrier Frequency Separation	±1.9%
Maximum Conducted Output Power	±0.743 dB
Number of Hopping Channel	±1.9%
Time of Occupancy	±0.028%
Conducted Band-edge Compliance	±1.328 dB
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)
Note: This uncertainty represents an expanded uncertainty 95% confidence level using a coverage factor of k=2.	expressed at approximately the

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	WIFI+BT Module
Model	WKCT15R2501

Frequency Range:	2402 MHz to 2480 MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK, II/4DQPSK, 8DPSK
Normal Test Voltage:	3.3 Vdc

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM POWER

Test Mode	Test Mode Frequency (MHz)		Maximum Peak Output Power (dBm)		
GFSK	2402 ~ 2480	0-78[79]	5.40		
8DPSK	2402 ~ 2480	0-78[79]	6.62		

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK-DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK-3DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
GFSK-DH5	Hopping	
8DPSK-3DH5	Hopping	

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)		
	DH1	27		
GFSK	DH3	183		
	DH5	339		
	2-DH1	54		
∏/4-DQPSK	2-DH3	367		
	2-DH5	679		
	3-DH1	83		
8DPSK	3-DH3	552		
	3-DH5	1021		

5.5. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Se	oftware	RTLBTAPP				
Modulation Type	Transmit Antenna	Test Software setting value				
	Number	CH 00	CH 39	CH 78		
GFSK	1	0x3c	0x3c	0x3c		
8DPSK	1	0x3c 0x3c 0x3c				

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)		
1	2402-2480	PCB	3.44		

Test Mode	Transmit and Receive Mode	Description				
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.				
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.				
Note: 1.BT&WLAN 2.4G, BT & WLAN 5G, WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client)						

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

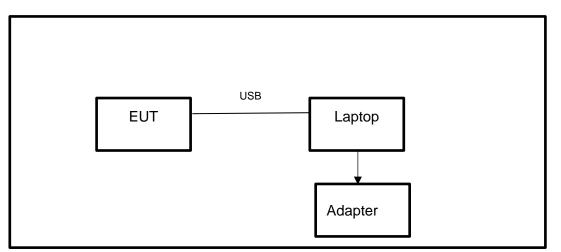
5.7. SUPPORT UNITS FOR SYSTEM TEST

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	E42-80	R303U5AG
2	AC Adaptor	Lenovo	MACS- 1201001202	Input: 100-240 V~50/60 Hz, 0.35 A Output: DC 12V1A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description	
/	/	/	/	/	

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

Note: Adapter only use for AC Power Line Conducted Emission testing.

6. MEASURING EQUIPMENT AND SOFTWARE USED

R&S TS 8997 Test System									
Equipment	Manufac	turer	Model	No.	Serial No.	Last C	Cal.	Due. Date	
Power sensor, Power Meter R&S			5	OSP1	20	100921	Mar.31,	2023	Mar.30,2024
Vector Signal Genera	tor	R&S	6	SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024
Signal Generator		R&S	6	SMB10	00A	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer		R&S	6	FSV4	10	101118	Oct.12,	2023	Oct.11, 2024
Software									
Description		Ν	Manuf	acturer		Nam	е		Version
For R&S TS 8997 Test	Syste	em Ro	hde &	Schwa	rz	EMC	32		10.60.10
Tonsend RF Test System									
Equipment	Man	ufacturer	Мос	del No.	S	Serial No.	Last Cal.		Due. Date
Wideband Radio Communication Tester		R&S CM		IW500	155523		Oct.12, 2023		Oct.11, 2024
Wireless Connectivity Tester		R&S	СМ	IW270	120	1.0002N75- 102	Sep.25,	2023	Sep.24, 2024
PXA Signal Analyzer	Ke	eysight	N9	030A	MY	′55410512	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	5182B	MΥ	′56200284	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	5172B	MY	⁄56200301	Oct.12,	2023	Oct.11, 2024
DC power supply	Ke	eysight	E3	642A	MY55159130		Oct.12,	2023	Oct.11, 2024
Temperature & Humidity Chamber	SAN	NMOOD	SG-8	30-CC-2		2088	Oct.12,	2023	Oct.11, 2024
Attenuator	A	Aglient 84		495B	28	14a12853	Oct.12,	2023	Oct.11, 2024
RF Control Unit	То	Tonscend JS		0806-2	23E	380620666	April 18,	2023	April 17, 2024
	Software								
Description Manufact			turer	rer Name					Version
Tonsend SRD Test Syst	tem	Tonsei	nd	JS1	120-:	3 RF Test S	ystem		V3.2.22

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Conducted Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Oct.13, 2023	Oct.12, 2024
Two-Line V- Network	R&S	ENV216	101983	Oct.13, 2023	Oct.12, 2024
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.13, 2023	Oct.12, 2024
Software					
Description			Manufacturer	Name	Version
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1

	Radiated Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024	
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024	
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024	
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024	
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024	
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024	
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024	
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024	
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024	
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024	
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024	
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.12, 2023	Oct.11, 2024	
Highpass Filter	Wainwright	WHKX10- 5850-6500- 1800-40SS	4	Oct.12, 2023	Oct.11, 2024	
Band Reject Filter	Wainwright	WRCJV12- 5695-5725- 5850-5880- 40SS	4	Oct.12, 2023	Oct.11, 2024	
Band Reject Filter	Wainwright	WRCJV20- 5120-5150- 5350-5380- 60SS	2	Oct.12, 2023	Oct.11, 2024	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Band Reject Filter	Wainwright	WRCJV20- 5440-5470- 5725-5755- 60SS	1	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCD5- 1879- 1879.85- 1880.15- 1881-40SS	1	Oct.12, 2023	Oct.11, 2024
Notch Filter	Wainwright	WHJ10-882- 980-7000- 40SS	1	Oct.12, 2023	Oct.11, 2024
Highpass Filter	Xingbo	XBLBQ- GTA68	211115-2-1	Oct.12, 2023	Oct.11, 2024
Notch Filter (5905-6445 MHz)	Xingbo	XBLBQ- DZA175	210922-2-1	Oct.12, 2023	Oct.11, 2024
Notch Filter (6425-6525 MHz)	Xingbo	XBLBQ- DZA176	210922-2-2	Oct.12, 2023	Oct.11, 2024
Notch Filter (6825-7125 MHz)	Xingbo	XBLBQ- DZA177	210922-2-3	Oct.12, 2023	Oct.11, 2024
Notch Filter (6525-6875 MHz)	Xingbo	XBLBQ- DZA178	210922-2-4	Oct.12, 2023	Oct.11, 2024
Software					
Description			Manufacturer	Name	Version
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1

Other Instrument					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.21, 2023	Oct.20, 2024
Barometer	Yiyi	Baro	N/A	Oct.19, 2023	Oct.18, 2024
Attenuator	Agilent	8495B	2814a12853	Oct.12, 2023	Oct.11, 2024

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (b) (1) ISED RSS-247 Clause 5.4 (b)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	26.8 ℃	Relative Humidity	60.3%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

TEST DATE / ENGINEER

Test DateNovember 12, 2023Test ByJohnson Liu	Test Date	November 12, 2023	Test By	Johnson Liu
--	-----------	-------------------	---------	-------------

TEST RESULTS

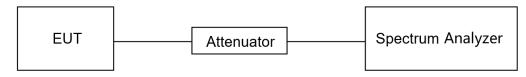
Please refer to section "Test Data" - Appendix C

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3					
Section	Test Item	Limit	Frequency Range (MHz)		
CFR 47 FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5		
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5		

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	26.8 ℃	Relative Humidity	60.3%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

TEST DATE / ENGINEER

Test Date November 12, 2023 Test By Johnson Liu

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS

Please refer to section "Test Data" - Appendix A&B

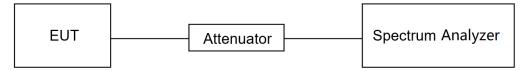
7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1) ISED RSS-247 Clause 5.1 (b)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Span	wide enough to capture the peaks of two adjacent channels	
Detector	Peak	
RBW	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.	
VBW	≥RBW	
Trace	Max hold	
Sweep time	Auto couple	

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	26.8 ℃	Relative Humidity	60.3%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST DATE / ENGINEER

Test Date	November 12, 2023	Test By	Johnson Liu
-----------	-------------------	---------	-------------

TEST RESULTS

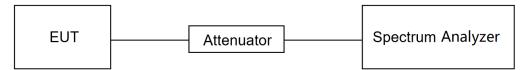
Please refer to section "Test Data" - Appendix D

7.4. NUMBER OF HOPPING FREQUENCY

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit			
CFR 47 15.247 (a) (1) IIINumber of Hoppingat leaseISED RSS-247 Clause 5.1 (d)Frequencyat lease		at least 15 hopping channels	

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	26.8 ℃	Relative Humidity	60.3%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

TEST DATE / ENGINEER

Test Date	November 12, 2023	Test By	Johnson Liu
-----------	-------------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix F

7.5. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3			
Section	Test Item Limit		
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

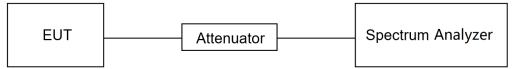
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.


For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel):

DH1/3DH1 Dwell Time: Burst Width * (800/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (800/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (800/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	26.8℃	Relative Humidity	60.3%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

TEST DATE / ENGINEER

Test Date	November 12, 2023	Test By	Johnson Liu

TEST RESULTS

Please refer to section "Test Data" - Appendix E

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

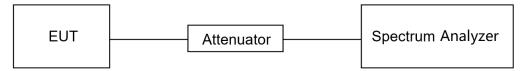
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyzer and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.


Change the settings for emission level measurement:

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

TEST SETUP

TEST ENVIRONMENT

Temperature	26.8 ℃	Relative Humidity	60.3%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

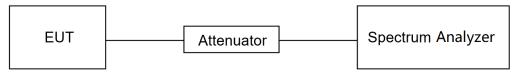
TEST DATE / ENGINEER

Test Date November 12, 2023 Test By Johnson Liu	
---	--

TEST RESULTS

Please refer to section "Test Data" - Appendix G&H

7.7. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	26.8 ℃	Relative Humidity	60.3%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

TEST DATE / ENGINEER

Test Date November 12, 2023 Test By Johnson Liu

TEST RESULTS

Please refer to section "Test Data" - Appendix I

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	300	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz			
Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement distance (m)	
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300	
490 - 1705 kHz	63.7/F (F in kHz)	30	
1.705 - 30 MHz	0.08	30	

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	158.7 - 158.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 18.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1648.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.87	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 - 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

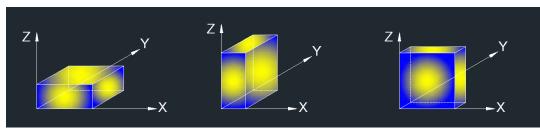
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	MHz				
NBW	PEAK: 3 MHz AVG: see note 6				
Sweep	Auto				
Detector	Peak				
Trace	Max hold				

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.7. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

For Restricted Bandedge:

Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes have been tested, but only the worst data was recorded in the report.

5. dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5

For Radiate Spurious Emission (30 MHz ~ 1 GHz): Note:

1. Result Level = Read Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed

to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (3 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

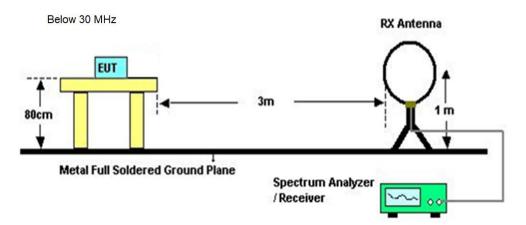
5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

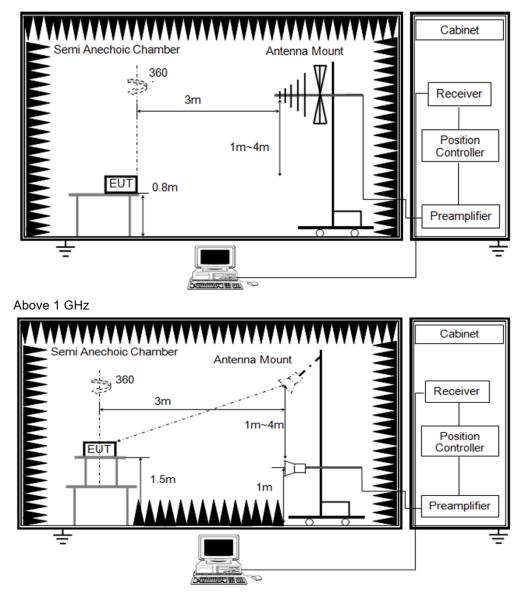
8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz): Note:


1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.


4. All modes have been tested, but only the worst data was recorded in the report.

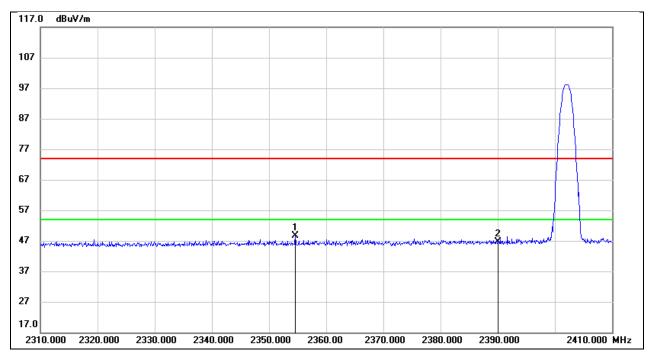
TEST SETUP

Below 1 GHz and above 30 MHz

TEST ENVIRONMENT

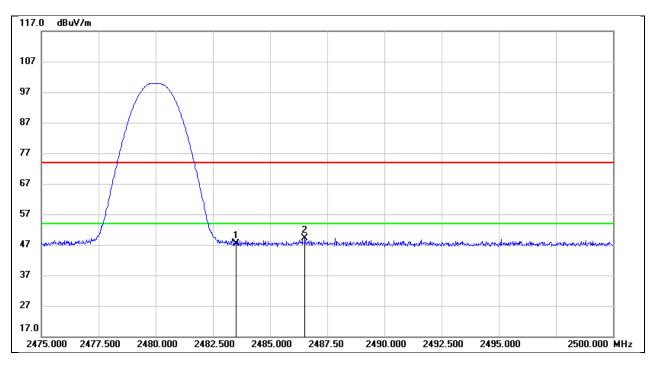
Temperature	24.8 ℃	Relative Humidity	
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

TEST DATE / ENGINEER

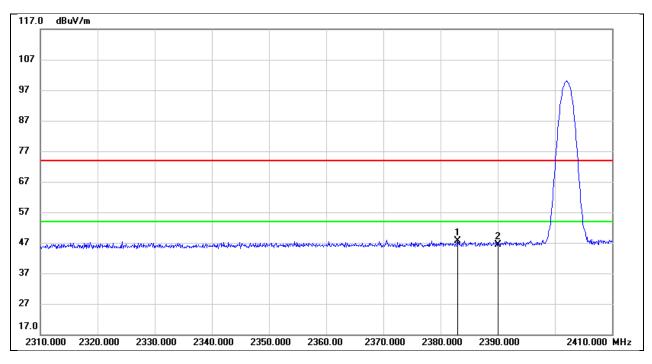

Test Date November 28, 2023	Test By	Rex Huang
-----------------------------	---------	-----------

TEST RESULTS

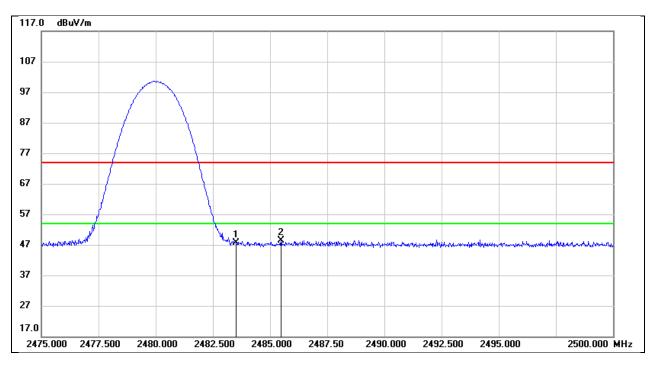
8.1. RESTRICTED BANDEDGE


Test Mode:	GFSK PK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2354.600	16.61	32.05	48.66	74.00	-25.34	peak
2	2390.000	14.57	32.16	46.73	74.00	-27.27	peak

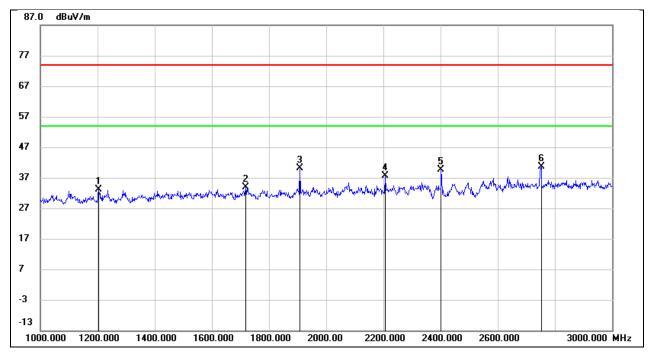

Test Mode:	GFSK PK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.98	32.44	47.42	74.00	-26.58	peak
2	2486.525	16.79	32.44	49.23	74.00	-24.77	peak


Test Mode:	8DPSK PK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

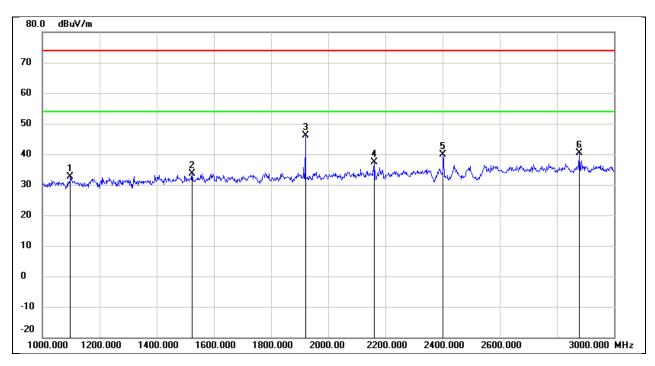
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2383.000	15.55	32.14	47.69	74.00	-26.31	peak
2	2390.000	14.27	32.16	46.43	74.00	-27.57	peak

Test Mode:	8DPSK PK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

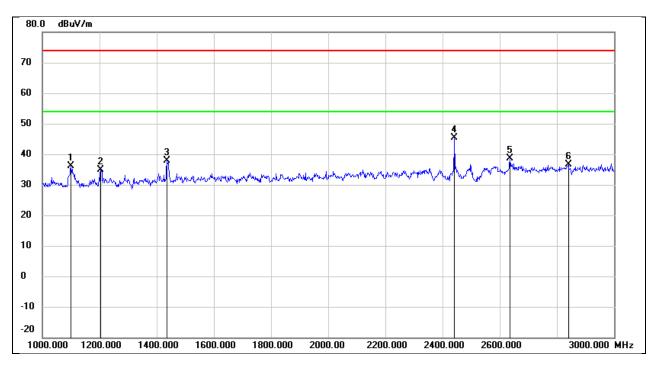


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	15.25	32.44	47.69	74.00	-26.31	peak
2	2485.475	15.97	32.44	48.41	74.00	-25.59	peak

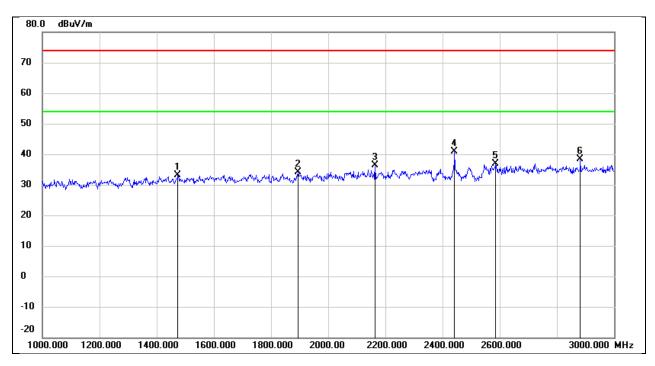
8.2. SPURIOUS EMISSIONS(1 GHZ~3 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1204.000	47.19	-14.09	33.10	74.00	-40.90	peak
2	1718.000	45.87	-11.99	33.88	74.00	-40.12	peak
3	1908.000	51.49	-11.36	40.13	74.00	-33.87	peak
4	2206.000	47.63	-10.00	37.63	74.00	-36.37	peak
5	2402.000	48.66	-8.99	39.67	/	/	fundamental
6	2752.000	48.44	-7.73	40.71	74.00	-33.29	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

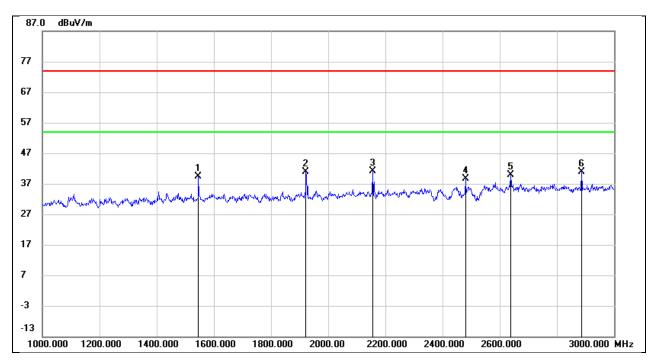
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1098.000	47.12	-14.58	32.54	74.00	-41.46	peak
2	1524.000	46.20	-12.63	33.57	74.00	-40.43	peak
3	1920.000	57.55	-11.32	46.23	74.00	-27.77	peak
4	2162.000	47.57	-10.23	37.34	74.00	-36.66	peak
5	2402.000	48.82	-8.99	39.83	1	/	fundamental
6	2878.000	47.75	-7.35	40.40	74.00	-33.60	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1100.000	50.81	-14.57	36.24	74.00	-37.76	peak
2	1204.000	48.86	-14.09	34.77	74.00	-39.23	peak
3	1436.000	50.89	-13.01	37.88	74.00	-36.12	peak
4	2441.000	54.26	-8.79	45.47	/	/	fundamental
5	2636.000	46.69	-8.08	38.61	74.00	-35.39	peak
6	2840.000	44.06	-7.46	36.60	74.00	-37.40	peak

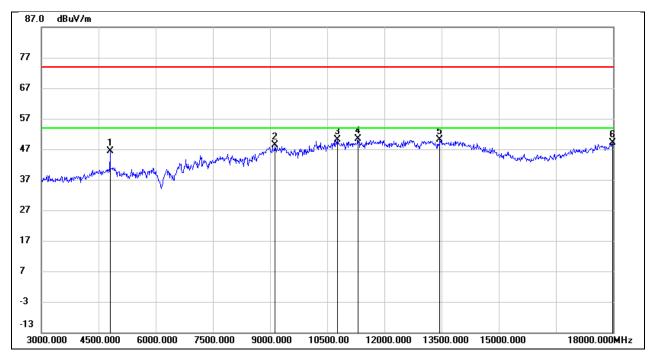
Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1474.000	45.93	-12.83	33.10	74.00	-40.90	peak
2	1894.000	45.43	-11.41	34.02	74.00	-39.98	peak
3	2164.000	46.62	-10.22	36.40	74.00	-37.60	peak
4	2441.000	49.67	-8.79	40.88	/	/	fundamental
5	2586.000	45.18	-8.24	36.94	74.00	-37.06	peak
6	2882.000	45.61	-7.33	38.28	74.00	-35.72	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

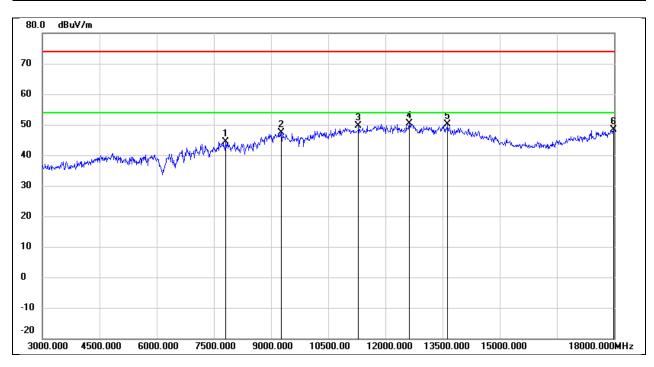
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1108.000	50.81	-14.53	36.28	74.00	-37.72	peak
2	1586.000	45.52	-12.42	33.10	74.00	-40.90	peak
3	1918.000	49.23	-11.33	37.90	74.00	-36.10	peak
4	2260.000	44.81	-9.72	35.09	74.00	-38.91	peak
5	2480.000	47.46	-8.59	38.87	/	/	fundamental
6	2724.000	44.43	-7.81	36.62	74.00	-37.38	peak

Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 3.3 V

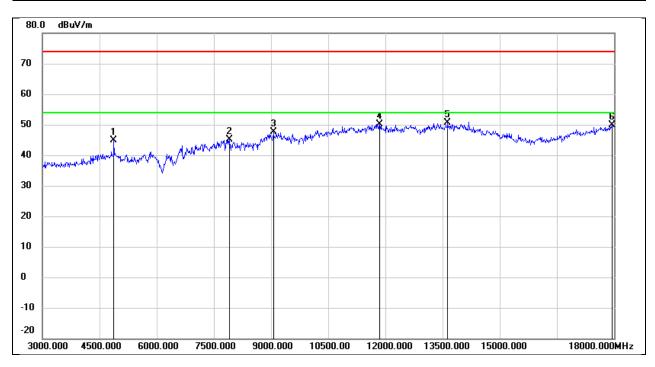


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1546.000	52.02	-12.56	39.46	74.00	-34.54	peak
2	1922.000	52.10	-11.32	40.78	74.00	-33.22	peak
3	2156.000	51.40	-10.25	41.15	74.00	-32.85	peak
4	2480.000	47.16	-8.59	38.57	/	/	fundamental
5	2638.000	47.94	-8.07	39.87	74.00	-34.13	peak
6	2886.000	48.18	-7.33	40.85	74.00	-33.15	peak

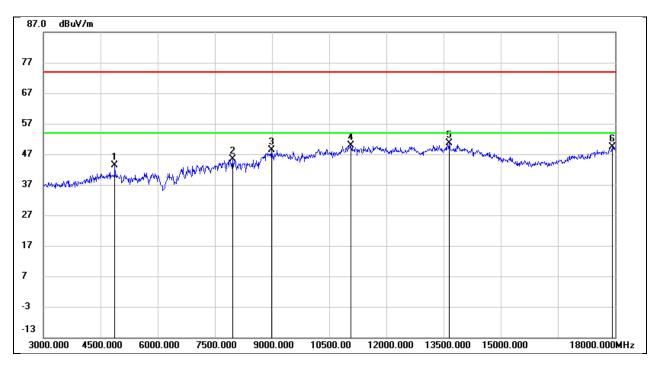
8.3. SPURIOUS EMISSIONS(3 GHZ~18 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

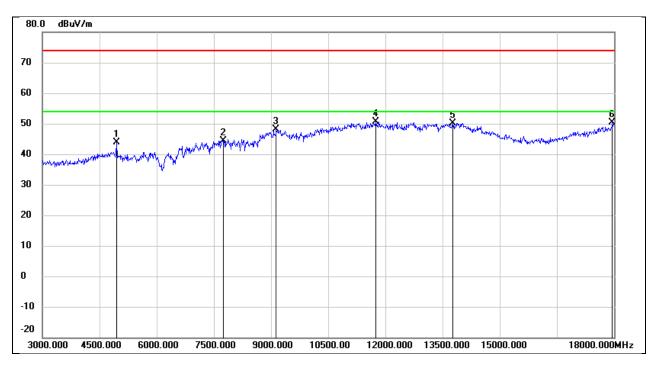
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	46.66	-0.31	46.35	74.00	-27.65	peak
2	9135.000	37.79	10.55	48.34	74.00	-25.66	peak
3	10770.000	36.14	13.95	50.09	74.00	-23.91	peak
4	11310.000	34.37	15.91	50.28	74.00	-23.72	peak
5	13455.000	29.35	20.71	50.06	74.00	-23.94	peak
6	17985.000	23.48	25.60	49.08	74.00	-24.92	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

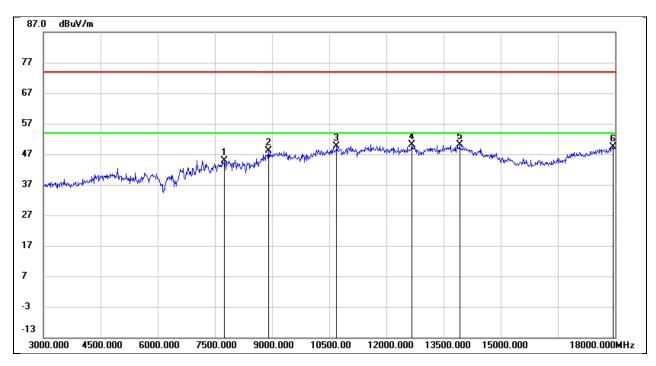
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7815.000	38.10	6.32	44.42	74.00	-29.58	peak
2	9270.000	36.67	10.59	47.26	74.00	-26.74	peak
3	11295.000	33.90	15.85	49.75	74.00	-24.25	peak
4	12630.000	32.46	17.89	50.35	74.00	-23.65	peak
5	13635.000	28.98	21.19	50.17	74.00	-23.83	peak
6	17985.000	22.85	25.60	48.45	74.00	-25.55	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

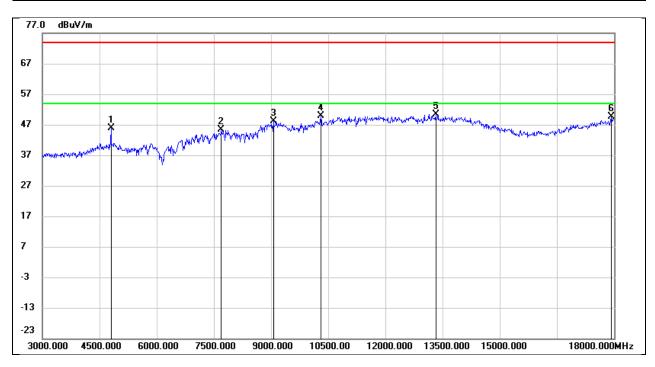
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	44.93	-0.03	44.90	74.00	-29.10	peak
2	7905.000	38.75	6.31	45.06	74.00	-28.94	peak
3	9060.000	37.06	10.51	47.57	74.00	-26.43	peak
4	11850.000	32.53	17.56	50.09	74.00	-23.91	peak
5	13635.000	29.35	21.19	50.54	74.00	-23.46	peak
6	17940.000	24.54	25.34	49.88	74.00	-24.12	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 3.3 V

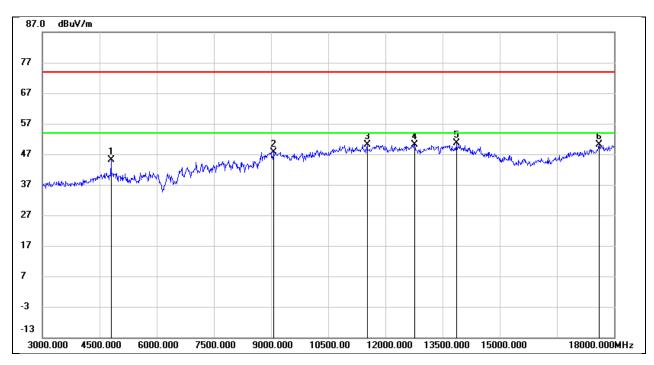
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4875.000	43.48	-0.03	43.45	74.00	-30.55	peak
2	7965.000	38.99	6.31	45.30	74.00	-28.70	peak
3	8985.000	38.12	10.37	48.49	74.00	-25.51	peak
4	11070.000	34.84	15.03	49.87	74.00	-24.13	peak
5	13650.000	29.36	21.21	50.57	74.00	-23.43	peak
6	17925.000	24.19	25.25	49.44	74.00	-24.56	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

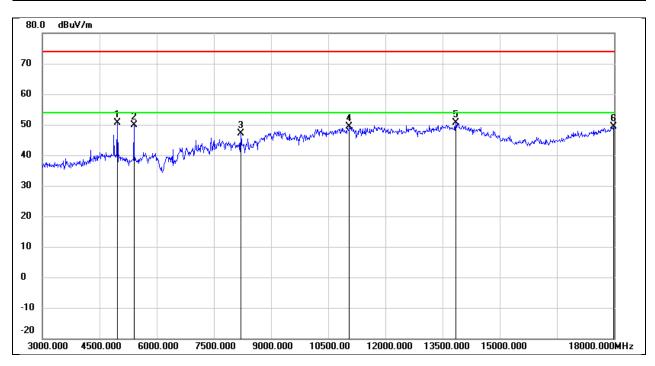
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	43.61	0.26	43.87	74.00	-30.13	peak
2	7755.000	38.10	6.31	44.41	74.00	-29.59	peak
3	9135.000	37.52	10.55	48.07	74.00	-25.93	peak
4	11745.000	33.42	17.27	50.69	74.00	-23.31	peak
5	13770.000	28.75	21.47	50.22	74.00	-23.78	peak
6	17955.000	24.94	25.42	50.36	74.00	-23.64	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 3.3 V

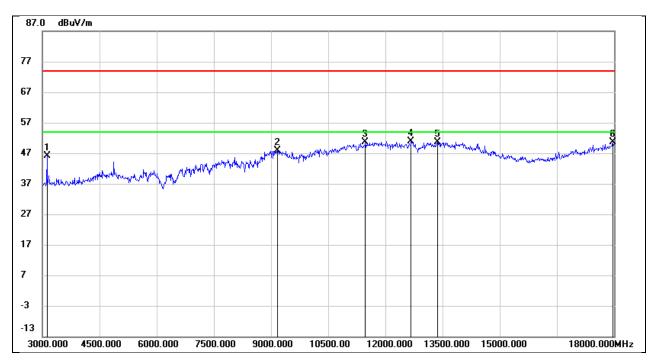
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7755.000	38.69	6.31	45.00	74.00	-29.00	peak
2	8910.000	38.36	9.82	48.18	74.00	-25.82	peak
3	10695.000	36.00	13.68	49.68	74.00	-24.32	peak
4	12675.000	32.02	17.99	50.01	74.00	-23.99	peak
5	13920.000	28.41	21.79	50.20	74.00	-23.80	peak
6	17940.000	24.11	25.34	49.45	74.00	-24.55	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

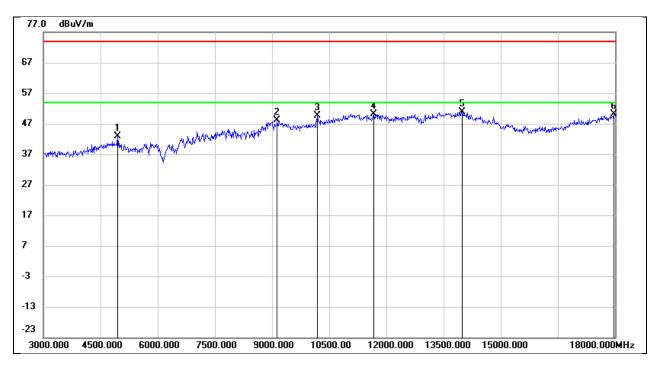
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	46.29	-0.31	45.98	74.00	-28.02	peak
2	7695.000	39.14	6.32	45.46	74.00	-28.54	peak
3	9060.000	37.55	10.51	48.06	74.00	-25.94	peak
4	10305.000	37.18	12.61	49.79	74.00	-24.21	peak
5	13320.000	30.21	20.11	50.32	74.00	-23.68	peak
6	17925.000	24.26	25.25	49.51	74.00	-24.49	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

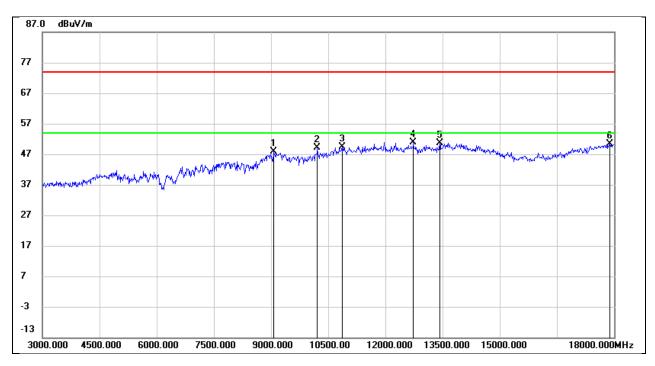
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4800.000	45.52	-0.31	45.21	74.00	-28.79	peak
2	9075.000	37.21	10.52	47.73	74.00	-26.27	peak
3	11520.000	33.38	16.65	50.03	74.00	-23.97	peak
4	12765.000	31.97	18.20	50.17	74.00	-23.83	peak
5	13860.000	28.84	21.67	50.51	74.00	-23.49	peak
6	17610.000	26.85	23.38	50.23	74.00	-23.77	peak


Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4965.000	50.19	0.32	50.51	74.00	-23.49	peak
2	5400.000	49.23	0.77	50.00	74.00	-24.00	peak
3	8205.000	40.63	6.53	47.16	74.00	-26.84	peak
4	11055.000	34.37	14.96	49.33	74.00	-24.67	peak
5	13845.000	29.05	21.62	50.67	74.00	-23.33	peak
6	17985.000	23.83	25.60	49.43	74.00	-24.57	peak

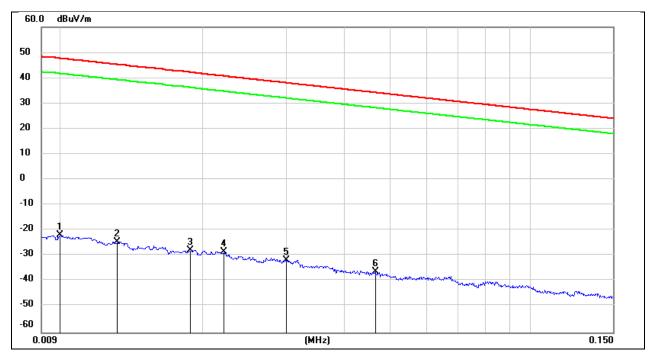

Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3120.000	51.22	-5.17	46.05	74.00	-27.95	peak
2	9165.000	37.44	10.55	47.99	74.00	-26.01	peak
3	11475.000	34.18	16.51	50.69	74.00	-23.31	peak
4	12675.000	32.94	17.99	50.93	74.00	-23.07	peak
5	13365.000	30.24	20.31	50.55	74.00	-23.45	peak
6	17970.000	25.03	25.51	50.54	74.00	-23.46	peak


Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

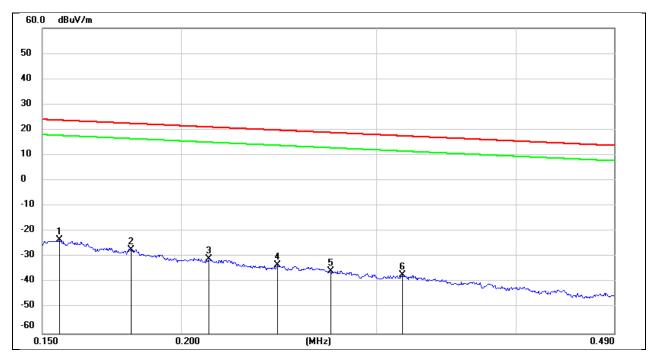
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4950.000	42.58	0.26	42.84	74.00	-31.16	peak
2	9135.000	37.53	10.55	48.08	74.00	-25.92	peak
3	10185.000	37.18	12.38	49.56	74.00	-24.44	peak
4	11670.000	33.03	17.07	50.10	74.00	-23.90	peak
5	13995.000	29.00	21.95	50.95	74.00	-23.05	peak
6	17970.000	24.74	25.51	50.25	74.00	-23.75	peak

Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 3.3 V

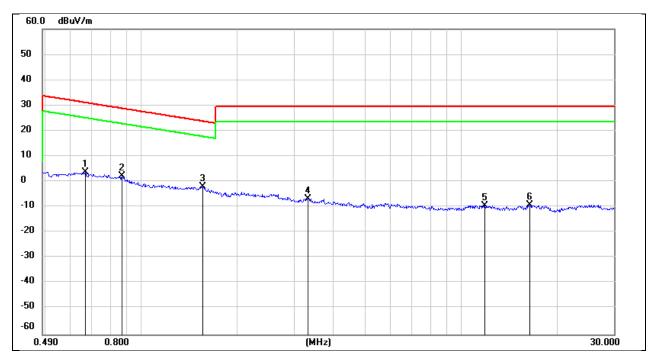


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9060.000	37.42	10.51	47.93	74.00	-26.07	peak
2	10215.000	36.61	12.43	49.04	74.00	-24.96	peak
3	10860.000	35.04	14.27	49.31	74.00	-24.69	peak
4	12735.000	32.86	18.12	50.98	74.00	-23.02	peak
5	13425.000	30.09	20.58	50.67	74.00	-23.33	peak
6	17895.000	25.33	25.07	50.40	74.00	-23.60	peak

8.4. SPURIOUS EMISSIONS(9 KHZ~30 MHZ)

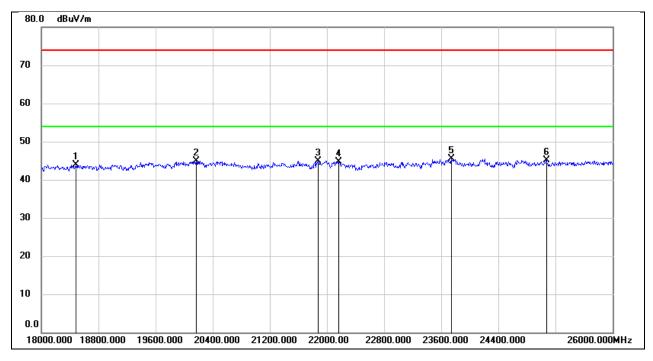

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	79.72	-101.40	-21.68	47.60	-73.18	-3.90	-69.28	peak
2	0.0131	76.97	-101.38	-24.41	45.25	-75.91	-6.25	-69.66	peak
3	0.0188	73.64	-101.35	-27.71	42.12	-79.21	-9.38	-69.83	peak
4	0.0221	73.13	-101.35	-28.22	40.71	-79.72	-10.79	-68.93	peak
5	0.0300	69.76	-101.39	-31.63	38.06	-83.13	-13.44	-69.69	peak
6	0.0466	65.17	-101.46	-36.29	34.23	-87.79	-17.27	-70.52	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

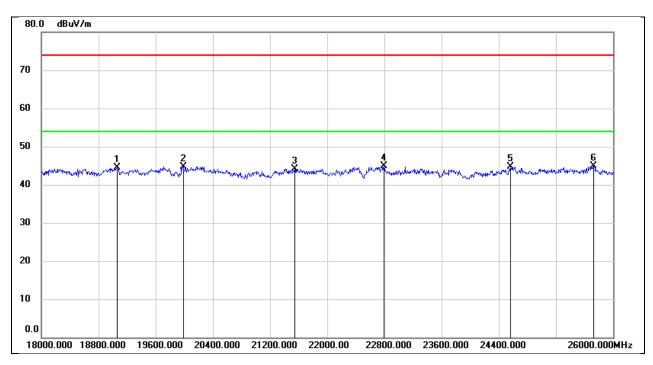
No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1554	78.27	-101.65	-23.38	23.77	-74.88	-27.73	-47.15	peak
2	0.1801	74.53	-101.68	-27.15	22.50	-78.65	-29.00	-49.65	peak
3	0.2116	71.03	-101.73	-30.70	21.09	-82.20	-30.41	-51.79	peak
4	0.2442	68.53	-101.79	-33.26	19.85	-84.76	-31.65	-53.11	peak
5	0.2726	66.40	-101.83	-35.43	18.89	-86.93	-32.61	-54.32	peak
6	0.3163	64.70	-101.87	-37.17	17.60	-88.67	-33.90	-54.77	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V



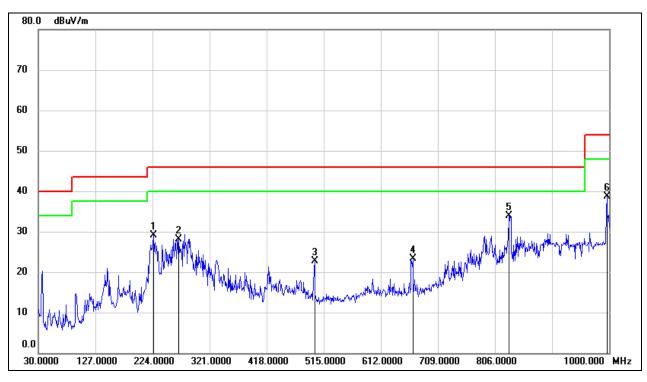
No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.6671	65.75	-62.10	3.65	31.12	-47.85	-20.38	-27.47	peak
2	0.8679	64.35	-62.18	2.17	28.83	-49.33	-22.67	-26.66	peak
3	1.5564	60.18	-62.02	-1.84	23.76	-53.34	-27.74	-25.60	peak
4	3.3229	54.89	-61.50	-6.61	29.54	-58.11	-21.96	-36.15	peak
5	11.8513	51.56	-60.88	-9.32	29.54	-60.82	-21.96	-38.86	peak
6	16.3959	51.67	-60.96	-9.29	29.54	-60.79	-21.96	-38.83	peak

8.5. SPURIOUS EMISSIONS(18 GHZ~26 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

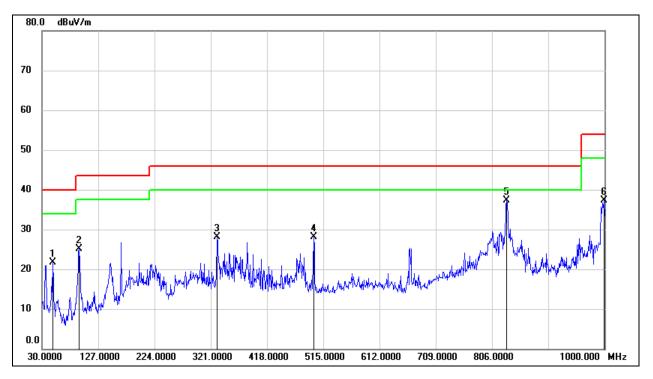
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18488.000	49.15	-5.26	43.89	74.00	-30.11	peak
2	20168.000	50.39	-5.56	44.83	74.00	-29.17	peak
3	21872.000	49.39	-4.40	44.99	74.00	-29.01	peak
4	22160.000	49.08	-4.31	44.77	74.00	-29.23	peak
5	23744.000	48.65	-3.20	45.45	74.00	-28.55	peak
6	25072.000	47.17	-1.97	45.20	74.00	-28.80	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	19056.000	49.82	-5.30	44.52	74.00	-29.48	peak
2	19984.000	50.21	-5.44	44.77	74.00	-29.23	peak
3	21544.000	48.76	-4.63	44.13	74.00	-29.87	peak
4	22792.000	48.61	-3.65	44.96	74.00	-29.04	peak
5	24568.000	47.10	-2.33	44.77	74.00	-29.23	peak
6	25728.000	45.61	-0.72	44.89	74.00	-29.11	peak

8.6. SPURIOUS EMISSIONS(30 MHZ~1 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	225.9400	46.16	-17.11	29.05	46.00	-16.95	QP
2	268.6200	45.23	-17.03	28.20	46.00	-17.80	QP
3	499.4800	33.06	-10.34	22.72	46.00	-23.28	QP
4	666.3200	31.91	-8.70	23.21	46.00	-22.79	QP
5	829.2800	40.00	-6.12	33.88	46.00	-12.12	QP
6	996.1200	42.50	-3.72	38.78	54.00	-15.22	QP

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	48.4300	41.65	-19.93	21.72	40.00	-18.28	QP
2	94.0199	46.40	-21.39	25.01	43.50	-18.49	QP
3	331.6700	41.52	-13.34	28.18	46.00	-17.82	QP
4	498.5100	38.44	-10.37	28.07	46.00	-17.93	QP
5	831.2199	43.34	-6.10	37.24	46.00	-8.76	QP
6	999.0300	41.05	-3.67	37.38	54.00	-16.62	QP

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC part 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

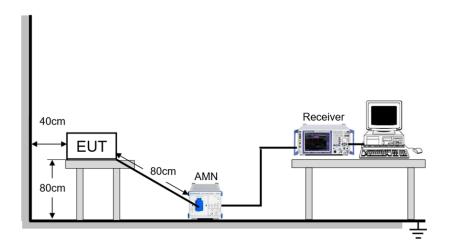
Pass

10. AC POWER LINE CONDUCTED EMISSION

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

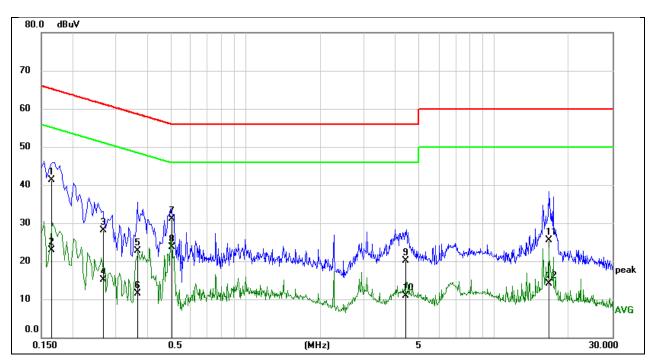
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.9 ℃	Relative Humidity	57.9%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 Hz


TEST DATE / ENGINEER

Test Date November 22, 2023 Test By Wite Chen

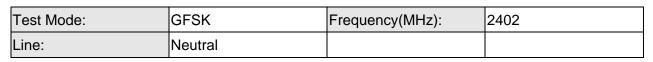
TEST RESULTS

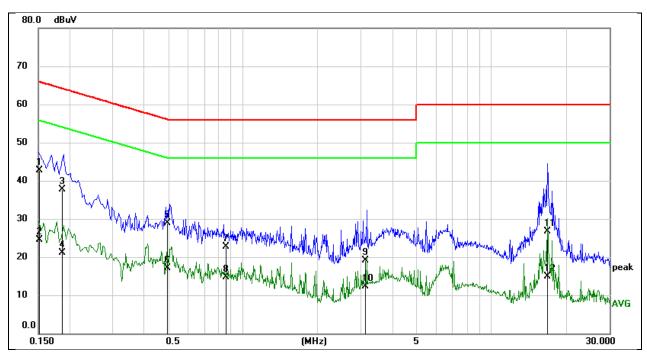
Test Mode:	GFSK	Frequency(MHz):	2402
Line:	Line		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1647	31.73	9.52	41.25	65.22	-23.97	QP
2	0.1647	13.44	9.52	22.96	55.22	-32.26	AVG
3	0.2648	18.48	9.57	28.05	61.28	-33.23	QP
4	0.2648	5.60	9.57	15.17	51.28	-36.11	AVG
5	0.3641	13.26	9.54	22.80	58.63	-35.83	QP
6	0.3641	1.93	9.54	11.47	48.63	-37.16	AVG
7	0.5030	21.61	9.50	31.11	56.00	-24.89	QP
8	0.5030	14.17	9.50	23.67	46.00	-22.33	AVG
9	4.4227	10.47	9.61	20.08	56.00	-35.92	QP
10	4.4227	1.34	9.61	10.95	46.00	-35.05	AVG
11	16.5917	15.94	9.66	25.60	60.00	-34.40	QP
12	16.5917	4.36	9.66	14.02	50.00	-35.98	AVG

Note:

1. Result = Reading + Correct Factor.


2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

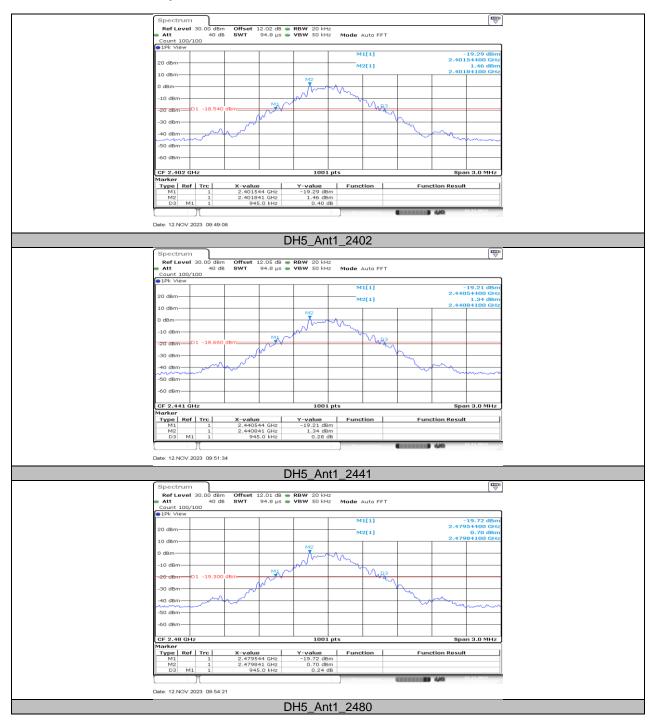
Note: All the modes have been tested, only the worst data was recorded in the report.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1516	33.22	9.49	42.71	65.91	-23.20	QP
2	0.1516	15.10	9.49	24.59	55.91	-31.32	AVG
3	0.1870	28.18	9.56	37.74	64.17	-26.43	QP
4	0.1870	11.63	9.56	21.19	54.17	-32.98	AVG
5	0.4956	19.45	9.50	28.95	56.07	-27.12	QP
6	0.4956	7.60	9.50	17.10	46.07	-28.97	AVG
7	0.8553	13.18	9.50	22.68	56.00	-33.32	QP
8	0.8553	5.21	9.50	14.71	46.00	-31.29	AVG
9	3.1176	9.50	9.62	19.12	56.00	-36.88	QP
10	3.1176	2.70	9.62	12.32	46.00	-33.68	AVG
11	16.8951	16.96	9.67	26.63	60.00	-33.37	QP
12	16.8951	5.27	9.67	14.94	50.00	-35.06	AVG

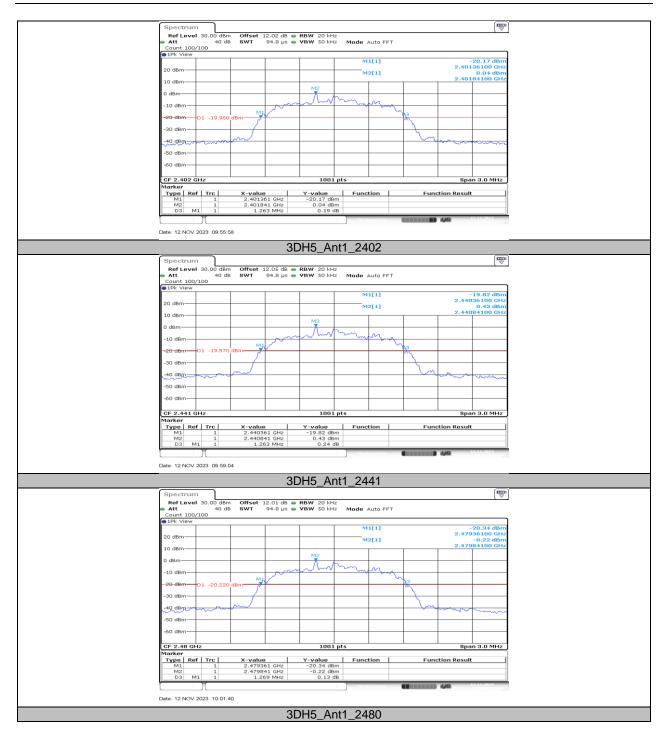
Note:

- 1. Result = Reading + Correct Factor.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

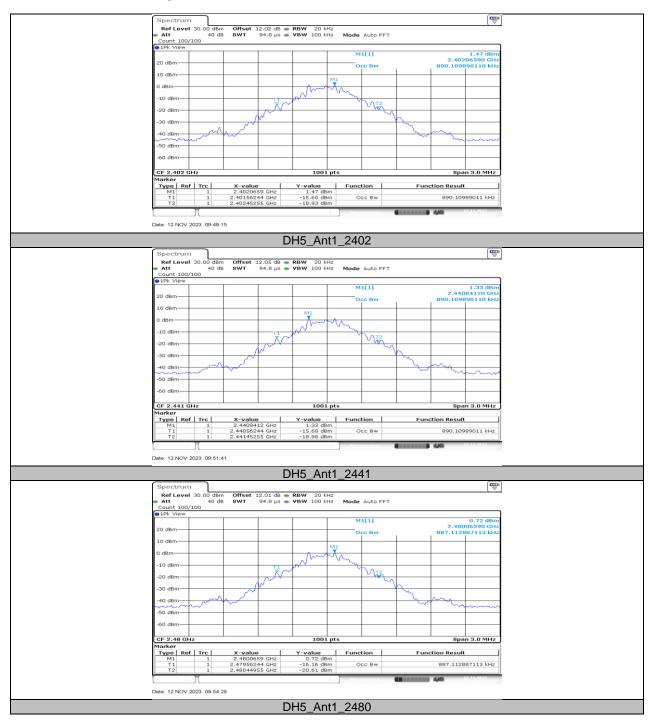
Note: All the modes have been tested, only the worst data was recorded in the report.


11. TEST DATA

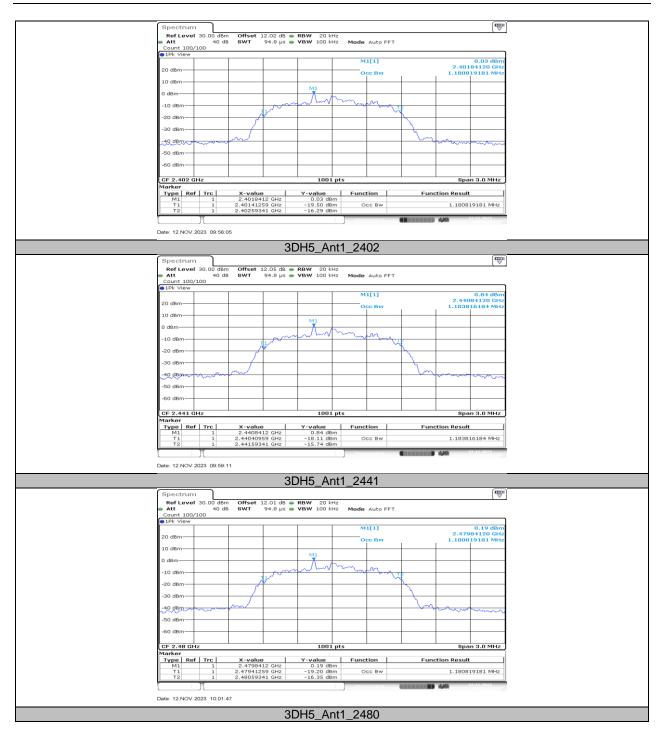
11.1. APPENDIX A: 20DB EMISSION BANDWIDTH 11.1.1. Test Result


Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Verdict
DH5		2402	0.95	2401.54	2402.49	PASS
	Ant1	2441	0.95	2440.54	2441.49	PASS
		2480	0.95	2479.54	2480.49	PASS
3DH5	Ant1	2402	1.26	2401.36	2402.62	PASS
		2441	1.26	2440.36	2441.62	PASS
		2480	1.27	2479.36	2480.63	PASS

11.1.2. Test Graphs



11.2. APPENDIX B: OCCUPIED CHANNEL BANDWIDTH 11.2.1. Test Result


Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
	DH5 Ant1	2402	0.89	2401.5624	2402.4525	PASS
DH5		2441	0.89	2440.5624	2441.4525	PASS
		2480	0.887	2479.5624	2480.4496	PASS
		2402	1.181	2401.4126	2402.5934	PASS
3DH5	3DH5 Ant1	2441	1.184	2440.4096	2441.5934	PASS
		2480	1.181	2479.4126	2480.5934	PASS

11.2.2. Test Graphs

11.3. APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER 11.3.1. Test Result

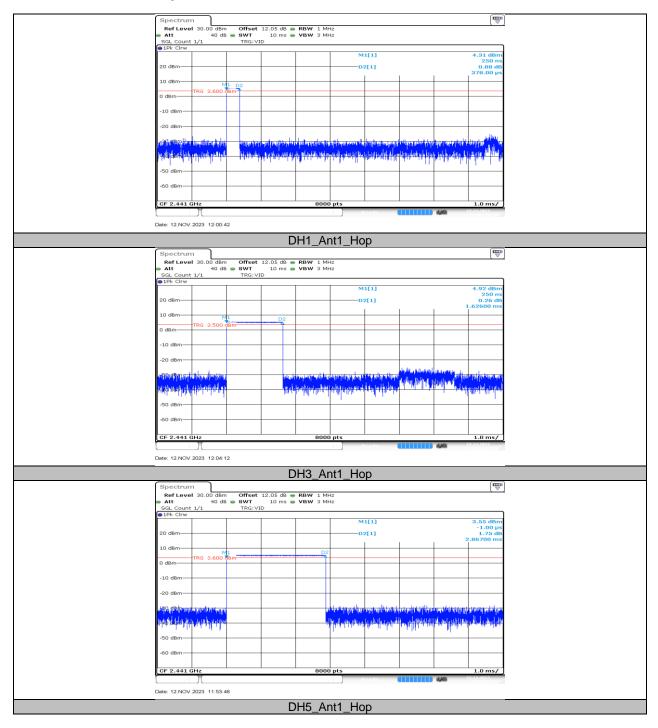
Test Mode	Antenna	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
	DH5 Ant1	2402	5.40	≤30	PASS
DH5		2441	5.25	≤30	PASS
		2480	4.67	≤30	PASS
		2402	5.94	≤20.97	PASS
3DH5	Ant1	2441	6.62	≤20.97	PASS
		2480	6.00	≤20.97	PASS

11.4. APPENDIX D: CARRIER FREQUENCY SEPARATION 11.4.1. Test Result

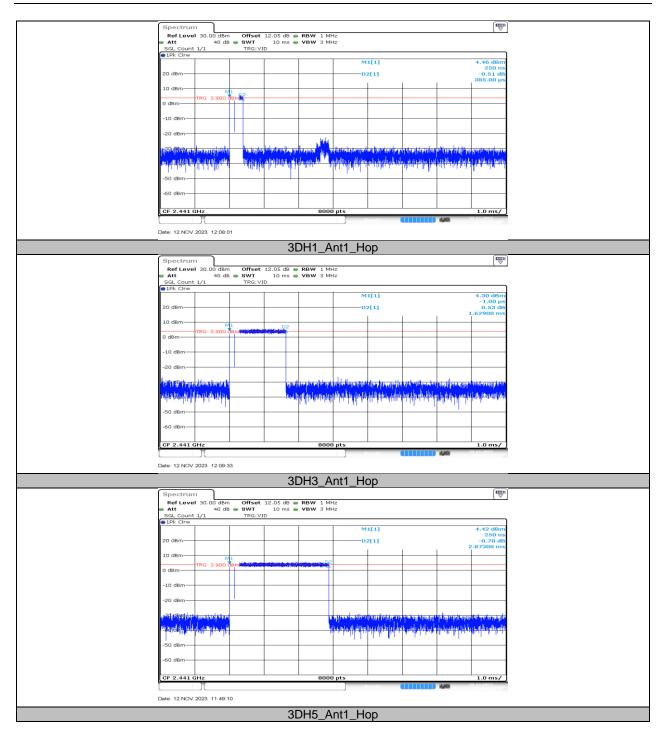
Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.003	≥0.950	PASS
3DH5	Ant1	Нор	1.003	≥0.847	PASS

11.4.2. Test Graphs

<u> </u>								(IIII)	
Spectru		- "							
Ref Lev Att	el 20.00 dBn 30 dB			RBW 300 kH	z z Mode Auto F	ET			
Count 10	0/100		5.5 µs 🖷	TOTAL MIN	- Mode Adto P				
1Pk View	× .								
					M1[1]		2 4 4 1 4	5.31 dBm 00145 GHz	
10 dBm-	-	L	MI		D2[1]		2.441	0.03 dB	
	+		MI		D2 D2			0290 MHz	
0 d8m-	-	$\wedge \rightarrow$	1	\vdash			1		
		\sim							
-10 dBm—		-	1	l I					
-20 dBm-									
1									
-30 dBm-									
-40 dBm-									
-++0 uBm									
-50 dBm-									
1									
-60 dBm-									
1									
-70 dBm-	_		-						
1									
Start 2.4	395 GHz	1	1	691 p	ots		Stop 2.	4435 GHz	
	TT I				Measuging			2.11.2023	
Date: 12.NO	V.2023 11:58:	58							
		_	~		(4 11				
			D	H5_An	ti_Hop				
Spectru								Ē	
Spectru		Offset	12.05 dB 😑	88W 300 kH					
Ref Lev Att	el 20.00 dBn 30 di			RBW 300 kH VBW 1 MH		FT			
Ref Lev Att Count 10	el 20.00 dBn 30 di 10/100				z	FT			
Ref Lev Att	el 20.00 dBn 30 di 10/100				z Iz Mode Auto F	FT			
Ref Lev Att Count 10	el 20.00 dBn 30 di 10/100				z	FT	2.439	4.46 dBm	
Ref Lev Att Count 10	el 20.00 dBn 30 di 10/100		6.3 µs 👄		z Iz Mode Auto F	FT		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 1Pk View 10 dBm	el 20.00 dBn 30 di 10/100				Z Mode Auto F	7FT		4.46 dBm 99275 GHz	
Ref Lev Att Count 10 1Pk View	el 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	'FT		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 1Pk View 10 dBm-	el 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	IFT		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 1Pk View 10 dBm	el 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	IFT		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 Pk View 10 dBm -10 dBm	el 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	:FT		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 1Pk View 10 dBm-	rel 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	:FT		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 1Pk View 10 dBm— 0 dBm— -10 dBm— -20 dBm—	rel 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	if T		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 Pk View 10 dBm -10 dBm	rel 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	FT		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm	rel 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	7F T		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 1Pk View 10 dBm— 0 dBm— -10 dBm— -20 dBm—	rel 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	FT		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm	rel 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	7F Υ		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 IPk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	rel 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	7F T		4.46 dBm 99275 GHz 0.02 dB	
Ref Lev Att Count 10 IPk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	rel 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	'F Υ		4.46 dBm 99275 GHz 0.02 dB	
Ref Law Att Count 10 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	rel 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	7F Τ		4.46 dBm 99275 GHz 0.02 dB	
Ref Law Att Count 10 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	rel 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	·F Τ		4.46 dBm 99275 GHz 0.02 dB	
Rof Leve Att Count 10 ● 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	rel 20.00 dBn 30 di 10/100		6.3 µs 👄		Z Mode Auto F	7F Υ		4.46 dBm 99275 GHz 0.02 dB	
Rof Leve Att Count 10 ● 1Pk View 10 dBm— 0 dBm— -10 dBm— -20 dBm— -30 dBm— -60 dBm— -60 dBm—	M1 M1 M1 M1		6.3 µs 👄		Z Mode Auto F M1[1] D2[1]	'F Т		4.46 dBm 99275 GHz 0.02 dB 10290 MHz	
Rof Leve Att Count 10 ● 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	M1 M1 M1 M1		6.3 µs 👄		Z Mode Auto F M1[1] D2[1]		1.0	4.46 dBm 99275 GHz 0.02 dB	
Rof Lev Att Count 10 ● 1Pk View 10 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm— -50 dBm— -60 dBm— -70 dBm— -70 dBm—	995 GHz	3 SWT	6.3 µs 👄		Z Mode Auto F M1[1] D2[1]	ГР Т	1.0	4.46 dBm 99275 GHz 0.02 dB 10290 MHz	
Rof Lev Att Count 10 ● 1Pk View 10 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm— -50 dBm— -60 dBm— -70 dBm— -70 dBm—	M1 M1 M1 M1	3 SWT	6.3 µs 👄		Z Mode Auto F M1[1] D2[1]		1.0	4.46 dBm 99275 GHz 0.02 dB 10290 MHz	
Rof Lev Att Count 10 ● 1Pk View 10 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm— -50 dBm— -60 dBm— -70 dBm— -70 dBm—	995 GHz	3 SWT	6.3 µs •	691 F	2 Mode Auto F M1[1] D2[1]		1.0	4.46 dBm 99275 GHz 0.02 dB 10290 MHz	
Rof Lev Att Count 10 ● 1Pk View 10 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm— -50 dBm— -60 dBm— -70 dBm— -70 dBm—	995 GHz	3 SWT	6.3 µs •	691 F	Z Mode Auto F M1[1] D2[1]		1.0	4.46 dBm 99275 GHz 0.02 dB 10290 MHz	


11.5. APPENDIX E: TIME OF OCCUPANCY 11.5.1. Test Result

	FHSS Mode								
Test Mode	Antenna	Channel	BurstWidth	Result[s]	Limit[s]	Verdict			
Test Mode	Antenna	Channel	[ms]	Results	Linit(5)	Verdict PASS PASS PASS			
DH1	Ant1	Нор	0.378	0.121	<=0.4	PASS			
DH3	Ant1	Нор	1.626	0.260	<=0.4	PASS			
DH5	Ant1	Нор	2.867	0.306	<=0.4	PASS			
3DH1	Ant1	Нор	0.385	0.123	<=0.4	PASS			
3DH3	Ant1	Нор	1.629	0.261	<=0.4	PASS			
3DH5	Ant1	Нор	2.873	0.306	<=0.4	PASS			


		•	AFHSS Mode	-	-	
Test Mode	Antenna	Channel	BurstWidth [ms]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.378	0.060	<=0.4	PASS
DH3	Ant1	Нор	1.626	0.130	<=0.4	PASS
DH5	Ant1	Нор	2.867	0.153	<=0.4	PASS
3DH1	Ant1	Нор	0.385	0.062	<=0.4	PASS
3DH3	Ant1	Нор	1.629	0.130	<=0.4	PASS
3DH5	Ant1	Нор	2.873	0.153	<=0.4	PASS

11.5.2. Test Graphs

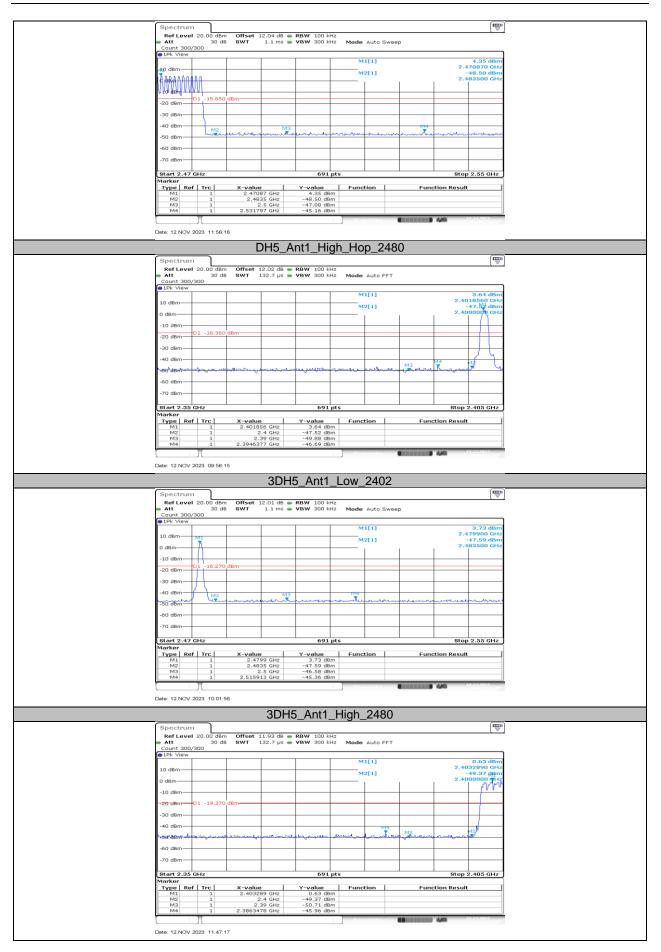
11.6. APPENDIX F: NUMBER OF HOPPING CHANNELS 11.6.1. Test Result

Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS

11.6.2. Test Graphs

Spectrum 🕎	
RefLevel 30.00 dBm Offset 12.02 dB ● RBW 100 kHz ● Att 40 dB SWT 1 ms ● VBW 300 kHz Mode Auto Sweep	
Count 1000/1000	
IPk View	
20 dBm	
10 dBm	
 March and a second state of the s	
<u>-19.888/0.48.00.84.0.84.0.84.0.84.0.84.0.84</u>	
-20 dBm	
- CU GBII	
-30 dBm	
-40 dBm	
-50 d8m	
-60 dBm	
Start 2.4 GHz 691 pts Stop 2.4835 GHz	
Date: 12.NOV.2023 11:53:31	
DH5_Ant1_Hop	
Spectrum (1997)	
Spectrum (TEE) Ref Level 30.00 dBm Offset 12.02 dB = RBW 100 kHz att 40 dB SWT 1 ms VBW 300 kHz	
Spectrum ₩ Ref Level 30.00 dBm Offset 12.02 dB ● RBW 100 kHz ₩	
Spectrum (TER) Ref Level 30.00 dbm Offset 12.02 db @ RBW 100 kHz • Att 40 db SWT Image: Spectrum 1ms @ VBW 300 kHz Count 1000/1000 SWT	
Spectrum (™) Ref Level 30.00 dBm Offset 12.02 dB ● RBW 100 kHz ● Att 40 dB SWT 1 ms • VBW 300 kHz Count 1000/1000 Count 1000/1000 Sweep Count 1000/1000	
Spectrum (TER) Ref Level 30.00 dbm Offset 12.02 db @ RBW 100 kHz • Att 40 db SWT Image: Spectrum 1ms @ VBW 300 kHz Count 1000/1000 SWT	
Spectrum (TER) Ref Level 30.00 dbm Offset 12.02 db = RBW 100 kHz (mode Auto Sweep Att 40 db SWT 1 ms = VBW 300 kHz Mode Auto Sweep Count 1000/1000 (mode Auto Sweep (mode Auto Sweep 20 dbm 1 ms (mode Auto Sweep 10 dbm 1 ms (mode Auto Sweep	
Spectrum (The section of the section of t	
Spectrum (TER) Ref Level 30.00 dbm Offset 12.02 db = RBW 100 kHz (mode Auto Sweep Att 40 db SWT 1 ms = VBW 300 kHz Mode Auto Sweep Count 1000/1000 (mode Auto Sweep (mode Auto Sweep 20 dbm 1 ms (mode Auto Sweep 10 dbm 1 ms (mode Auto Sweep	
Spectrum (The section of the section of t	
Spectrum Imp Ref Level 30.00 dbm Offset 12.02 db = RBW 100 kHz Mode Auto Sweep Att 40 db SWT 1 ms = VBW 300 kHz Mode Auto Sweep Count 1000/1000 50/FV Hw 1	
Spectrum Image: Council cool dbm Offset 12.02 db RBW 100 kHz Att 40 db SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 Image: Council cool dbm	
Spectrum Imp Ref Level 30.00 dbm Offset 12.02 db = RBW 100 kHz Mode Auto Sweep Att 40 db SWT 1 ms = VBW 300 kHz Mode Auto Sweep Count 1000/1000 50/FV Hw 1	
Spectrum Image: Council cool dbm Offset 12.02 db RBW 100 kHz Att 40 db SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000 Image: Council cool dbm	
Spectrum Image: Count 1000/1000 <	
Spectrum Image: Court 1000/1000 Offset 12.02 dB = RBW 100 kHz Mode Auto Sweep Court 1000/1000 Image: Spectrum Image: Spe	
Spectrum The investigation of the investing the investigation of the investigation of the inves	
Spectrum Image: Count 1000/1000 Offset 12.02 db = RBW 100 kHz Made Auto Sweep Count 1000/1000 SWT 1 ms = VBW 300 kHz Made Auto Sweep Count 1000/1000 DiPk View DiPk View Dipk View 20 dbm Dipk View Dipk View Dipk View 10 dbm Dipk View Dipk View Dipk View 20 dbm Dipk View Dipk View Dipk View 10 dbm Dipk View Dipk View Dipk View 10 dbm Dipk View Dipk View Dipk View -10 dbm Dipk View Dipk View Dipk View -20 dbm Dipk View Dipk View Dipk View -10 dbm Dipk View Dipk View Dipk View -50 dbm Dipk View Dipk View Dipk View -60 dbm Dipk View Dipk View Dipk View -50 dbm Dipk View Dipk View Dipk View -60 dbm Dipk View Dipk View Dipk View	
Spectrum The investigation of the investing the investigation of the investigation of the inves	
Spectrum Image: Count 1000/1000 Offset 12.02 db = RBW 100 kHz Made Auto Sweep Count 1000/1000 SWT 1 ms = VBW 300 kHz Made Auto Sweep Count 1000/1000 DiPk View DiPk View Dipk View 20 dbm Dipk View Dipk View Dipk View 10 dbm Dipk View Dipk View Dipk View 20 dbm Dipk View Dipk View Dipk View 10 dbm Dipk View Dipk View Dipk View 10 dbm Dipk View Dipk View Dipk View -10 dbm Dipk View Dipk View Dipk View -20 dbm Dipk View Dipk View Dipk View -10 dbm Dipk View Dipk View Dipk View -50 dbm Dipk View Dipk View Dipk View -60 dbm Dipk View Dipk View Dipk View -50 dbm Dipk View Dipk View Dipk View -60 dbm Dipk View Dipk View Dipk View	

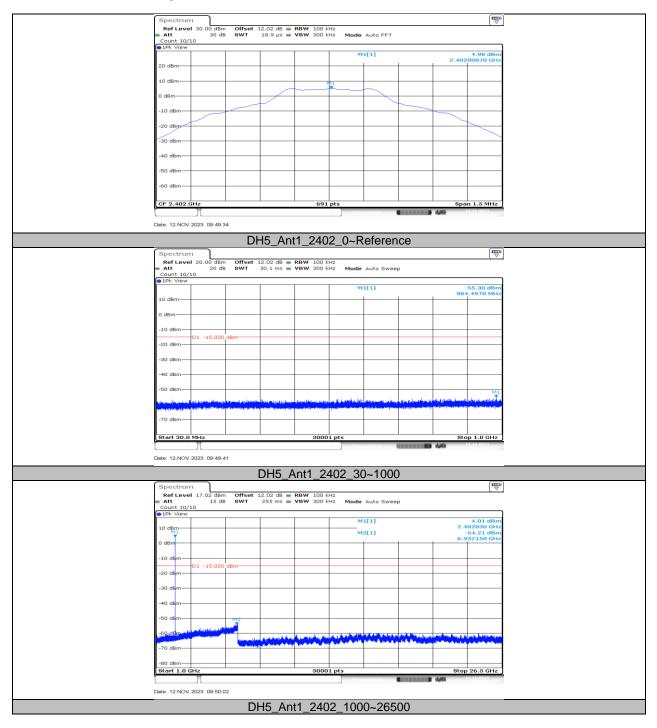
11.7. APPENDIX G: BAND EDGE MEASUREMENTS 11.7.1. Test Result


Test Mode	Antenna	ChName	Frequency[MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	4.92	-47.36	≤-15.08	PASS
DH5	Ant1	High	2480	4.09	-45.37	≤-15.91	PASS
DHD	Anti	Low	Hop_2402	4.00	-46.96	≤-16	PASS
		High	Hop_2480	4.35	-45.16	≤-15.65	PASS
		Low	2402	3.64	-46.69	≤-16.36	PASS
3DH5	Ant1	High	2480	3.73	-45.36	≤-16.27	PASS
3005	Anti	Low	Hop_2402	0.63	-45.96	≤-19.37	PASS
		High	Hop_2480	3.86	-45.53	≤-16.14	PASS

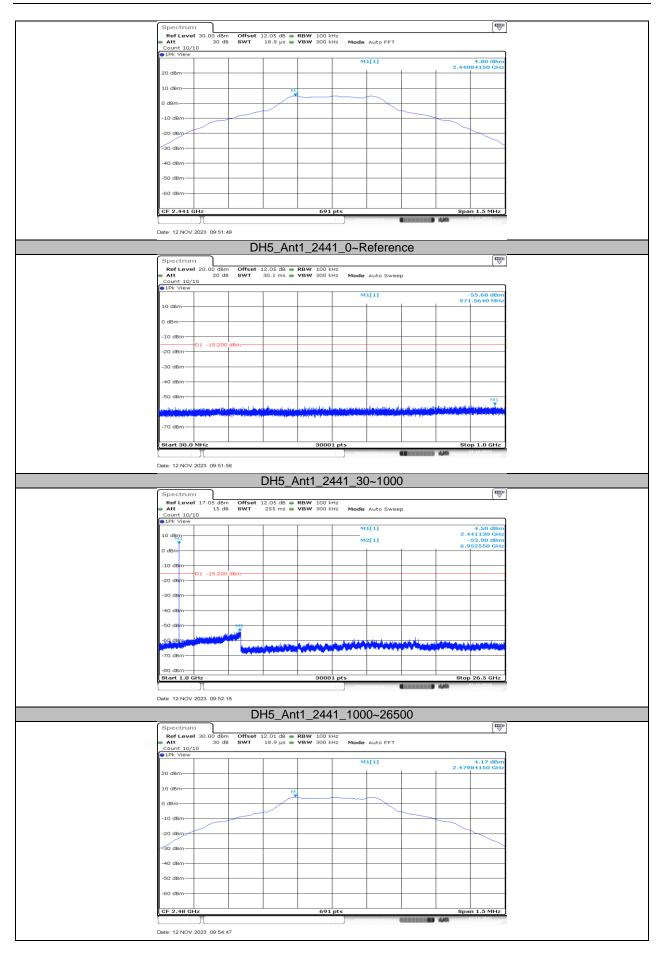
11.7.2. Test Graphs

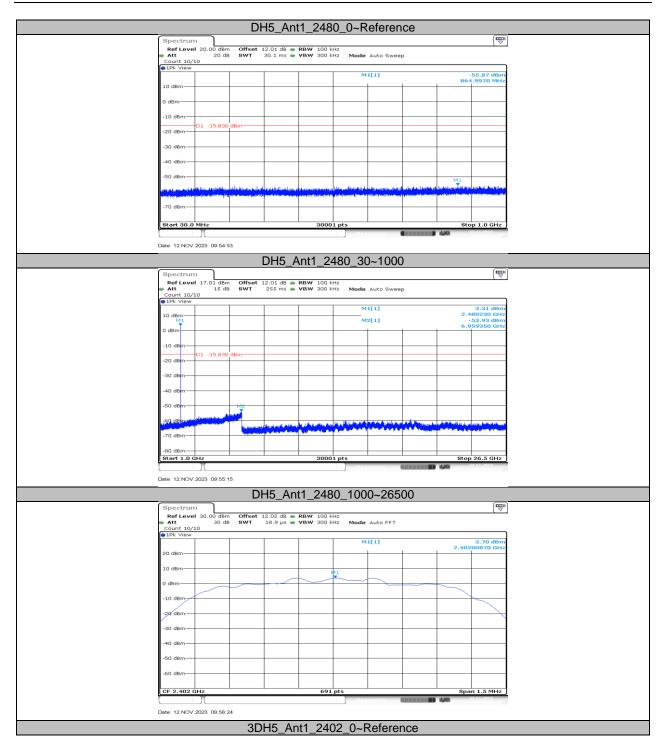
Specta Ref Le		12.02 dB 👄 RBW 100 kHz			
att 😑	30 dB SWT 300/300	132.7 µs • VBW 300 kHz	Mode Auto FFT		
IPk Vi	iew	1 1			
10 dBm-			M1[1]	4.92 dBm 2.4020150 GHz	
0 dBm—			M2[1]	2.4020150 GHz -49.49 dBm 2.4000000 GHz	
-10 dBm	m				
-20 dBm	m D1 -15.080 dBm				
-30 dBm	m				
-40 dBm	n	M4	M3		
-190'08h	ma han and a second	M4 M4	M3	un the mound in	
-60 dBm	n				
-70 dBm	n				
Start 2	2.35 GHz	691 pts		Stop 2.405 GHz	
Marker			Function	Function Result	
M1 M2	1 2.4020	015 GHz 4.92 dBm 2.4 GHz -49.42 dBm	runction	T unction Result	
M3 M4	1 2	.39 GHz -47.86 dBm 333 GHz -47.36 dBm			
			Measuring		
Date: 12.N	NOV.2023 09:49:25				
			014 2402		
		DH5_Ant1_L	0w_2402		
Specti Ref L		12.01 dB 👄 RBW 100 kHz			
- Att	30 dB SWT 300/300	1.1 ms - VBW 300 kHz	Mode Auto Sweep		
• 1Pk Vi	iew			4.09 dBm	
10 dBm-)		M1[1]	2.479900 GHz	
0 dBm—	T		M2[1]	-46.62 dBm 2.483500 GHz	
-10 dBm	m				
-20 dBm	D1 15 010 d8m				
-30 dBm	m				
-40 dBm		мз		1/1-4	
-50 dBm	need hoursen	mar Marine Marine	and the second	whenter and the second s	
-60 dBm	n				
-70 dBm	n				
Start 2	2.47 GHz	691 pts		Stop 2.55 GHz	
Marker			Function	Function Result	
M1 M2	1 2.47	Y-value 799 GHz 4.09 dBm 335 GHz -46.62 dBm	runction	T unction Result	
M3 M4	1	2.5 GHz -46.42 dBm 174 GHz -45.37 dBm			
	- II	-43.37 0011	Measuring	12112021	
Date: 12.N	NOV.2023 09:54:38				
			iah 2400		
		DH5_Ant1_H	Igi1_2480	(
Spect	evel 20.00 dBm Offset	11.93 dB 👄 RBW 100 kHz			
Att	30 dB SWT 300/300	132.7 µs 👄 VBW 300 kHz	Mode Auto FFT		
● 1Pk Vi	iew		M1[1]	4.00 dBm	
10 dBm-)			2.4028910 GHz	
0 dBm-			M2[1]	-49.23 (Bm 2.400000) GHz	
-10 dBm		↓ ↓ ↓		/\VV	
-20 dBm	m D1 -16.000 dBm				
-30 dBm	n				
-40 dBm	n		M4 Y . M3	a	
~50^d8h	man and a star and a second	alenna and alena and alen	and the second	and the second s	
-60 dBm	n				
-70 dBm	n				
	2.35 GHz	691 pts		Stop 2.405 GHz	
Marker Type	Ref Trc X-valu	e Y-value	Function	Function Result	
M1 M2	1 2.4028	391 GHz 4.00 dBm 2.4 GHz -49.23 dBm			
M3 M4	1 2.38100	.39 GHz -50.19 dBm D72 GHz -46.96 dBm			
			Neasuring	444 00.000	
Date: 12.N	NOV.2023 11:52:02				
		DH5_Ant1_Low	Hon 2402		

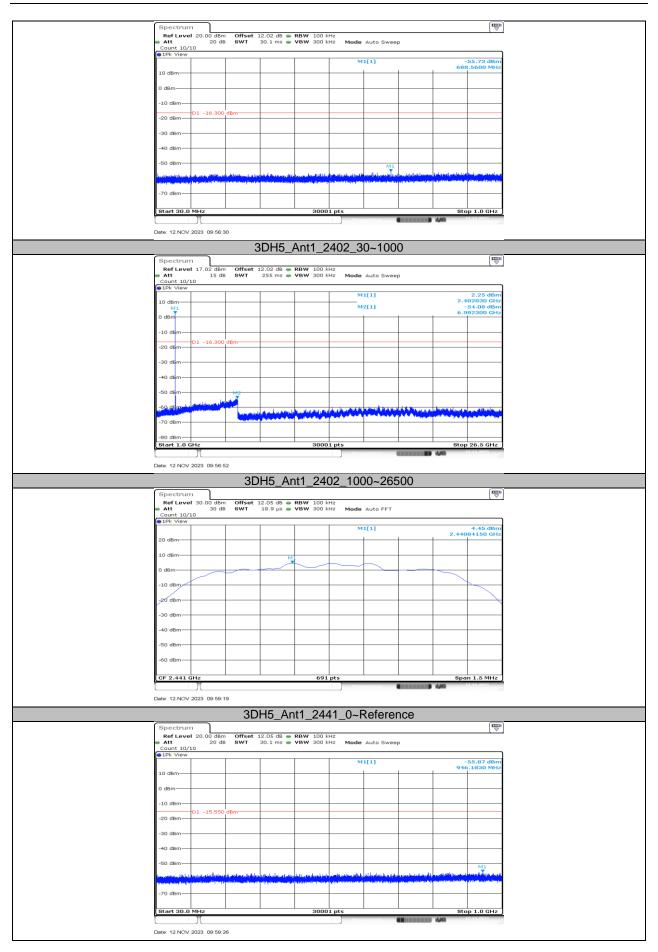
	3	BDH5_Ant1_	Low_Hop_2	402	
Spectrum					
Ref Level	20.00 dBm Offset	12.04 dB 👄 RBW 100	kHz	(*	1
 Att 	30 dB 8WT	1.1 ms - VBW 300		weep	
Count 300/3	00				
• 1Pk View					
			M1[1]	3.86 dBm 2.477000 GHz	
10 dBm M1			M2[1]	-47.49 dBm	
allettick	λ			2.483500 GHz	
	*{				
-10 dBm	1 -16.140 dBm				1
-20 dBm	1 -16.140 dBm				1
-30 dBm					
-30 dBm					1
-40 dBm	M2			1/1+4	-
-50 dBm	homesen	Land and the second	now man	una marter and and a second seco	
-56 0511					
-60 dBm					
-70 dBm					
70 4011					
Start 2.47 G	Hz	69	1 pts	Stop 2.55 GHz	1
Marker					1
Type Ref	Trc X-valu			Function Result	
M1 M2		77 GHz 3.86 35 GHz -47.49			
M3	1	2.5 GHz -48.18	dBm		
M4	1 2.5316	681 GHz -45.53	dBm		
	JI		Ne asuring	444 121222	
Date: 12.NOV.20	00 44.50.50				
Date: 12.NOV.20	23 11:00:06				
	3	DH5_Ant1_I	High Hop 2	480	

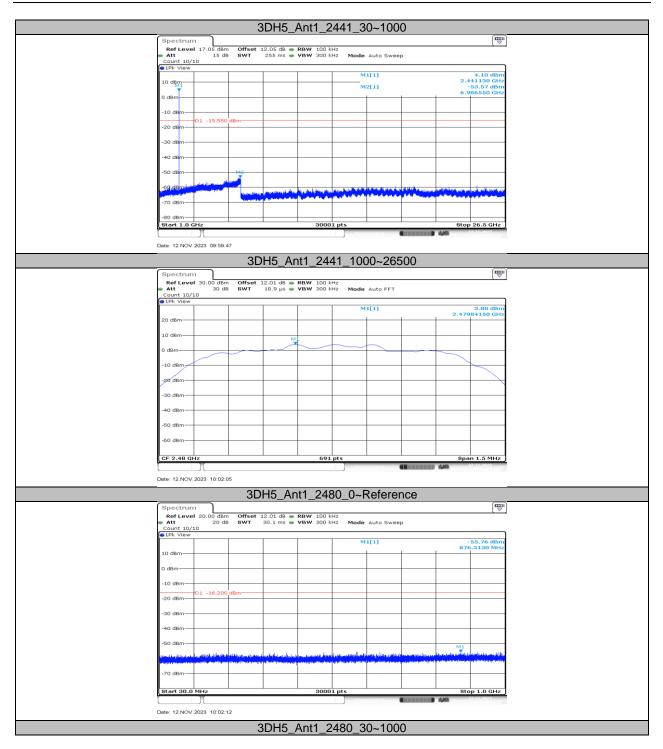


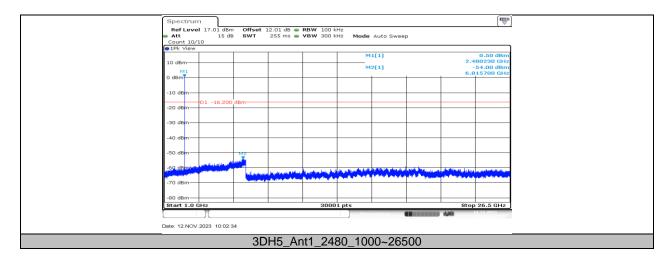
11.8. APPENDIX H: CONDUCTED SPURIOUS EMISSION 11.8.1. Test Result


Test Mode	Antenna	Frequency[MHz]	FreqRange [MHz]	Result [dBm]	Limit [dBm]	Verdict
			Reference		PASS	
		2402	30~1000	-55.3	≤-15.02	PASS
			1000~26500	-54.21	≤-15.02	PASS
			Reference	4.80		PASS
DH5	Ant1	2441	30~1000	-55.68	≤-15.2	PASS
			1000~26500	-53.9	≤-15.2	PASS
			Reference	4.17		PASS
		2480	30~1000	-55.87	≤-15.83	PASS
			1000~26500	-53.93	≤-15.83	PASS
			Reference	3.70		PASS
		2402	30~1000	-55.73	≤-16.3	PASS
			1000~26500	-54.08	≤-16.3	PASS
			Reference	4.45		PASS
3DH5	Ant1	2441	30~1000	-55.87	≤-15.55	PASS
			1000~26500	-53.57	≤-15.55	PASS
			Reference	3.80		PASS
		2480	30~1000	-55.76	≤-16.2	PASS
			1000~26500	-54	≤-16.2	PASS


11.8.2. Test Graphs





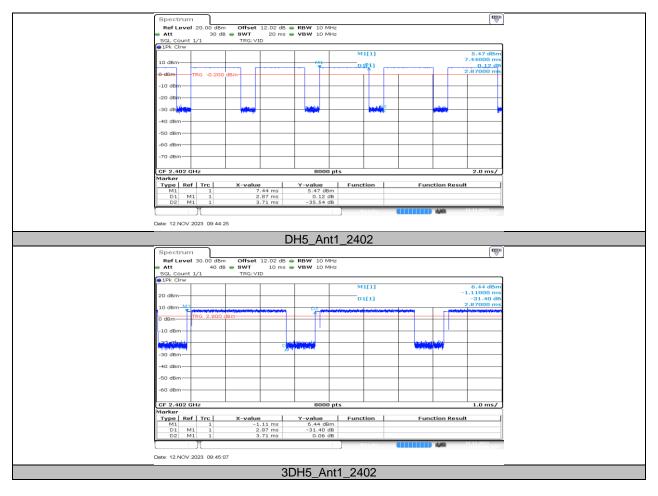


11.9. APPENDIX I: DUTY CYCLE 11.9.1. Test Result

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
DH5	2.87	3.71	0.7736	77.36	1.11	0.35	1
3DH5	2.87	3.71	0.7736	77.36	1.11	0.35	1

Note:

Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

11.9.2. Test Graphs

END OF REPORT