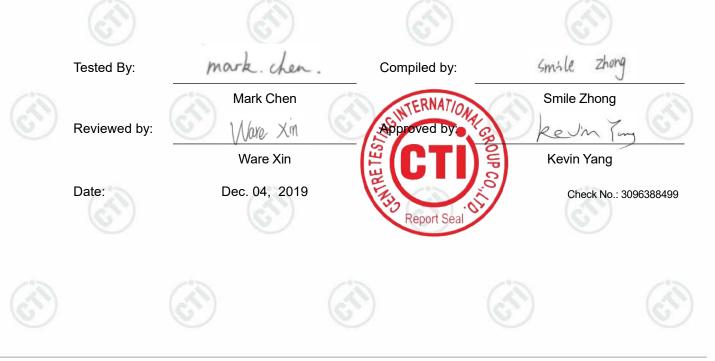


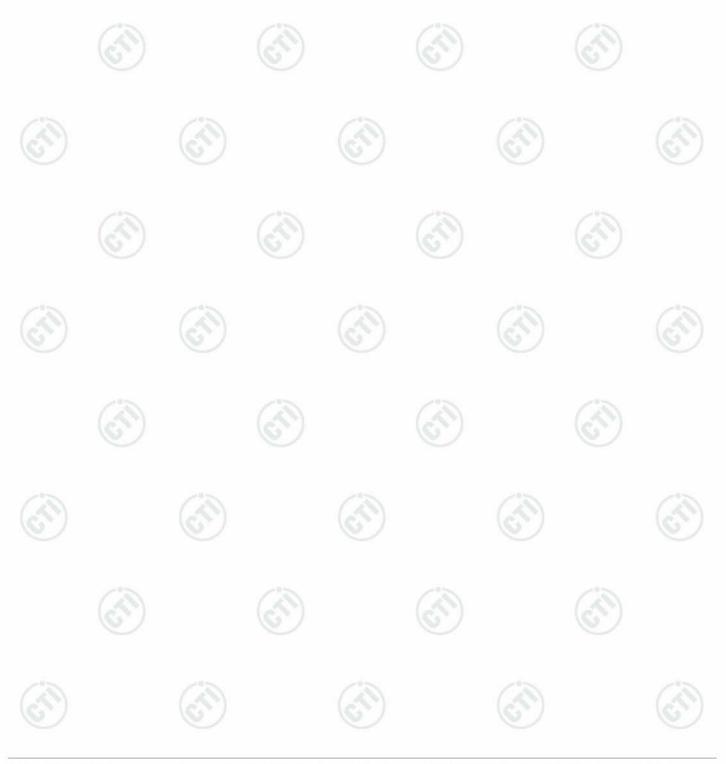
Page 1 of 84



- Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result
- WIFI+BT Module
- : GSD
- : WCT5LM2001
- : N/A
- : EED32L00242601
- : 2AC23-WCT5L
- : Dec. 04, 2019
- : 47 CFR Part 15Subpart C
- : PASS

Prepared for:

Hui Zhou Gaoshengda Technology Co.,LTD NO.75 Zhongkai Development Area,Huizhou,Guangdong, China

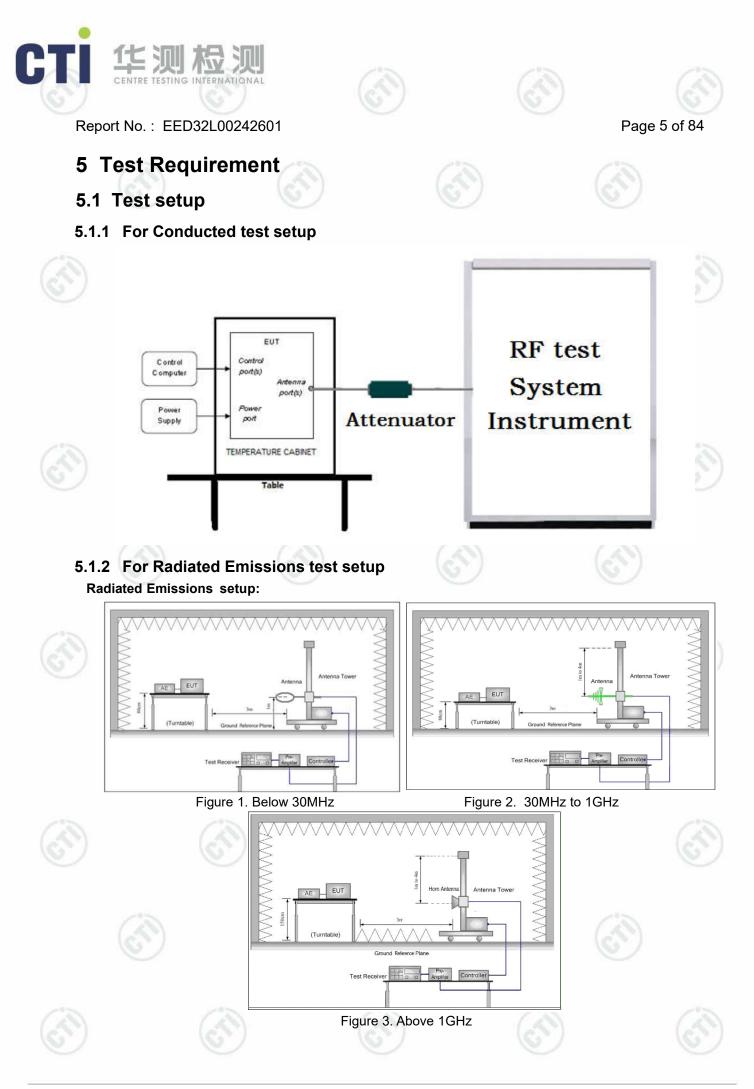

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

2 Version

Version No.	Date	6	Description	9
00	Dec. 04, 2019		Original	
_	100	12	23	12
°) ((cS)		

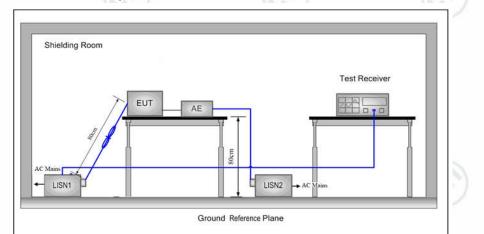
Test Summary 2

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS


Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

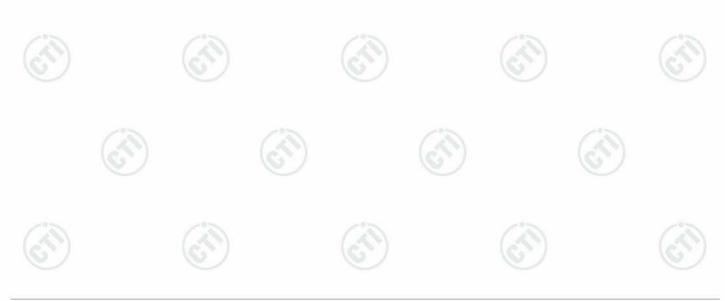
1 COVER PAGE			•••••
2 VERSION			
3 TEST SUMMARY			
4 CONTENT			
5 TEST REQUIREMENT			
 5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION 	p		
6 GENERAL INFORMATION			
 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO T 6.4 DESCRIPTION OF SUPPORT UNITS 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITION 6.8 OTHER INFORMATION REQUESTED BY THE G 6.9 MEASUREMENT UNCERTAINTY (95% CONFI 	ONSCUSTOMER		
7 EQUIPMENT LIST			
8 RADIO TECHNICAL REQUIREMENTS SPE			
EUT DUTY CYCLE	ower ed Emissions	<u> </u>	
Appendix A): 00B Occupied Bandwidth Appendix B): Conducted Peak Output Po Appendix C): Band-edge for RF Conducted Appendix D): RF Conducted Spurious Em Appendix E): Power Spectral Density Appendix F): Antenna Requirement Appendix G): AC Power Line Conducted B Appendix H): Restricted bands around fur Appendix I) Radiated Spurious Emissions	Emission ndamental frequency (Radiated)		
Appendix B): Conducted Peak Output Po Appendix C): Band-edge for RF Conducted Appendix D): RF Conducted Spurious Em Appendix E): Power Spectral Density Appendix F): Antenna Requirement Appendix G): AC Power Line Conducted F Appendix H): Restricted bands around fur	Emission ndamental frequency (Radiated)		



Page 6 of 84

Report No.: EED32L00242601

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

	-	0.00	10.00	10.0
Operating Environment:	2	J	Ś	(e)
Temperature:	24.0 °C			
Humidity:	55 % RH			5 million -
Atmospheric Pressure:	1011mbar	12		and the
10.2	1013	100		1 N N N N N N N N N N N N N N N N N N N

5.3 Test Condition

Test channel:

1000	Test Mode	100	Tx/Rx	100		RF Channel	100
2	Test Mode	(A)			Low(L)	Middle(M)	High(H)
5)	0501	S		6	Channel 1	Channel 20	Channel 40
	GFSK		2402MHz ~2480) MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	Keep rate.	the EUT in trans	smitting mod	e with all kind of r	modulation and a	all kind of data

6 General Information

6.1 Client Information

Applicant:	Hui Zhou Gaoshengda Technology Co.,LTD	
Address of Applicant:	NO.75 Zhongkai Development Area,Huizhou,Guangdong, China	
Manufacturer:	Hui Zhou Gaoshengda Technology Co.,LTD	100
Address of Manufacturer:	NO.75 Zhongkai Development Area,Huizhou,Guangdong, China	(2)
Factory:	Hui Zhou Gaoshengda Technology Co.,LTD	6
Address of Factory:	NO.75 Zhongkai Development Area,Huizhou,Guangdong, China	

Page 7 of 84

6.2 General Description of EUT

Product Name:	WIFI+BT Module			
Model No.(EUT):	WCT5LM2001		C)	
Trade mark:	GSD			
EUT Supports Radios application:	BT5.0 Dual mode 2402MHz to 2480MHz	12		~
Power Supply:	DC 3.3V	(25)		(2)
Sample Received Date:	Aug. 29, 2019	J		S
Sample tested Date:	Aug. 29, 2019 to Nov. 04, 2019			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	5.0			
Modulation Technique:	DSSS			
Modulation Type:	GFSK			13
Number of Channel:	40	(S)		6
Test Power Grade:	Reference Table			U
Test Software of EUT:	WCN Combo Tool			
Antenna Type and Gain:	Type: PIFA antenna Gain: 2dBi			
Test Voltage:	DC 3.3V	(U)	()	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

None.

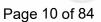
6.8 Other Information Requested by the Customer

Page 9 of 84

Report No.: EED32L00242601

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Sourieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



Equipment List 7

		RF test	1		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-29-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Attenuator	HuaXiang	SHX370	15040701	03-01-2019	02-29-2020
Signal Generator	Keysight	N5181A	MY46240094	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	(3)	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	(C)	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-09-2019	01-08-2020
Communicati on test set	R&S	CMW500	107929	04-28-2019	04-27-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d	<u></u>	03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-01-2019	02-29-2020
high-low temperature test chamber	DongGuangQi nZhuo	LK-80GA	QZ20150611 879	03-01-2019	02-29-2020

Page 11 of 84

(Conducted dist	urbance Tes	st	
Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
R&S	ESCI	100435	05-20-2019	05-19-2020
Defu	TH128	/	06-14-2019	06-13-2020
Agilent	E5515C	GB47050 534	03-01-2019	02-28-2022
R&S	CMW500	102898	01-18-2019	01-17-2020
R&S	ENV216	100098	05-08-2019	05-07-2020
schwarzbeck	NNLK8121	8121-529	05-08-2019	05-07-2020
R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-12-2020
R&S	EZ-17 816.2063.03	100106	05-20-2019	05-19-2020
TESEQ	ISN T800	30297	01-16-2019	01-15-2020
changchun	DYM3	1188	06-20-2019	06-19-2020
	Manufacturer R&S Defu Agilent R&S R&S schwarzbeck R&S R&S	ManufacturerModel No.R&SESCIDefuTH128AgilentE5515CR&SCMW500R&SENV216schwarzbeckNNLK8121R&SESH2-Z3 0299.7810.5 6R&SESH2-Z3 0299.7810.5 6R&SEZ-17 816.2063.03TESEQISN T800	Manufacturer Model No. Serial Number R&S ESCI 100435 Defu TH128 / Agilent E5515C GB47050 534 R&S CMW500 102898 R&S ENV216 100098 schwarzbeck NNLK8121 8121-529 R&S ESH2-Z3 0299.7810.5 6 100042 R&S EZ-17 816.2063.03 100106 TESEQ ISN T800 30297	Manufacturer Model No. Number Number (mm-dd-yyyy) R&S ESCI 100435 05-20-2019 Defu TH128 / 06-14-2019 Agilent E5515C GB47050 534 03-01-2019 R&S CMW500 102898 01-18-2019 R&S ENV216 100098 05-08-2019 schwarzbeck NNLK8121 8121-529 05-08-2019 R&S ESH2-Z3 0299.7810.5 6 100042 06-13-2017 R&S EZ-17 816.2063.03 100106 05-20-2019 TESEQ ISN T800 30297 01-16-2019

Page 12 of 84

	3M S	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	07-12-2019	07-11-2020
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-04-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 2	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-27-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-29-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2022
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002	6	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

		3M full-anechoi			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-24-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-24-2021
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-21-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	Agilent	8449B	3008A02425	07-12-2019	07-11-2020
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-29-2020
Fully Anechoic Chamber	TDK	FAC-3)	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

Page 14 of 84

Report No.: EED32L00242601

8 Radio Technical Requirements Specification

Reference documents for testing:

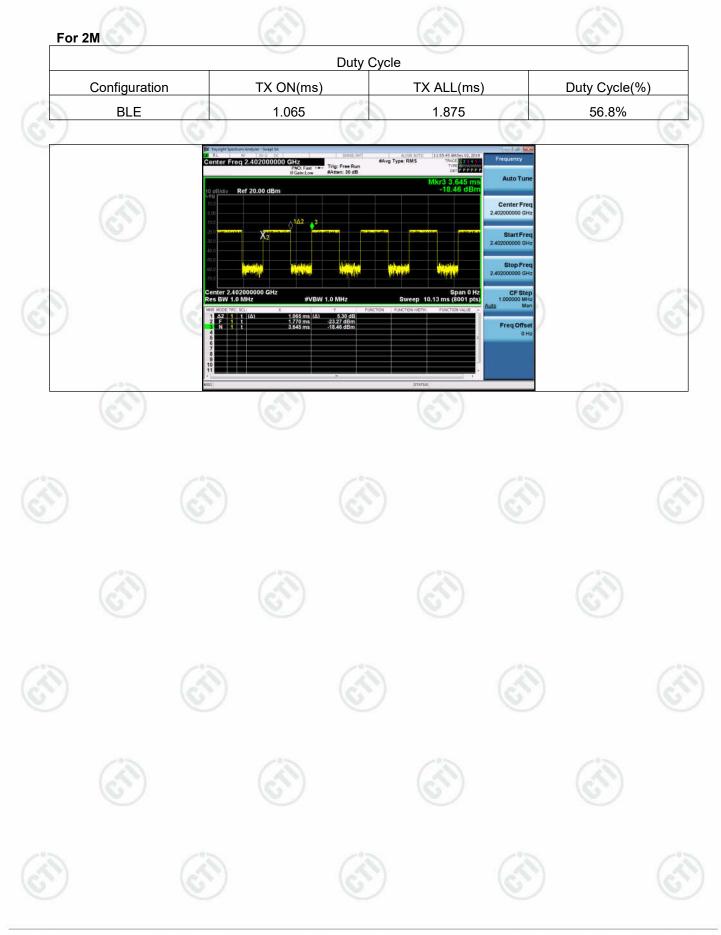
No.	Identity	Document Title	
1	FCC Part15C	Subpart C-Intentional Radiators	
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices	
Toot	Populto Liot:		

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Page 15 of 84

EUT DUTY CYCLE



Page 16 of 84

Page 17 of 84

Report No.: EED32L00242601

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth :			
Limit	Shall be at least 500kHz	(C)	C)

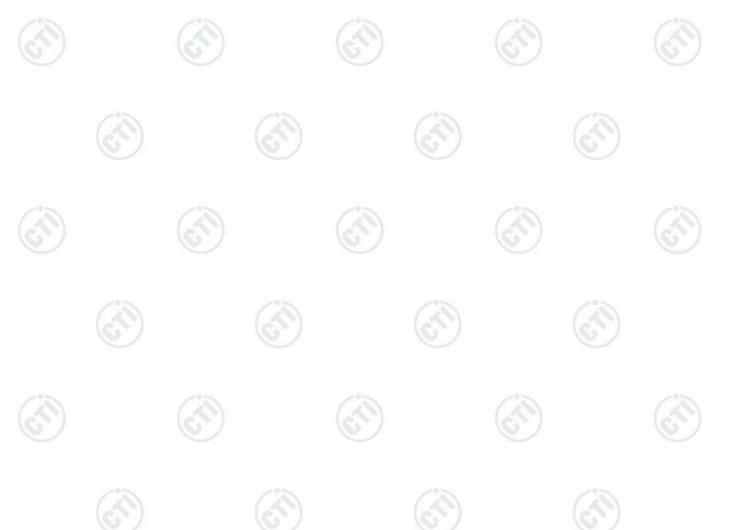
Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

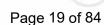
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

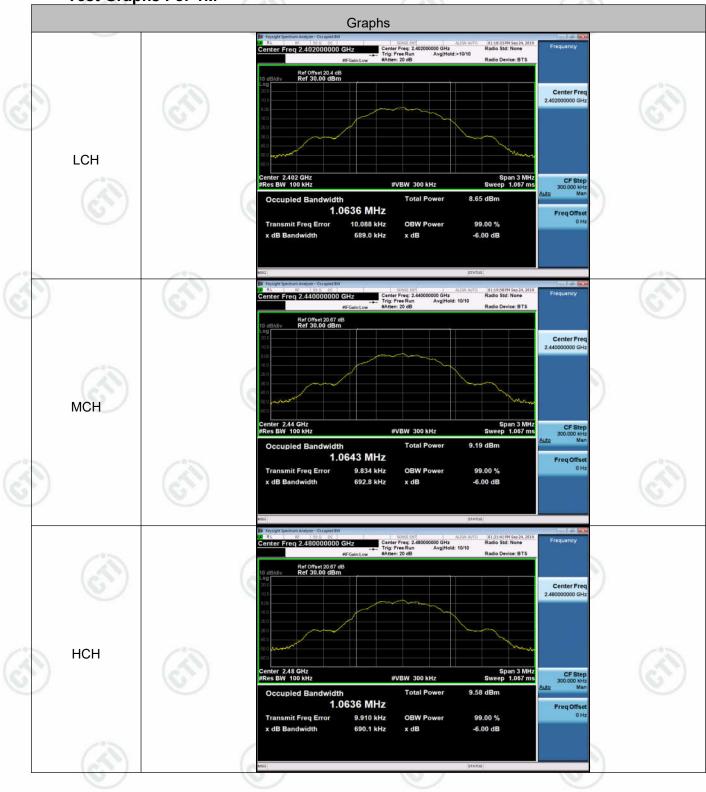

Page 18 of 84

Test Result For 1M

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6890	1.0233	PASS
BLE	МСН	0.6928	1.0232	PASS
BLE	нсн	0.6901	1.0232	PASS

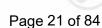

Test Result For 2M

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	2.0475	2.0580	PASS
BLE	MCH	2.0518	2.0577	PASS
BLE	НСН	2.0501	2.0569	PASS



Test Graphs For 1M

Page 20 of 84


99% OBW



Test Graphs For 2M

Page 22 of 84

Appendix B): Conducted Peak Output Power

<u>Test Limit</u>

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Page 23 of 84

2	Antenna not exceed 6 dBi: 30dBm	C
Limit	Antenna with DG greater than 6 dBi	
	[Limit = 30 – (DG – 6)]	
		2

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

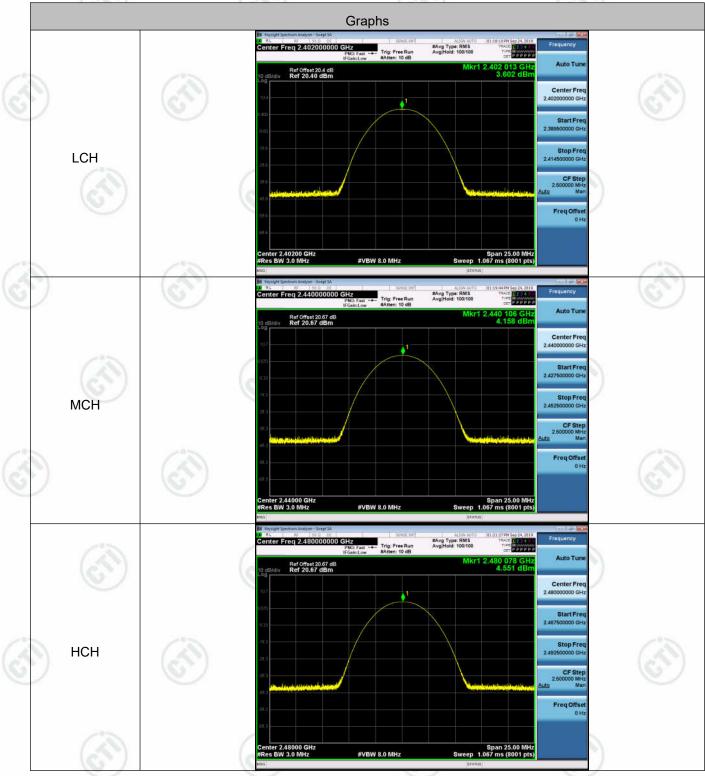
Test Setup

Test Result For 1M

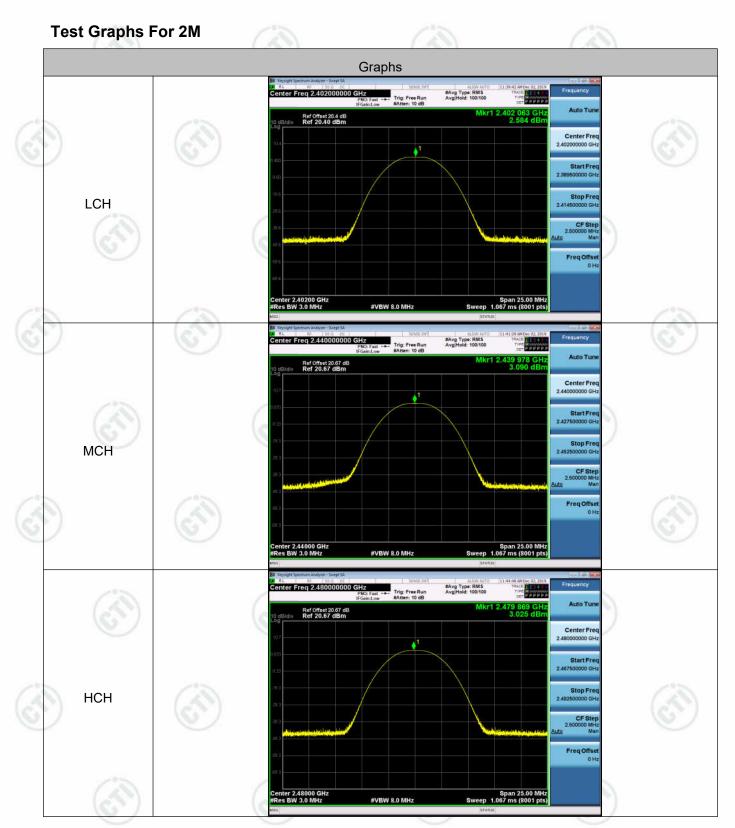
Mode	Channel	Conduct Peak Power[dBm]	Verdic
BLE	LCH	3.602	PASS
BLE	МСН	4.158	PASS
BLE	НСН	4.551	PASS

Test Result For 2M

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2.584	PASS
BLE	МСН	3.09	PASS
BLE	НСН	3.025	PASS



Page 25 of 84



Page 26 of 84

Page 27 of 84

Report No.: EED32L00242601

Appendix C): Band-edge for RF Conducted Emissions

<u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

<u>Test Setup</u>

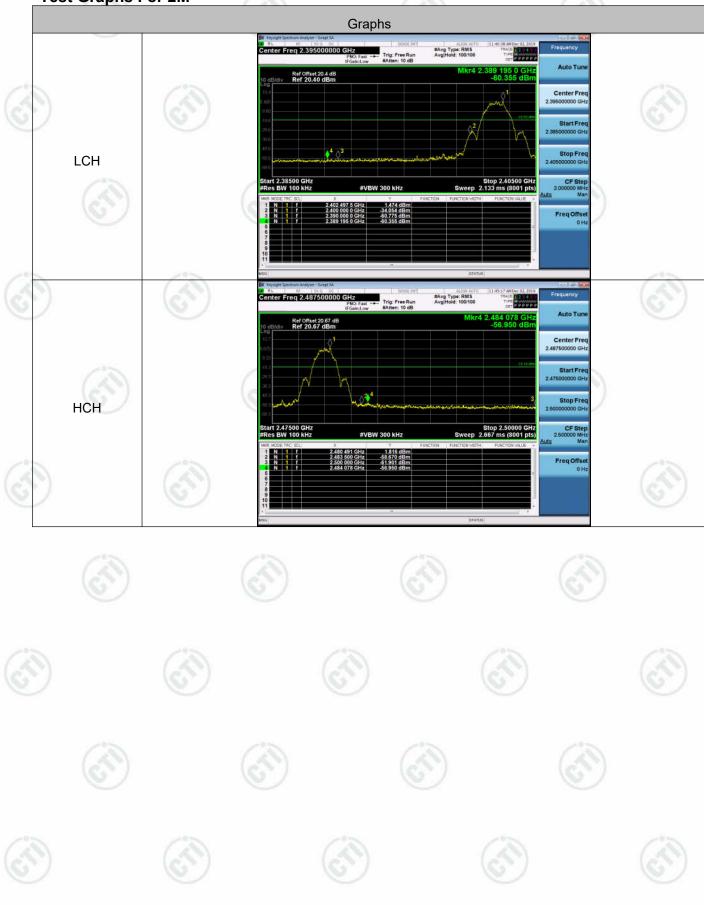
Page 28 of 84

_	Result Ta	able For 1M				
	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
-12	BLE	LCH	2.758	-59.878	-17.24	PASS
5	BLE	нсн	3.672	-59.078	-16.33	PASS

Result Table For 2M

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	1.474	-60.355	-18.53	PASS
BLE	НСН	1.816	-56.950	-18.18	PASS
				10.10	

Page 29 of 84



Page 30 of 84

Page 31 of 84

Report No.: EED32L00242601

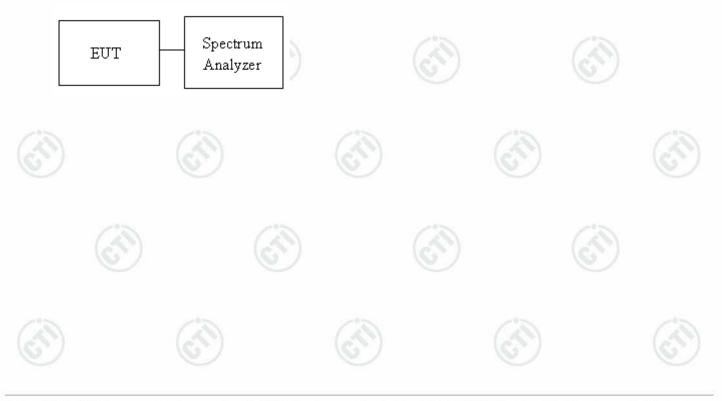
Appendix D): RF Conducted Spurious Emissions Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure


Test method Refer as KDB 558074 D01 v04, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

<u>Test Setup</u>

Page 32 of 84

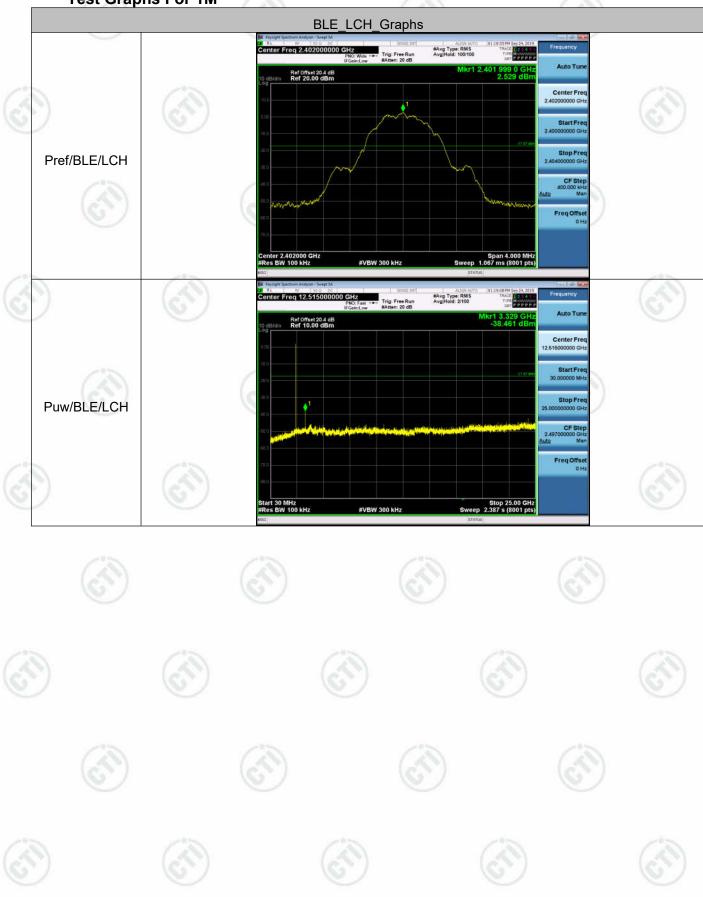
Result Table For 1M

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	2.529	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	МСН	3.076	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	3.473	<limit< td=""><td>PASS</td></limit<>	PASS

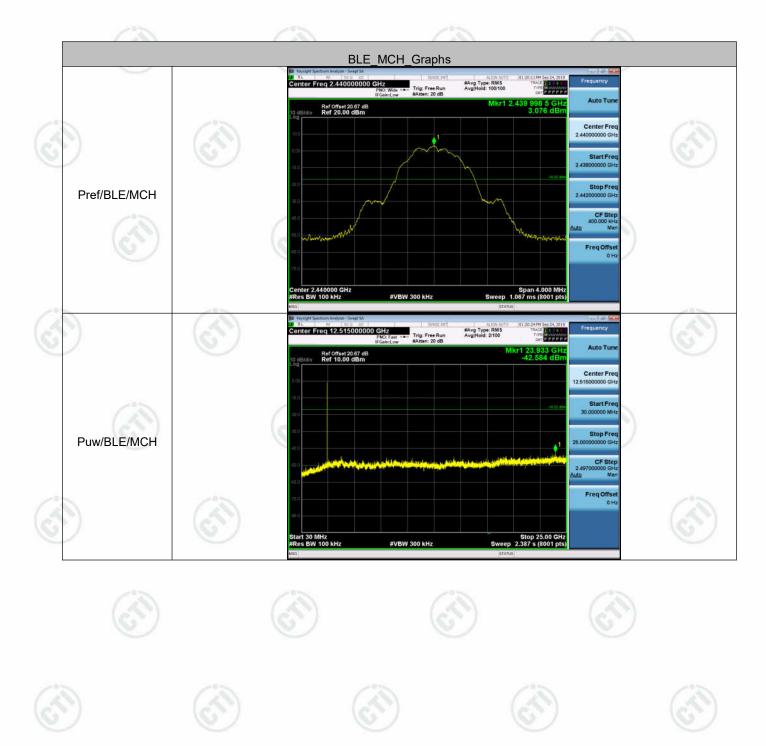
Result Table For 2M

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	1.115	<limit< th=""><th>PASS</th></limit<>	PASS
BLE	МСН	1.634	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	1.494	<limit< td=""><td>PASS</td></limit<>	PASS

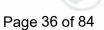




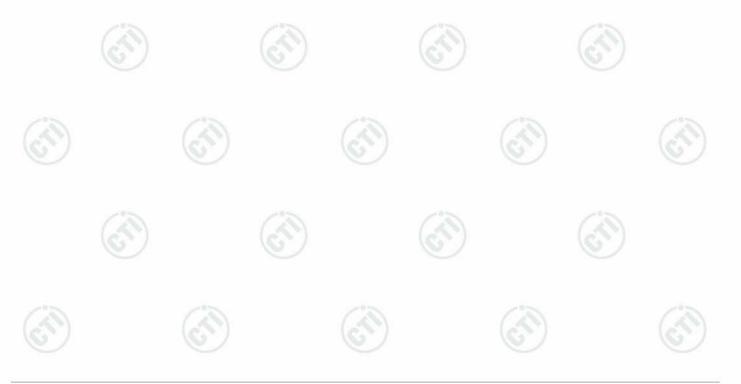
Test Graphs For 1M



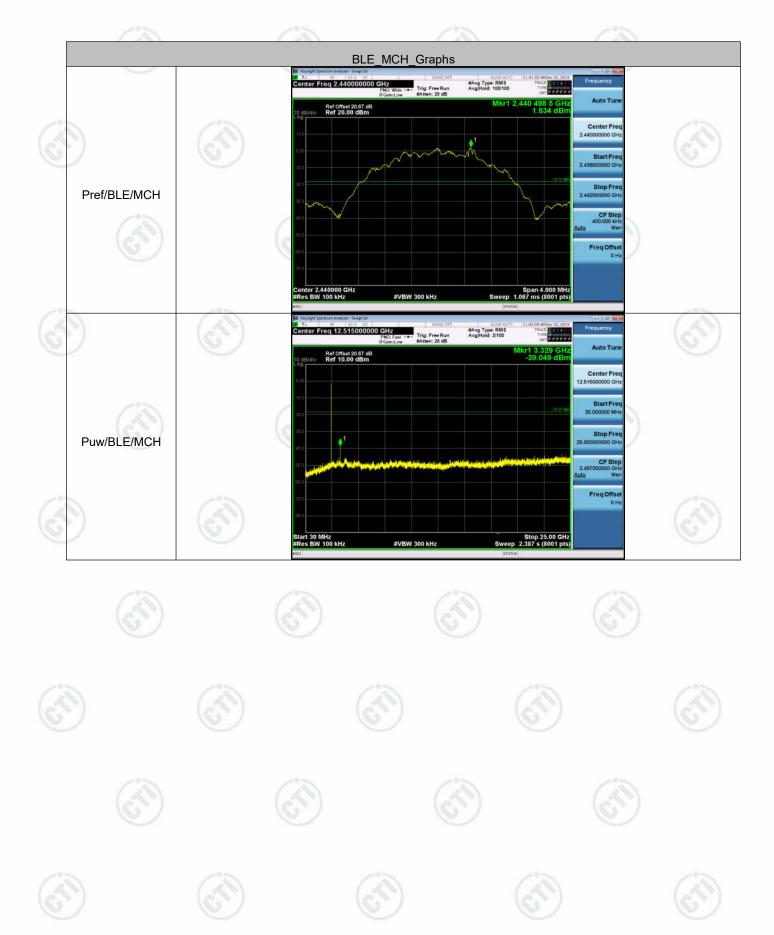
Page 34 of 84



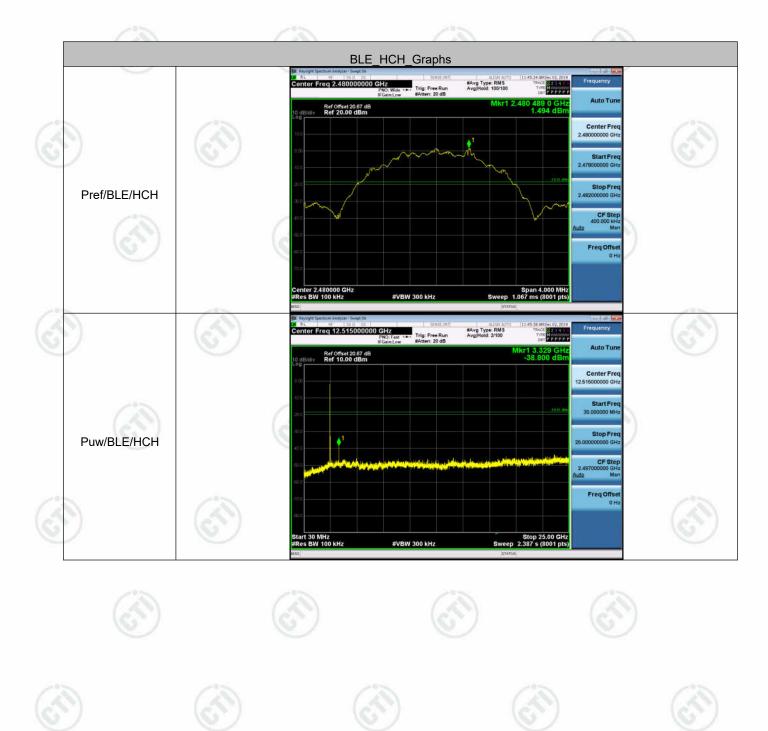
Page 35 of 84



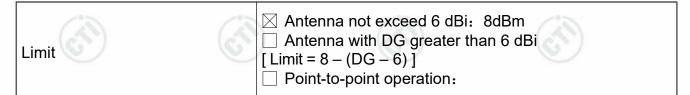
Test Graphs For 2M BLE_LCH_Graphs #Avg Type: RMS Avg/Hold: 100/10 r Freg 2.402 Ref Offset 20.4 dB Ref 20.00 dBm Center Fr Start Fr Stop F Pref/BLE/LCH Freq O Span 4.000 l eep 1.067 ms (8001 SW Freq 12.515000000 GHz #Avg Type: RMS Avg Hold: 2/100 Trig: Free Run NAtten: 20 dB Ref Offset 20.4 dB Ref 10.00 dBm Center Fr 12.515000000 G Start Fr Stop F Puw/BLE/LCH CES 2.49 Freq C #VBW 300 kH;



Page 37 of 84


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 38 of 84


Appendix E): Power Spectral Density

<u>Test Limit</u>

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Page 39 of 84

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.

Measure and record the result of power spectral density. in the test report.

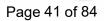
Test Setup

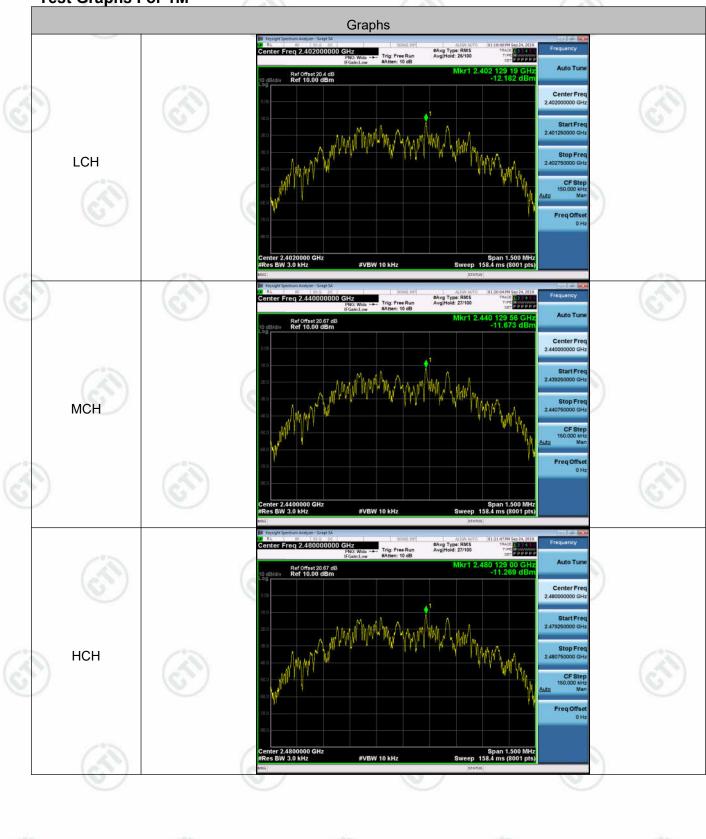
Page 40 of 84

Mode	Channel	PSD [dBm/3kHz]	Verdict
BLE	LCH	-12.182	PASS
BLE	MCH	-11.673	PASS
BLE	НСН	-11.269	PASS

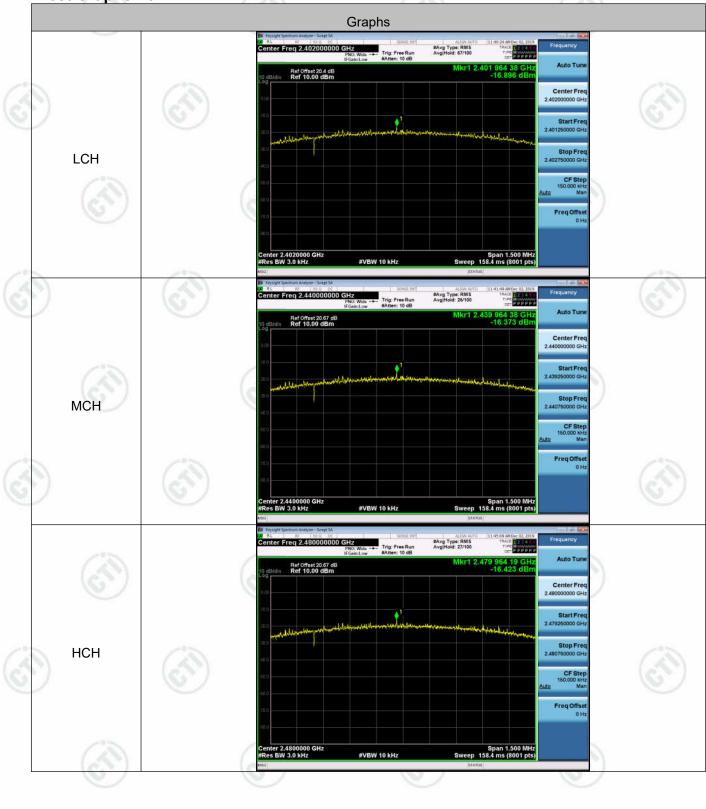
Result Table For 2M

BLE LCH	-16.896	
	-10.090	PASS
BLE MCH	-16.373	PASS
BLE HCH	-16.423	PASS

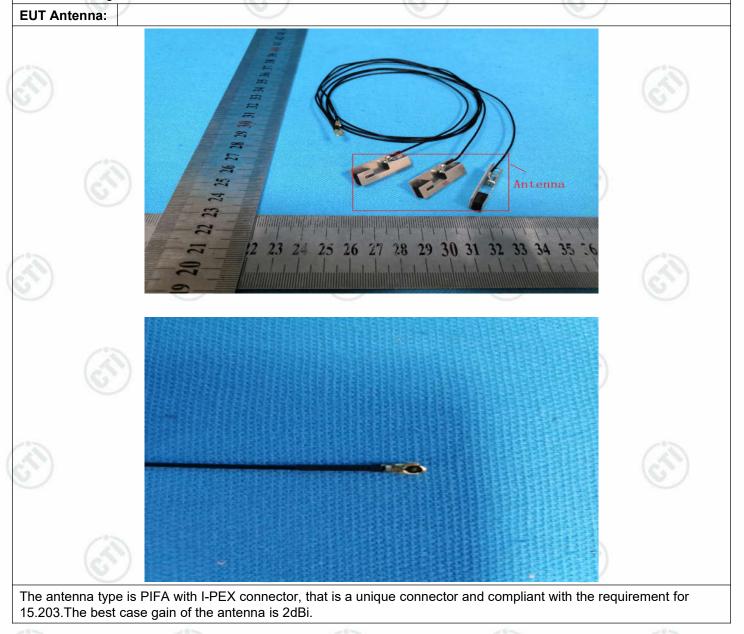




Test Graphs For 1M



Page 42 of 84


Appendix F): Antenna Requirement

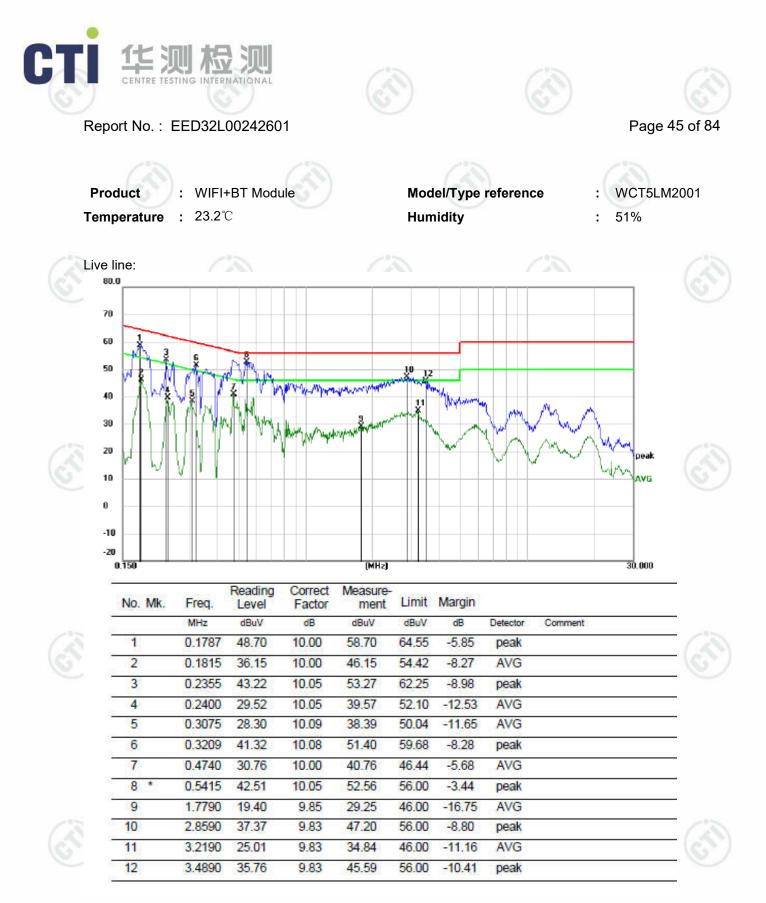
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 44 of 84

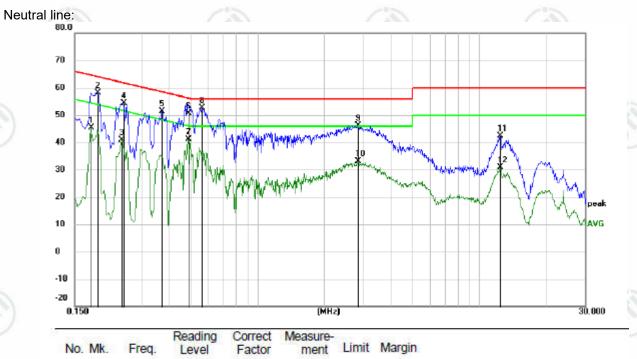

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz		
)	 The mains terminal disturban The EUT was connected to Stabilization Network) whic power cables of all other un which was bonded to the gr for the unit being measured multiple power cables to a se exceeded. 	AC power source the provides a $50\Omega/50$ nits of the EUT were round reference pland. A multiple socket	rough a LISN 1 (Line μ H + 5 Ω linear imper- connected to a sec e in the same way as outlet strip was used	e Impedar edance. T ond LISN s the LISI d to conn
(S)	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangen		
	 The test was performed wit EUT shall be 0.4 m from the reference plane was bonde 	e vertical ground refe d to the horizontal gr	erence plane. The ver round reference plan	rtical grou e. The Ll
	1 was placed 0.8 m from t ground reference plane for plane. This distance was be All other units of the EUT a LISN 2.	or LISNs mounted of etween the closest pe	on top of the groun oints of the LISN 1 a	nd referer
(A)	5) In order to find the maximum of the interface cables r			
	conducted measurement.			000.10
Limit:		Limit (dBuV/)	7
Limit:	Frequency range (MHz)	Limit (Quasi-peak	· · ·	
Limit:		Limit (Quasi-peak 66 to 56*	dBμV) Average 56 to 46*	
Limit:	Frequency range (MHz)	Quasi-peak	Average	
Limit:	Frequency range (MHz) 0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*	
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5	Quasi-peak 66 to 56* 56 60 with the logarithm of	Average56 to 46*4650the frequency in the	(Å

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Page 46 of 84

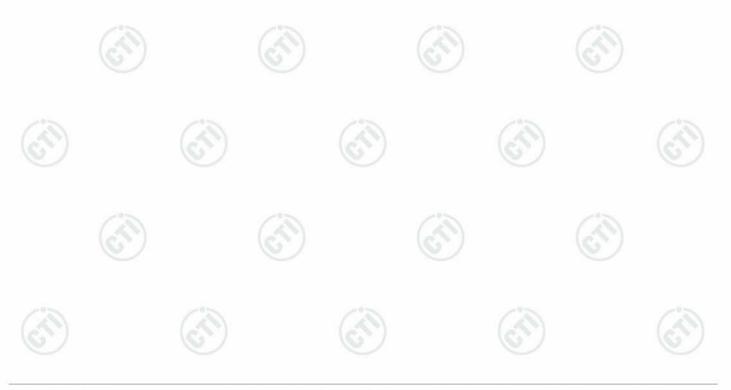
No. Mk.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1770	35.46	10.00	45.46	54.63	-9.17	AVG		
2	0.1905	48.19	10.01	58.20	64.01	-5.81	peak		
3	0.2445	30.88	10.06	40.94	51.94	-11.00	AVG		
4	0.2490	44.39	10.06	54.45	61.79	-7.34	peak		
5	0.3704	41.45	10.03	51.48	58.49	-7.01	peak		
6	0.4875	40.60	10.00	50.60	56.21	-5.61	QP		
7	0.4875	31.24	10.00	41.24	46.21	-4.97	AVG		
8 *	0.5639	42.63	10.08	52.71	56.00	-3.29	peak		
9	2.8320	36.38	9.83	46.21	56.00	-9.79	peak		
10	2.8320	23.30	9.83	33.13	46.00	-12.87	AVG		
11	12.4485	32.31	9.97	42.28	60.00	-17.72	peak		
12	12.4485	20.87	9.97	30.84	50.00	-19.16	AVG		

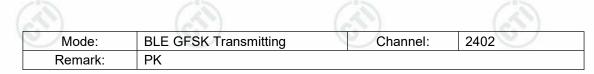
Notes:

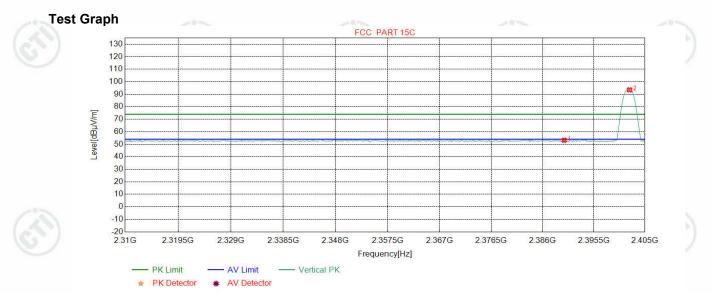
- 1. The following Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	30MHz-1GHz	· ·	120kHz	300kHz	Quasi-peak	(
0	Above 1GHz	Peak	1MHz	3MHz	Peak	13	
S)	(d))	Peak	1MHz	10Hz	Average	(0)	
Test Procedure:	Below 1GHz test procedu	ire as below:					
	 Test method Refer as KDB a. The EUT was placed of at a 3 meter semi-anex determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximul polarizations of the anten d. For each suspected en the antenna was tuned was turned from 0 deg 	end of the restricted band closest to the transmit npliance. Also measure any emissions in the restric rum analyzer plot. Repeat for each power and mod					
(T)	 Bandwidth with Maxim Place a marker at the e frequency to show com bands. Save the spect for lowest and highest 	um Hold Mode. and of the restricte apliance. Also mea rum analyzer plot. channel	ed band clo asure any	osest to th emissions	ne transmit s in the restri	cted	
	 Bandwidth with Maxim f. Place a marker at the end of the frequency to show combands. Save the spectrum 	um Hold Mode. end of the restricted pliance. Also mea rum analyzer plot. channel ure as below: ve is the test site, of ber change form to 1 meter and table owest channel, the ments are perform d found the X axis	ed band cle asure any Repeat fo change fro table 0.8 r is 1.5 mete e Highest ned in X, Y positionir	osest to the emissions for each por om Semi- neter to 1 er). channel (, Z axis p ng which in	Anechoic Ch .5 meter(Ab oositioning fo t is worse ca	cted dulation nambe ove r	
Limit:	 Bandwidth with Maxim f. Place a marker at the end of frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedution g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locities i. The radiation measure Transmitting mode, and the state of the state of	um Hold Mode. end of the restricted pliance. Also mea rum analyzer plot. channel ure as below: ve is the test site, of ber change form to 1 meter and table owest channel, the ments are perform d found the X axis	ed band cle asure any Repeat fo change fro table 0.8 r is 1.5 mete e Highest ned in X, Y s positionir encies mea	osest to the emissions or each por om Semi- neter to 1 er). channel (, Z axis p ng which in asured wa	Anechoic Ch .5 meter(Ab oositioning fo t is worse ca	cted dulation nambe ove r	
Limit:	 Bandwidth with Maxim f. Place a marker at the end of frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedution g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the locities i. The radiation measure Transmitting mode, an j. Repeat above procedution 	um Hold Mode. end of the restricter opliance. Also mea rum analyzer plot. channel ure as below: ve is the test site, of ber change form to 1 meter and table owest channel , the ments are perform d found the X axis res until all freque	ed band cle asure any Repeat fo change fro table 0.8 r is 1.5 mete e Highest ned in X, Y s positionir encies mea	osest to the emissions for each por om Semi- neter to 1 er). channel (, Z axis p ng which in asured wa Rer	Anechoic Ch .5 meter(Ab oositioning fo t is worse ca as complete.	cted dulati nambo ove r	
Limit:	 Bandwidth with Maxim f. Place a marker at the end of frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedution g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locit. i. The radiation measure Transmitting mode, an j. Repeat above procedution 	um Hold Mode. end of the restricte opliance. Also mea rum analyzer plot. channel ure as below: ve is the test site, o ober change form t 1 meter and table owest channel , the ments are perform d found the X axis ires until all freque Limit (dBµV/m	ed band cle asure any Repeat fo change fro table 0.8 r is 1.5 mete e Highest ned in X, Y s positionir encies mea	osest to the emissions for each por om Semi- neter to 1 er). channel (, Z axis p ng which in asured wa Rer Quasi-pe	Anechoic Ch ositioning fo t is worse ca as complete.	cted dulation nambo ove r	
Limit:	 Bandwidth with Maxim f. Place a marker at the end of frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedution g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locities i. The radiation measure Transmitting mode, an j. Repeat above procedution Frequency 30MHz-88MHz 	um Hold Mode. end of the restricter pliance. Also mea rum analyzer plot. channel ure as below: ve is the test site, of the test site, of test site, of the test site, of test site, of test site, of test site, of test site, of test site, of test site, of	ed band cle asure any Repeat fo change fro table 0.8 r is 1.5 mete e Highest ned in X, Y s positionir encies mea	osest to the emissions or each por om Semi- neter to 1 er). channel (, Z axis por g which in asured water Ren Quasi-per Quasi-per	Anechoic Ch ositioning fo t is worse ca as complete.	cted dulation nambo ove r	
Limit:	 Bandwidth with Maxim f. Place a marker at the end of frequency to show combands. Save the spectre for lowest and highest Above 1GHz test procedut g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locities i. The radiation measure Transmitting mode, an j. Repeat above procedut Frequency 30MHz-88MHz 88MHz-216MHz 	um Hold Mode. end of the restricter pliance. Also mea rum analyzer plot. channel ure as below: /e is the test site, of ber change form to 1 meter and table owest channel , the ments are perform d found the X axis res until all freque Limit (dBµV/m 40.0 43.5	ed band cle asure any Repeat fo change fro table 0.8 r is 1.5 mete e Highest ned in X, Y s positionir encies mea	osest to the emissions or each por om Semi- neter to 1 er). channel (, Z axis p ag which in asured wa Ren Quasi-pe Quasi-pe	Anechoic Ch Anechoic Ch 5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value	cted dulation nambe ove r	
Limit:	Bandwidth with Maxim f. Place a marker at the error frequency to show combands. Save the spectror for lowest and highest Above 1GHz test procedure g. Different between above to fully Anechoic Chamana 18GHz the distance is h. . Test the EUT in the location measure transmitting mode, and is j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz 960MHz-1GHz	um Hold Mode. end of the restricter apliance. Also mea rum analyzer plot. channel ure as below: // is the test site, of aber change form to 1 meter and table owest channel , the ments are perform d found the X axis res until all freque Limit (dBµV/m 40.0 43.5 46.0	ed band cle asure any Repeat fo change fro table 0.8 r is 1.5 mete e Highest ned in X, Y s positionir encies mea	osest to the emissions or each por om Semi- neter to 1 er). channel (, Z axis por g which in asured wa Ren Quasi-pe Quasi-pe Quasi-pe	Anechoic Cr 5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value	cted dulatio nambe ove r	
Limit:	Bandwidth with Maxim f. Place a marker at the end of frequency to show combands. Save the spectration of lowest and highest Above 1GHz test procedure g. Different between above to fully Anechoic Chamal 8GHz the distance is h. . Test the EUT in the locit. i. The radiation measure Transmitting mode, and j. Repeat above procedure S0MHz-88MHz 88MHz-216MHz 216MHz-960MHz	um Hold Mode. end of the restricter opliance. Also mea rum analyzer plot. channel ure as below: /e is the test site, of ber change form to 1 meter and table owest channel , the ments are perform d found the X axis res until all freque Limit (dBµV/m 40.0 43.5 46.0 54.0	ed band cle asure any Repeat fo change fro table 0.8 r is 1.5 mete e Highest ned in X, Y s positionir encies mea	osest to the emissions or each por om Semi- neter to 1 er). channel (, Z axis p ng which in asured wa Ren Quasi-pe Quasi-pe Quasi-pe Averag	Anechoic Ch Anechoic Ch .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value eak Value	cted dulatio nambe ove r	

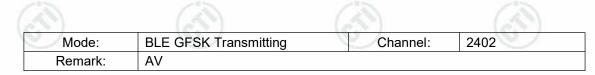


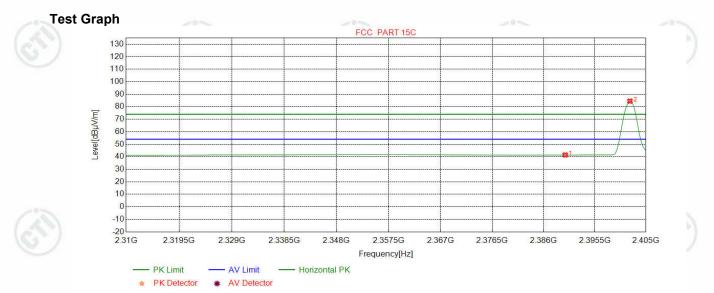

Test plot as follows:



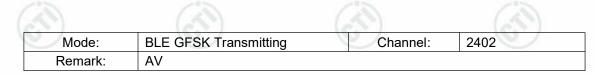
								2		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.52	52.70	74.00	21.30	Pass	Horizontal
2	2402.1464	32.26	13.31	-42.43	91.80	94.94	74.00	-20.94	Pass	Horizontal
	0		1.1							

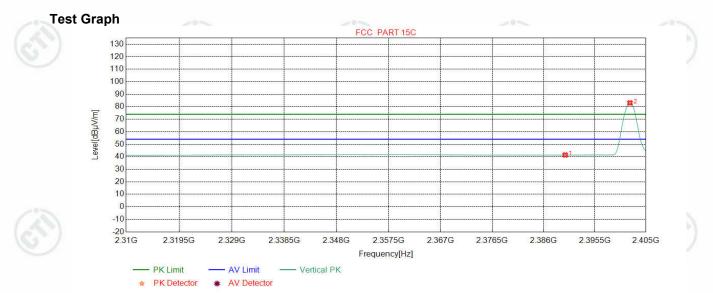
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.03	53.21	74.00	20.79	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	90.31	93.45	74.00	-19.45	Pass	Vertical
1.2		1		•			128			1.0



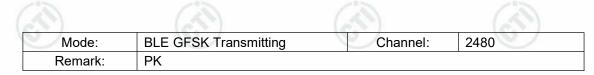


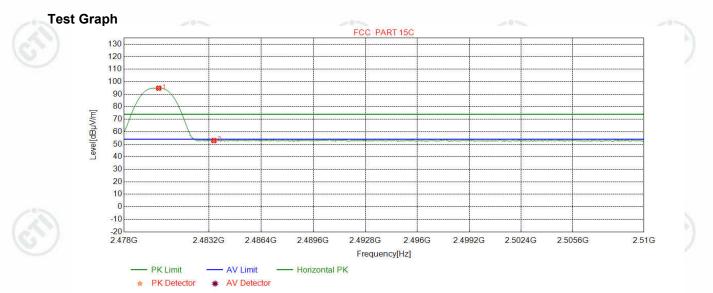
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.24	41.42	54.00	12.58	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	81.33	84.47	54.00	-30.47	Pass	Horizontal
1		1					128			1



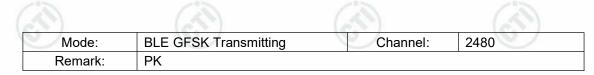


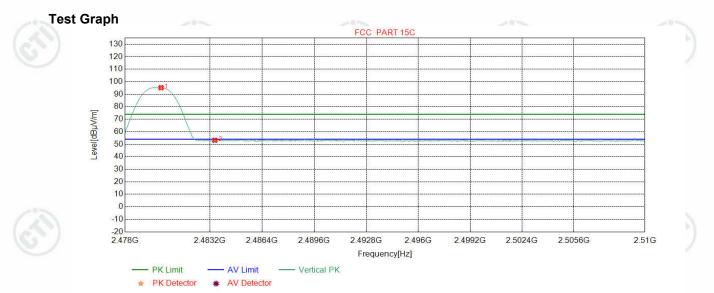
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.24	41.42	54.00	12.58	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	79.91	83.05	54.00	-29.05	Pass	Vertical
1	() () () () () () () () () ()	1.1					128			1



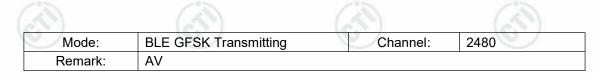


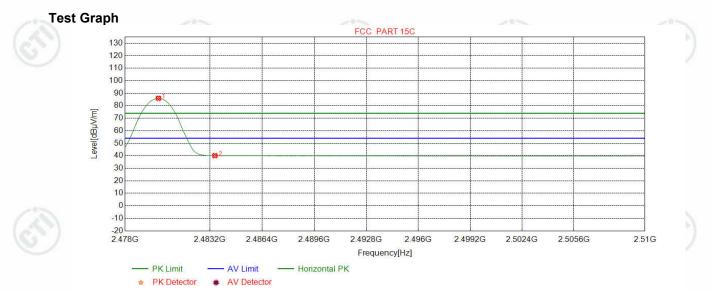
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1227	32.37	13.39	-42.40	91.42	94.78	74.00	-20.78	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.57	52.93	74.00	21.07	Pass	Horizontal
1.2	() () () () () () () () () ()	1.4					128			120



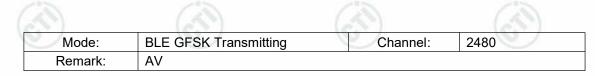


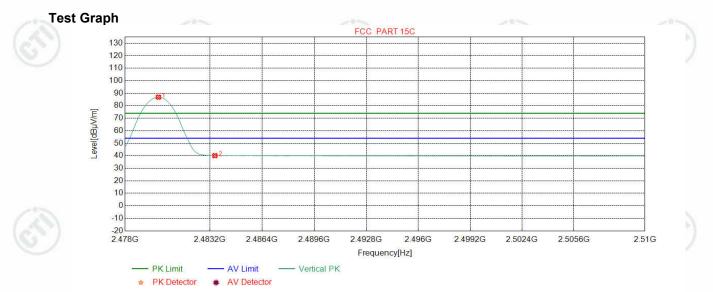
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.2028	32.37	13.39	-42.40	91.87	95.23	74.00	-21.23	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.83	53.19	74.00	20.81	Pass	Vertical
12		1.4		-		-	6.8			120



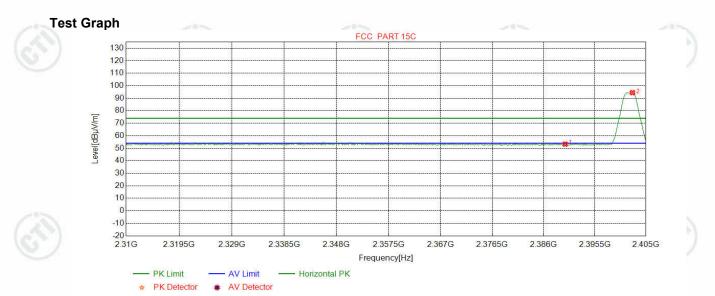


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-42.39	82.57	85.94	54.00	-31.94	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.74	40.10	54.00	13.90	Pass	Horizontal
12		14					68			





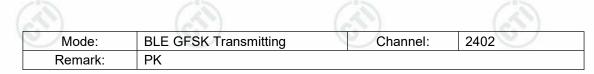
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-42.39	83.46	86.83	54.00	-32.83	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.74	40.10	54.00	13.90	Pass	Vertical
12	(1.					18			

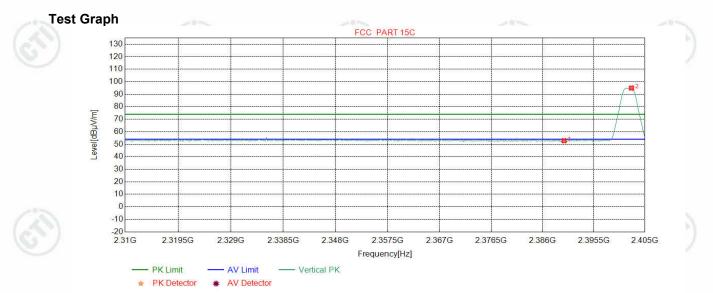


For 2M:

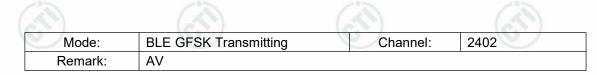
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK	·	·

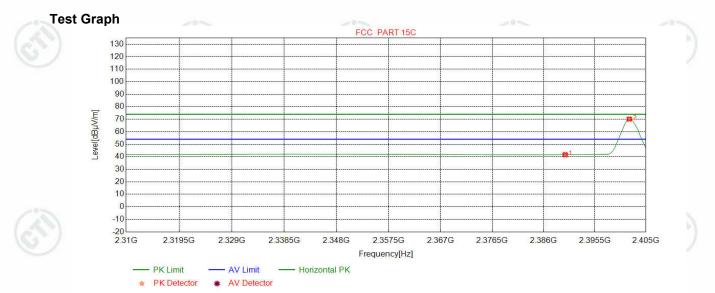
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.10	53.28	74.00	20.72	Pass	Horizontal
2	2402.5031	32.26	13.31	-42.43	91.30	94.44	74.00	-20.44	Pass	Horizontal
1.2	() () () () () () () () () ()	1.4					128			120



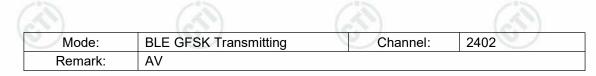


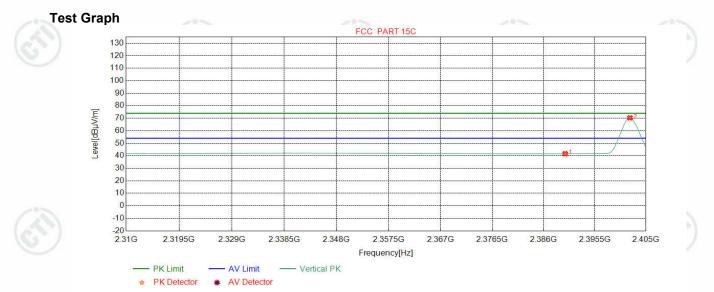
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.65	52.83	74.00	21.17	Pass	Vertical
2	2402.5031	32.26	13.31	-42.43	91.78	94.92	74.00	-20.92	Pass	Vertical
1		1					128			1.0



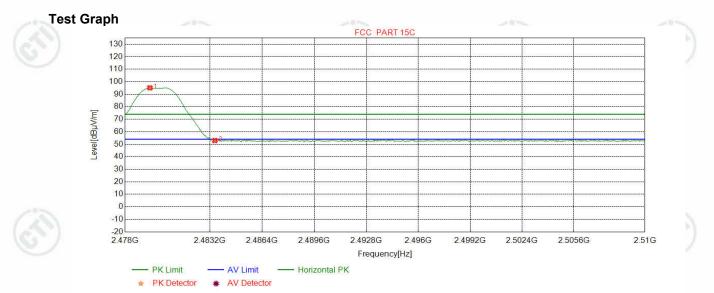


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.48	41.66	54.00	12.34	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	66.97	70.11	54.00	-16.11	Pass	Horizontal
1		100		•			128			1.00

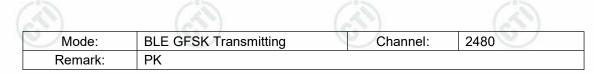


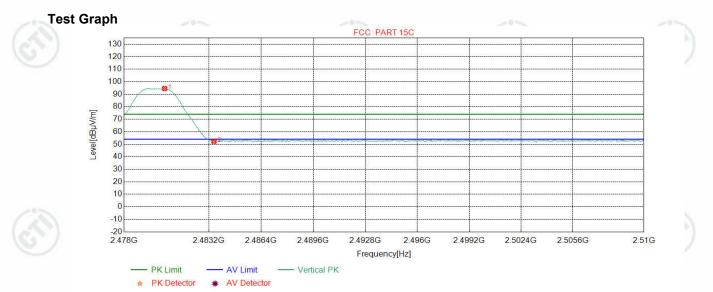


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.46	41.64	54.00	12.36	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	67.17	70.31	54.00	-16.31	Pass	Vertical
1		1					1.8			1

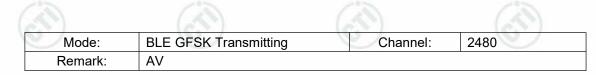


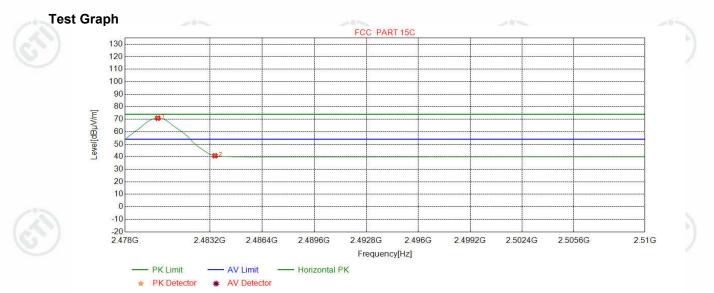
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.5219	32.37	13.39	-42.39	91.70	95.07	74.00	-21.07	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.59	52.95	74.00	21.05	Pass	Horizontal
1.2		1.4					128			120



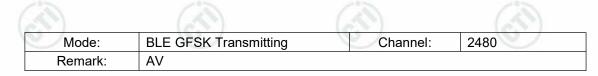


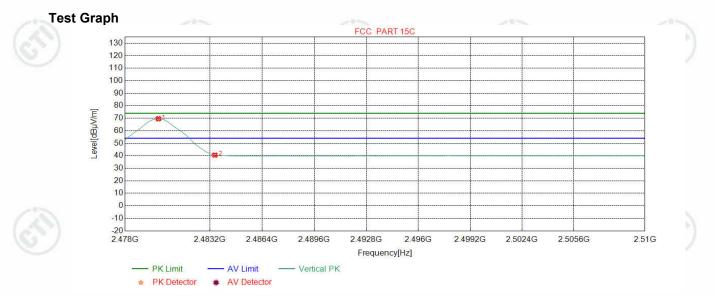
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.4831	32.37	13.39	-42.40	91.15	94.51	74.00	-20.51	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	48.92	52.28	74.00	21.72	Pass	Vertical
12	()	1.					100			

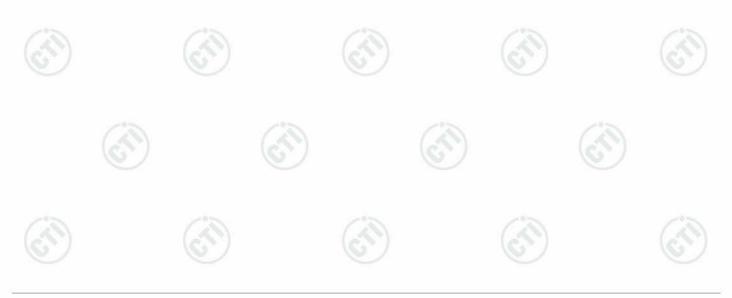




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	67.48	70.85	54.00	-16.85	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.39	40.75	54.00	13.25	Pass	Horizontal
12		1.4					12			






NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-42.39	66.21	69.58	54.00	-15.58	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	37.17	40.53	54.00	13.47	Pass	Vertical
100	0						1200			1

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Page 64 of 84

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(\sim)		Peak	1MHz	3MHz	Peak	
\sim	Above 1GHz	Peak	1MHz	10Hz	Average	
Toot Dropodurou						

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(2)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(62)	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

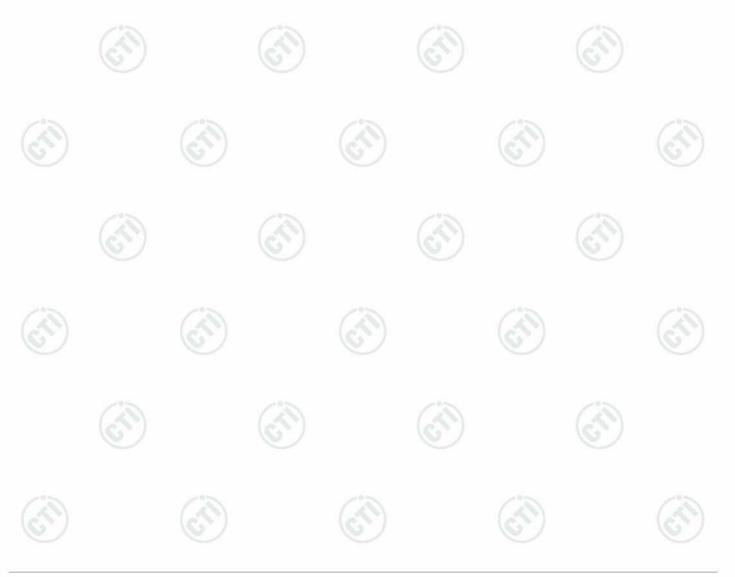
j. Repeat above procedures until all frequencies measured was complete.

e: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

For 1M:

Mode	Mode:			SK Trans	smitting	_	Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	76.2736	7.81	1.02	-32.07	58.43	35.19	40.00	4.81	Pass	Н	PK
2	208.8859	11.13	1.71	-31.94	47.18	28.08	43.50	15.42	Pass	н	PK
3	312.0072	13.46	2.10	-31.89	40.95	24.62	46.00	21.38	Pass	н	PK
4	552.0092	18.04	2.80	-31.97	41.59	30.46	46.00	15.54	Pass	Н	PK
5	792.0112	20.81	3.37	-31.98	38.60	30.80	46.00	15.20	Pass	Н	PK
6	887.9538	21.96	3.57	-31.63	33.08	26.98	46.00	19.02	Pass	н	PK
7	76.3706	7.79	1.02	-32.06	62.77	39.52	40.00	0.48	Pass	V	PK
8	150.0010	7.55	1.45	-32.01	51.89	28.88	43.50	14.62	Pass	V	PK
9	227.9968	11.63	1.79	-31.92	48.62	30.12	46.00	15.88	Pass	V	PK
10	265.8306	12.52	1.94	-31.88	50.06	32.64	46.00	13.36	Pass	V	PK
11	552.0092	18.04	2.80	-31.97	44.18	33.05	46.00	12.95	Pass	V	PK
12	792.0112	20.81	3.37	-31.98	39.46	31.66	46.00	14.34	Pass	V	PK


Page 65 of 84

Page 66 of 84

I	For 2M:										
Mode	э:		BLE G	SK Trans	smitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	54.5435	12.47	0.84	-32.08	41.97	23.20	40.00	16.80	Pass	Н	PK
2	68.0278	9.51	0.94	-32.05	50.09	28.49	40.00	11.51	Pass	Н	PK
3	120.0250	9.20	1.30	-32.07	44.65	23.08	43.50	20.42	Pass	Н	PK
4	177.9398	8.89	1.57	-31.99	55.63	34.10	43.50	9.40	Pass	Н	PK
5	239.9290	11.94	1.84	-31.90	51.22	33.10	46.00	12.90	Pass	Н	PK
6	713.7244	19.95	3.19	-32.10	44.37	35.41	46.00	10.59	Pass	Н	PK
7	71.4231	8.73	0.97	-32.06	55.27	32.91	40.00	7.09	Pass	V	PK
8	184.3424	9.41	1.59	-31.98	51.37	30.39	43.50	13.11	Pass	V	PK
9	236.5337	11.85	1.82	-31.90	50.20	31.97	46.00	14.03	Pass	V	PK
10	455.9696	16.30	2.54	-31.86	44.22	31.20	46.00	14.80	Pass	V	PK
11	600.0290	19.00	2.96	-31.99	46.69	36.66	46.00	9.34	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	41.84	37.19	54.00	16.81	Pass	V	PK

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Transmitter Emission above 1GHz

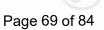
	For 1M:										
Mode	ə:		BLE G	SK Tran	smitting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1497.0497	28.40	2.99	-42.68	55.49	44.20	74.00	29.80	Pass	Н	PK
2	3331.0221	33.33	4.54	-41.92	50.98	46.93	74.00	27.07	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	48.57	46.96	74.00	27.04	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	46.43	47.53	74.00	26.47	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	45.92	49.43	74.00	24.57	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.21	44.79	50.49	74.00	23.51	Pass	Н	PK
7	1819.4819	30.51	3.34	-42.70	51.43	42.58	74.00	31.42	Pass	V	PK
8	3331.0221	33.33	4.54	-41.92	54.99	50.94	74.00	23.06	Pass	V	PK
9	4804.0000	34.50	4.55	-40.66	48.01	46.40	74.00	27.60	Pass	V	PK
10	7206.0000	36.31	5.81	-41.02	46.18	47.28	74.00	26.72	Pass	V	PK
11	9608.0000	37.64	6.63	-40.76	45.73	49.24	74.00	24.76	Pass	V	PK
12	12010.0000	39.31	7.60	-41.21	45.16	50.86	74.00	23.14	Pass	V	PK

Mode	e:		BLE GF	SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1663.6664	29.48	3.16	-42.75	51.65	41.54	74.00	32.46	Pass	Н	PK
2	3331.0221	33.33	4.54	-41.92	51.56	47.51	74.00	26.49	Pass	Н	PK
3	4880.0000	34.50	4.80	-40.60	47.83	46.53	74.00	27.47	Pass	Н	PK
4	7320.0000	36.42	5.85	-40.92	45.31	46.66	74.00	27.34	Pass	Н	PK
5	9760.0000	37.70	6.73	-40.62	45.74	49.55	74.00	24.45	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.17	45.69	51.61	74.00	22.39	Pass	Н	PK
7	1812.2812	30.46	3.33	-42.70	54.32	45.41	74.00	28.59	Pass	V	PK
8	3331.0221	33.33	4.54	-41.92	53.47	49.42	74.00	24.58	Pass	V	PK
9	4880.0000	34.50	4.80	-40.60	46.57	45.27	74.00	28.73	Pass	V	PK
10	7320.0000	36.42	5.85	-40.92	45.37	46.72	74.00	27.28	Pass	V	PK
11	9760.0000	37.70	6.73	-40.62	45.59	49.40	74.00	24.60	Pass	V	PK
12	12200.0000	39.42	7.67	-41.17	44.43	50.35	74.00	23.65	Pass	V	PK
0	1		377		C C	·)		377		C)	

0

Page 68 of 84

	1000			1000		200			215			
Mode	e:		BLE GF	SK Tran	smitting			Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1402.2402	28.30	2.90	-42.68	54.70	43.22	74.00	30.78	Pass	Н	PK	
2	3331.0221	33.33	4.54	-41.92	51.28	47.23	74.00	26.77	Pass	Н	PK	
3	4960.0000	34.50	4.82	-40.53	46.60	45.39	74.00	28.61	Pass	Н	PK	
4	7440.0000	36.54	5.85	-40.82	46.03	47.60	74.00	26.40	Pass	Н	PK	
5	9920.0000	37.77	6.79	-40.48	45.53	49.61	74.00	24.39	Pass	Н	PK	
6	12400.0000	39.54	7.86	-41.12	45.58	51.86	74.00	22.14	Pass	Н	PK	
7	1854.6855	30.74	3.38	-42.68	50.67	42.11	74.00	31.89	Pass	V	PK	
8	3331.0221	33.33	4.54	-41.92	54.77	50.72	74.00	23.28	Pass	V	PK	
9	4960.0000	34.50	4.82	-40.53	46.35	45.14	74.00	28.86	Pass	V	PK	
10	7440.0000	36.54	5.85	-40.82	46.49	48.06	74.00	25.94	Pass	V	PK	
11	9920.0000	37.77	6.79	-40.48	46.19	50.27	74.00	23.73	Pass	V	PK	
12	12400.0000	39.54	7.86	-41.12	45.61	51.89	74.00	22.11	Pass	V	PK	
	1	1	1	•	0	1			•	0	1	



	FOR ZIVI:			11			10		6		
Mode	e:		BLE GF	SK Tran	smitting		Cha			2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2999.1999	33.20	4.55	-42.12	52.29	47.92	74.00	26.08	Pass	Н	PK
2	4003.0669	33.80	4.33	-40.78	49.58	46.93	74.00	27.07	Pass	Н	PK
3	4804.0000	34.50	4.55	-40.66	47.53	45.92	74.00	28.08	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	46.06	47.16	74.00	26.84	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	47.04	50.55	74.00	23.45	Pass	Н	PK
6	11992.5995	39.29	7.59	-41.21	48.36	54.03	74.00	19.97	Pass	Н	PK
7	2995.1995	33.19	4.54	-42.12	56.37	51.98	74.00	22.02	Pass	V	PK
8	3331.0221	33.33	4.54	-41.92	54.45	50.40	74.00	23.60	Pass	V	PK
9	4804.0000	34.50	4.55	-40.66	49.52	47.91	74.00	26.09	Pass	V	PK
10	7206.0000	36.31	5.81	-41.02	46.10	47.20	74.00	26.80	Pass	V	PK
11	9608.0000	37.64	6.63	-40.76	47.17	50.68	74.00	23.32	Pass	V	PK
12	11961.5974	39.27	7.51	-41.22	48.61	54.17	74.00	19.83	Pass	V	PK
											11

Mode	:		BLE G	SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3330.0220	33.33	4.54	-41.92	51.19	47.14	74.00	26.86	Pass	Н	PK
2	3872.0581	33.70	4.35	-41.05	49.99	46.99	74.00	27.01	Pass	Н	PK
3	4880.0000	34.50	4.80	-40.60	47.49	46.19	74.00	27.81	Pass	Н	PK
4	7320.0000	36.42	5.85	-40.92	46.96	48.31	74.00	25.69	Pass	Н	PK
5	9760.0000	37.70	6.73	-40.62	45.48	49.29	74.00	24.71	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.17	45.90	51.82	74.00	22.18	Pass	Н	PK
7	2997.3997	33.20	4.54	-42.12	54.65	50.27	74.00	23.73	Pass	V	PK
8	3331.0221	33.33	4.54	-41.92	54.41	50.36	74.00	23.64	Pass	V	PK
9	4880.0000	34.50	4.80	-40.60	46.53	45.23	74.00	28.77	Pass	V	PK
10	7320.0000	36.42	5.85	-40.92	46.70	48.05	74.00	25.95	Pass	V	PK
11	9760.0000	37.70	6.73	-40.62	46.93	50.74	74.00	23.26	Pass	V	PK
12	12323.6216	39.49	7.69	-41.13	48.00	54.05	74.00	19.95	Pass	V	PK

Page 70 of 84

Mode	e:		BLE GF	SK Trans	smitting			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	3331.0221	33.33	4.54	-41.92	50.95	46.90	74.00	27.10	Pass	Н	PK
2	4148.0765	34.01	4.50	-40.82	50.02	47.71	74.00	26.29	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	47.32	46.11	74.00	27.89	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	47.24	48.81	74.00	25.19	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	46.83	50.91	74.00	23.09	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.12	46.05	52.33	74.00	21.67	Pass	Н	PK
7	2986.5987	33.18	4.51	-42.13	55.97	51.53	74.00	22.47	Pass	V	PK
8	3331.0221	33.33	4.54	-41.92	55.23	51.18	74.00	22.82	Pass	V	PK
9	4960.0000	34.50	4.82	-40.53	47.58	46.37	74.00	27.63	Pass	V	PK
10	7440.0000	36.54	5.85	-40.82	48.38	49.95	74.00	24.05	Pass	V	PK
11	9920.0000	37.77	6.79	-40.48	47.56	51.64	74.00	22.36	Pass	V	PK
12	12400.0000	39.54	7.86	-41.12	45.86	52.14	74.00	21.86	Pass	V	PK
	1	1	9.7			1				0	1

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

