

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

WIFI+BT Module

MODEL NUMBER: WCT54M2001

FCC ID: 2AC23-WCT54

REPORT NUMBER: 4788997152-3

ISSUE DATE: June 17, 2019

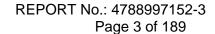
Prepared for

Hui Zhou Gaoshengda Technology Co.,LTD NO.75 Zhongkai Development Area Huizhou, Guangdong China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, People's Republic of China

Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com



REPORT No.: 4788997152-3

Page 2 of 189

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	06/17/2019	Initial Issue	

Summary of Test Results Clause FCC Rules **Test Results Test Items** 6dB Bandwidth and 99% 1 FCC Part 15.247 (a) (2) Pass Occupied Bandwidth Peak Conducted Output Power 2 FCC Part 15.247 (b) (3) Pass 3 Power Spectral Density Pass FCC Part 15.247 (e) Conducted Bandedge and 4 FCC Part 15.247 (d) Pass Spurious Emission FCC Part 15.247 (d) Radiated Bandedge and 5 FCC Part 15.209 Pass Spurious Emission FCC Part 15.205 Conducted Emission Test For 6 FCC Part 15.207 Pass **AC Power Port** 7 FCC Part 15.203 Antenna Requirement Pass

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	6
2.	TES	ST METHODOLOGY	7
3.	FA	CILITIES AND ACCREDITATION	7
4.	CA	LIBRATION AND UNCERTAINTY	8
	4.1.	MEASURING INSTRUMENT CALIBRATION	8
	4.2.	CMEASUREMENT UNCERTAINTY	8
5.	EQ	UIPMENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	CHANNEL LIST	10
	5.4.	TEST CHANNEL CONFIGURATION	10
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	11
	5.6.	THE WORSE CASE CONFIGURATIONS	11
	5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	12
,	5.8.	DESCRIPTION OF TEST SETUP	13
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	14
7.	ME	ASUREMENT METHODS	15
8.	AN [.]	TENNA PORT TEST RESULTS	16
	8.1.	ON TIME AND DUTY CYCLE	16
	8.2.	6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH	19
	8.2.	1. 802.11b SISO MODE	20
	8.2. 8.2.	9	
	8.2.		
	8.3.	PEAK CONDUCTED OUTPUT POWER	36
	8.3.		
	8.3. 8.3.	•	
	8.3.		
		POWER SPECTRAL DENSITY	
	8.4. 8.4.		
	8.4. 8.4.	G	
	8.4.		
	8.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	56

Page 5 of 189

	8.5.1.	802.11b SISO MODE	58
	8.5.2.	802.11g SISO MODE	
	8.5.3.	802.11n HT20 MIMO MODE	
	8.5.4.	802.11n HT40 MIMO MODE	82
9.	RADIA	TED TEST RESULTS	93
9		STRICTED BANDEDGE	
	9.1.1.	802.11b SISO MODE	
	9.1.2.	802.11g SISO MODE	104
	9.1.3.	802.11n HT20 MIMO MODE	
	9.1.4.	802.11n HT40 MIMO MODE	
9	.2. SP	PURIOUS EMISSIONS (3~18GHz)	
	9.2.1.	802.11b SISO MODE	
	9.2.2.	802.11g SISO MODE	
	9.2.3.	802.11n HT20 MIMO MODE	
	9.2.4.	802.11n HT40 MIMO MODE	141
9	.3. SP	PURIOUS EMISSIONS (1~3GHz)	147
	9.3.1.	802.11b SISO MODE	147
	9.3.2.	802.11g SISO MODE	
	9.3.3.	802.11n HT20 MIMO MODE	
	9.3.4.	802.11n HT40 MIMO MODE	165
9	.4. WC	ORST-CASE CO-LOCATION	171
	9.4.1.	BT GFSK AND 802.11n HT20 MIMO MODE	
	9.4.2.	BT GFSK AND 802.11n HT40 MIMO MODE	175
g	5 SP	PURIOUS EMISSIONS (18~25GHz)	179
Ü	9.5.1.	,	
a	6 SP	PURIOUS EMISSIONS (0.03 ~ 1 GHz)	
9	.o. o. 9.6.1.		181
_			
9		PURIOUS EMISSIONS BELOW 30M	
	9.7.1.	802. 11n HT20 MIMO MODE	183
10.	AC P	OWER LINE CONDUCTED EMISSIONS	186
1	0.1. 8	802. 11n HT20 MIMO MODE	187
11.	A NITT	ENNA REQUIREMENTS	400
11.	ANIC	EININA NEWUINEINI 13	

REPORT No.: 4788997152-3

Page 6 of 189

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Hui Zhou Gaoshengda Technology Co.,LTD

Address: NO.75 Zhongkai Development Area Huizhou, Guangdong China

Manufacturer Information

Company Name: Hui Zhou Gaoshengda Technology Co.,LTD

Address: NO.75 Zhongkai Development Area Huizhou, Guangdong China

EUT Description

EUT Name: WIFI+BT Module Model: WCT54M2001

Brand Name: GSD
Sample Status: Normal
Sample Received Date: May 7, 2019

Date of Tested: May 10, 2019 ~ June 17, 2019

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
CFR 47 FCC PART 15 SUBPART C	PASS				

Prepared By: Checked By:

Kebo Zhang

Engineer Project Associate

Sephenbus

kelo. Theny

Shawn Wen Laboratory Leader

Shemma les

Approved By:

Stephen Guo

Laboratory Manager

REPORT No.: 4788997152-3 Page 7 of 189

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 DTS Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, KDB 662911 D01 Multiple Transmitter Output v02r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15 and ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification
	rules
A come ditation	ISED(Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note:

- 1. All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
- 2. The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

REPORT No.: 4788997152-3 Page 8 of 189

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. CMEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62dB		
Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB		
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.00dB		
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	5.78dB (1GHz-18Gz)		
(1.5.12 to 2551.12)(marado i directino interiorità o modioni)	5.23dB (18GHz-26Gz)		

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

J.I. DESCINII	HON OF LOT
EUT Name	WIFI+BT Module
Model	WCT54M2001
Radio Technology	IEEE802.11b/g/n HT20/HT40
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
Rated Input	DC 3.3V

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)
2	IEEE 802.11b	2412-2462	1-11[11]	20.19
2	IEEE 802.11g	2412-2462	1-11[11]	22.72
2	IEEE 802.11nHT20	2412-2462	1-11[11]	24.75
2	IEEE 802.11nHT40	2422-2452	3-9[7]	23.78

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
1	2412	4	2427	7	2442	10	2457			
2	2417	5	2432	8	2447	11	2462			
3	2422	6	2437	9	2452	/	/			

Channel List for 802.11n (40 MHz)								
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
3	2422	5	2432	7	2442	9	2452	
4	2427	6	2437	8	2447	/	/	

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	CH 1, CH 6, CH 11	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT40)	CH 3, CH 6, CH 9	2422MHz, 2437MHz, 2452MHz

REPORT No.: 4788997152-3 Page 11 of 189

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Software		QATool_Dbg						
NA LLC	Transmit		Test Channel					
Modulation Mode	Antenna	N	ICB: 20MH	Z	NCB: 40MHz			
Wode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9	
802.11b	0	default	default	default				
002.110	1	default	default	default				
802.11g	0	default	default	default				
002.11g	1	default	default	default		/		
802.11n HT20	0	default	default	default				
802.111111120	1	default	default	default				
802.11n HT40	0	/	/	/	17	17	17	
002.111111140	1	/	/	/	17	17	17	

5.6. THE WORSE CASE CONFIGURATIONS

For SISO modes, there are two transmission antennas. The antenna used in any given time can be either ANTENNA 0 or ANTENNA 1. All antenna ports have the same power; output power measurement for SISO modes on both antennas are reported.

For 2TX MIMO modes, ANTENNA 0 and ANTENNA 1, used at the same time.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

Note: Only 802.11n HT20 and 802.11n HT40 support MIMO mode, for 802.11b and 802.11g, all antennas had been test, but only the worst data for Antenna 1 was recorded. For 802.11n HT20 and 802.11n HT40, all antennas had the same power in MIMO mode and SISO mode, so only the worst data for MIMO mode was recorded.

REPORT No.: 4788997152-3 Page 12 of 189

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
0	2412-2462	PIFA Antenna	4.74
1	2412-2462	PIFA Antenna	4.74

Note: Directional gain= G_{ANT} + 10 log(N_{ANT}) dBi=7.75dBi

G_{ANT} : Antenna Gain N_{ANT} : Antenna numbers

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠2TX, 2RX	Antenna 0 and Antenna 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠2TX, 2RX	Antenna 0 and Antenna 1 can be used as transmitting/receiving antenna
IEEE 802.11n HT20	⊠2TX, 2RX	Antenna 0 and Antenna 1 can be used as transmitting/receiving antenna
IEEE 802.11n HT40	⊠2TX, 2RX	Antenna 0 and Antenna 1 can be used as transmitting/receiving antenna

5.8. DESCRIPTION OF TEST SETUP

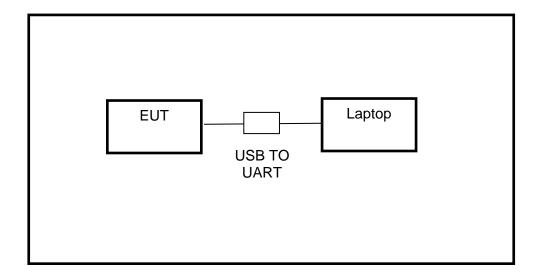
SUPPORT EQUIPMENT

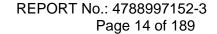
Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	T460S	SL10K24796 JS
2	USB TO UART	/	1	/

I/O CABLES

Item	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	0.50	/

Note: The USB cable is for debugging only.

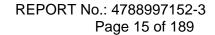

ACCESSORIES


Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS



6. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions								
			Instru	ment				
Used	Equipment	Manufacturer	Mode	Model No.		No.	Last Cal.	Next Cal.
$\overline{\checkmark}$	EMI Test Receiver	R&S	ES	R3	1019	61	Dec.10,2018	Dec.10,2019
V	Two-Line V- Network	R&S	EN\	/216	1019	83	Dec.10,2018	Dec.10,2019
V	Artificial Mains Networks	Schwarzbeck	NSLK	8126	81264	165	Dec.10,2018	Dec.10,2019
Software								
Used	Des	cription		Man	ufacture	er	Name	Version
\checkmark	Test Software for C	Conducted distu	rbance	F	arad		EZ-EMC	Ver. UL-3A1
		Rad	iated E	missic	ns			
			Instru	ment				
Used	Equipment	Manufacturer	Mode	el No.	Serial	No.	Last Cal.	Next Cal.
V	MXE EMI Receiver	KESIGHT	N90	38A	MY56- 036		Dec.10,2018	Dec.10,2019
V	Hybrid Log Periodic Antenna	TDK	HLP-	3003C	1309	60	Sep.17, 2018	Sep.17, 2021
V	Preamplifier	HP	844	17D	2944A 99		Dec.10,2018	Dec.10,2019
V	EMI Measurement Receiver	R&S	ES	R26	1013	77	Dec.10,2018	Dec.10,2019
\checkmark	Horn Antenna	TDK	HRN	-0118	1309	39	Sep.17, 2018	Sep.17, 2021
V	High Gain Horn Antenna	Schwarzbeck	BBHA	\-9170	691	1	Aug.11, 2018	Aug.11, 2021
V	Preamplifier	TDK	PA-02	2-0118	TRS-3		Dec.10,2018	Dec.10,2019
V	Preamplifier	TDK	PA-	02-2	TRS-3		Dec.10,2018	Dec.10,2019
\checkmark	Loop antenna	Schwarzbeck	15 ⁻	19B	0000	80	Jan.07, 2019	Jan.07, 2022
V	Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS		4		Dec.10,2018	Dec.10,2019
	High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS		23		Dec.10,2018	Dec.10,2019
			Softw	/are				
Used	Descr	ription	М	anufac	turer		Name	Version
\checkmark	Test Software for Radiated disturbance			Fara	b		EZ-EMC	Ver. UL-3A1

	Other instruments							
Used	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.		
V	Spectrum Analyzer	Keysight	N9030A	MY55410512	Dec.10,2018	Dec.10,2019		
V	Power Meter	Keysight	N1911A	MY55416024	Dec.10,2018	Dec.10,2019		
V	Power Sensor	Keysight	U2021XA	MY5100022	Dec.10,2018	Dec.10,2019		

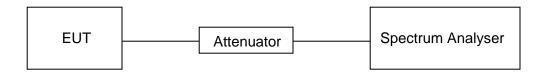
7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 DTS Meas Guidance v05r02	8.2
2	Peak Output Power	KDB 558074 D01 DTS Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 DTS Meas Guidance v05r02	8.4
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 DTS Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 DTS Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 DTS Meas Guidance v05r02	8.7
7	Conducted Emission Test For AC Power Port	ANSI C63.10-2013	6.2

REPORT No.: 4788997152-3 Page 16 of 189

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	23.6°C	Relative Humidity	67%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

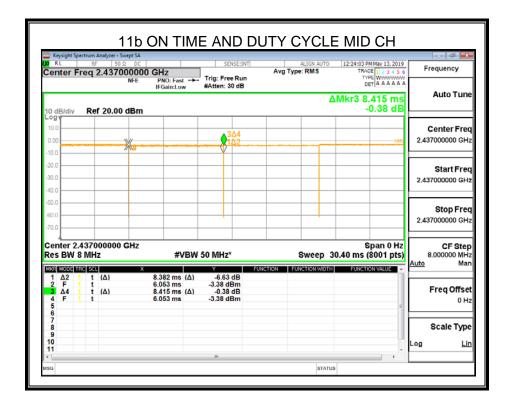
RESULTS

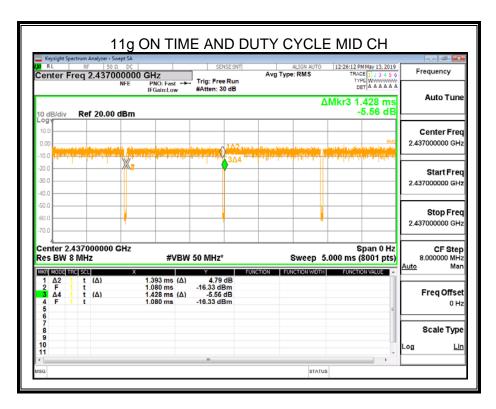
ANTENNA 1

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11b	8.382	8.415	0.996	99.61%	0.0174	0.12	0.01
11g	1.393	1.428	0.975	97.55%	0.110	0.72	1
11n20	1.301	1.336	0.974	97.38%	0.114	0.769	1
11n40	0.648	0.683	0.949	94.88%	0.227	1.54	2

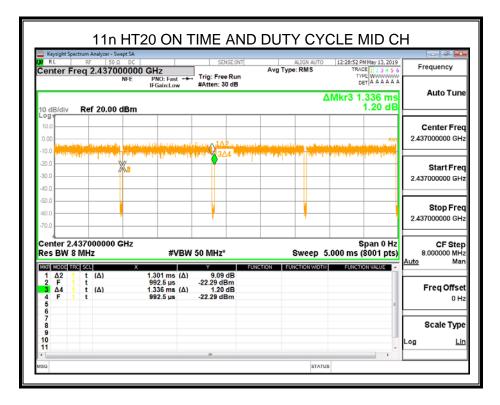
Note:

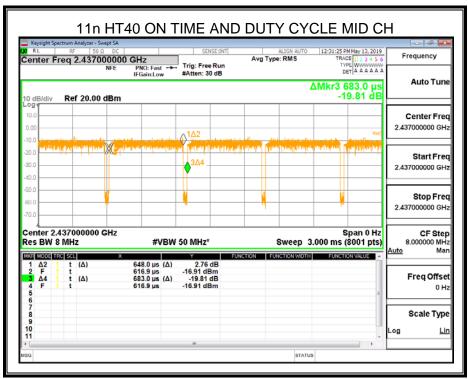
Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)


Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

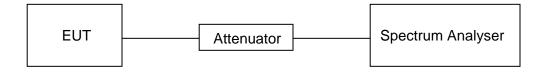

Antenna 0 and Antenna 1 has the same duty cycle, only Antenna 1 data show here.



8.2. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500KHz	2400-2483.5		
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5		


TEST PROCEDURE

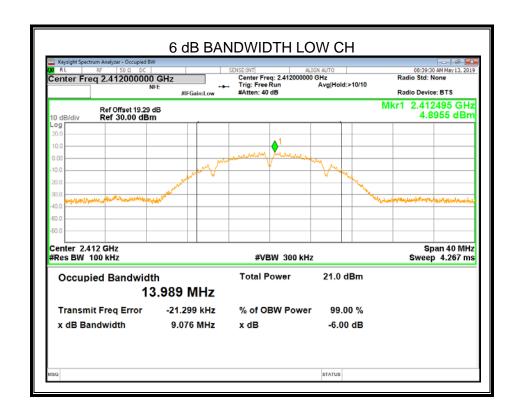
Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6dB Bandwidth :100K For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth
1\/ B \/ \/	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

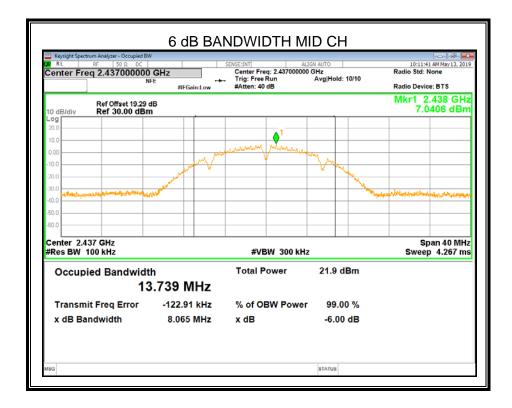
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

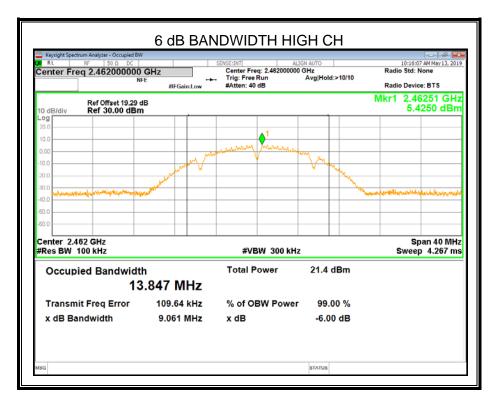
TEST SETUP

TEST ENVIRONMENT

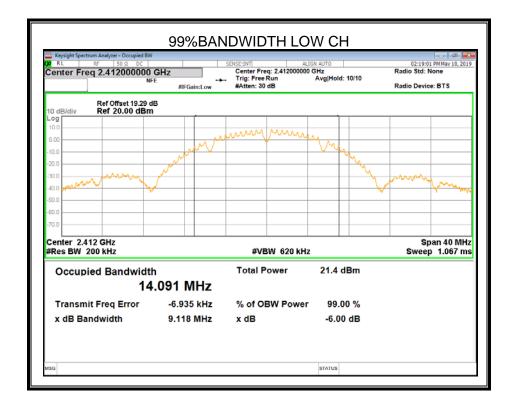

Temperature	23.6°C	Relative Humidity	67%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

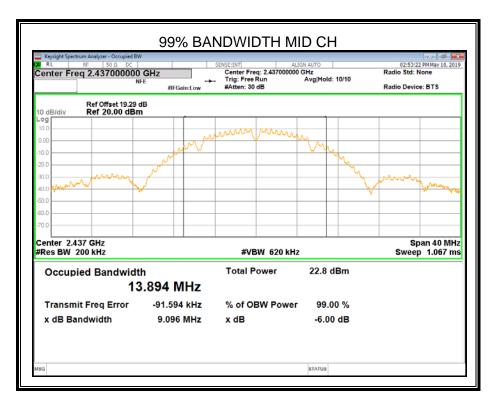
RESULTS

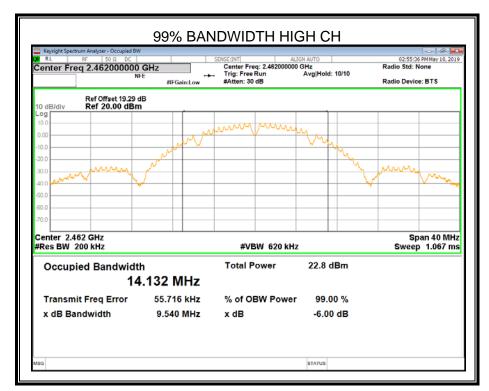

8.2.1. 802.11b SISO MODE

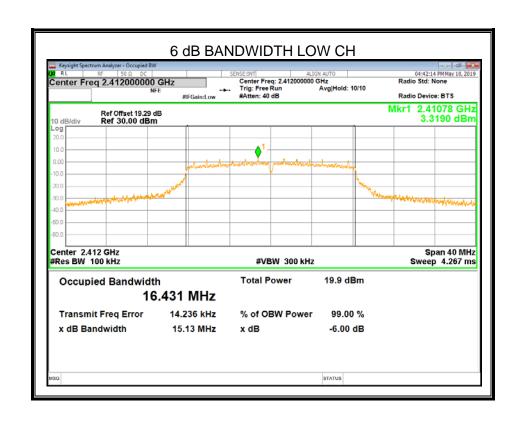

ANTENNA 1

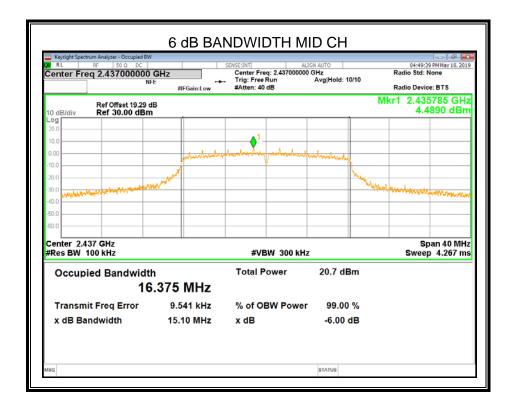
Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	9.076	14.091	≥500	Pass
Middle	8.065	13.894	≥500	Pass
High	9.061	14.132	≥500	Pass

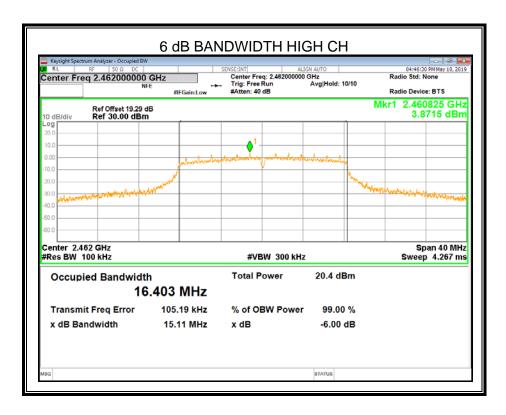




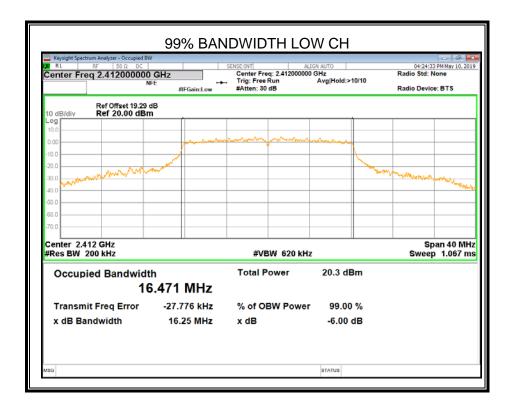


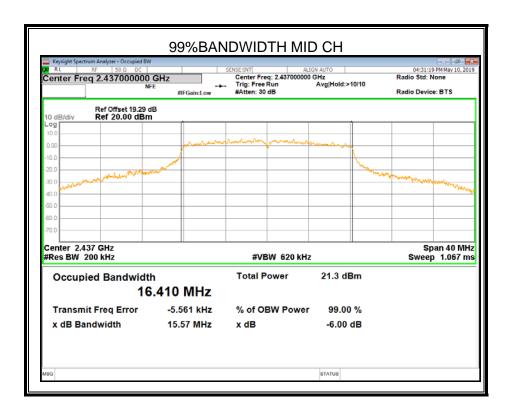

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

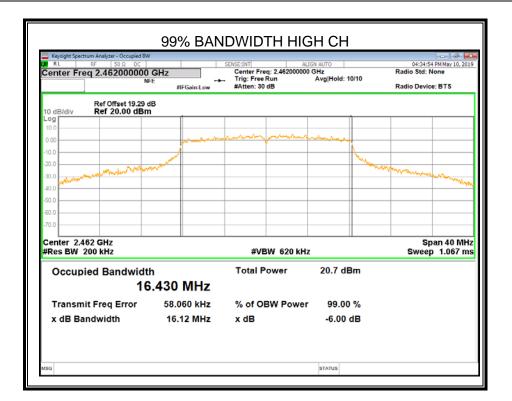

8.2.2. 802.11g SISO MODE

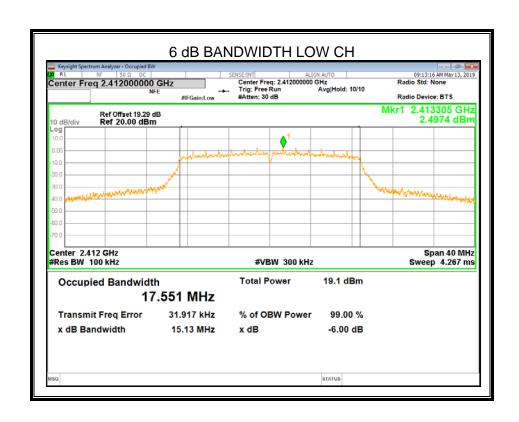

ANTENNA 1

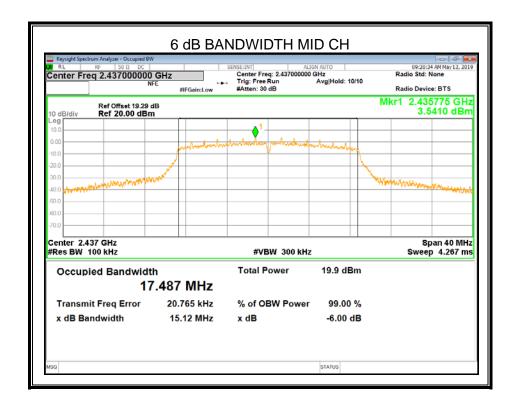
Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	15.13	16.471	≥500	Pass
Middle	15.10	16.410	≥500	Pass
High	15.11	16.430	≥500	Pass

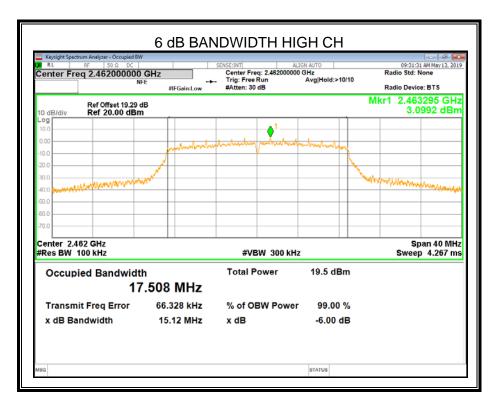




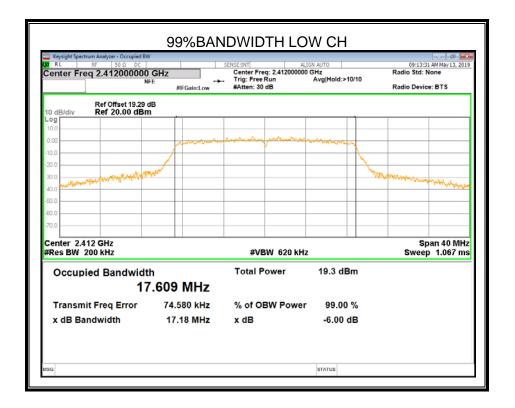


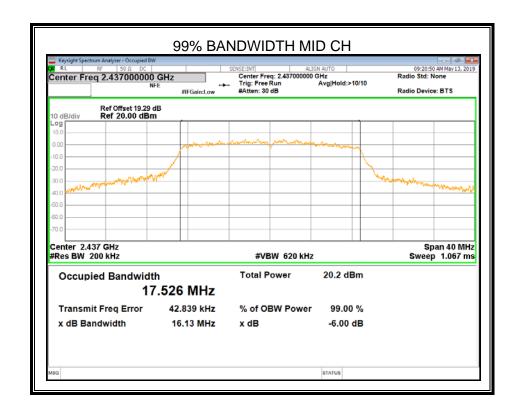

Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

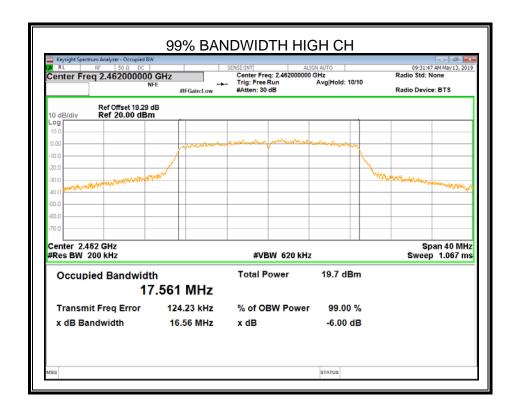

8.2.3. 802.11n HT20 MIMO MODE

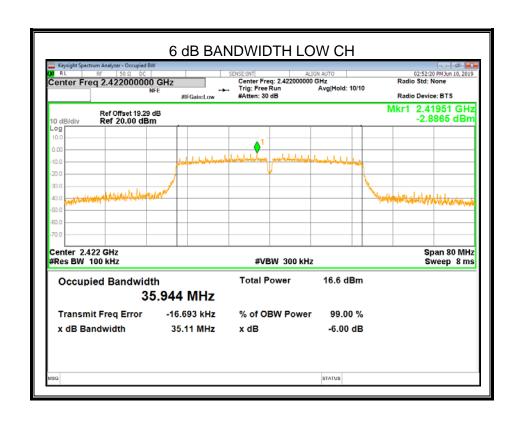

ANTENNA 1

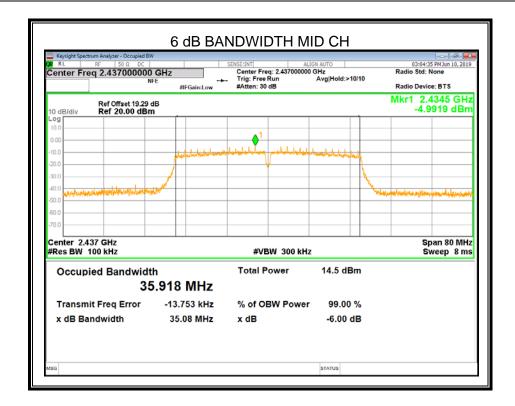
Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	15.13	17.609	≥500	Pass
Middle	15.12	17.526	≥500	Pass
High	15.12	17.561	≥500	Pass

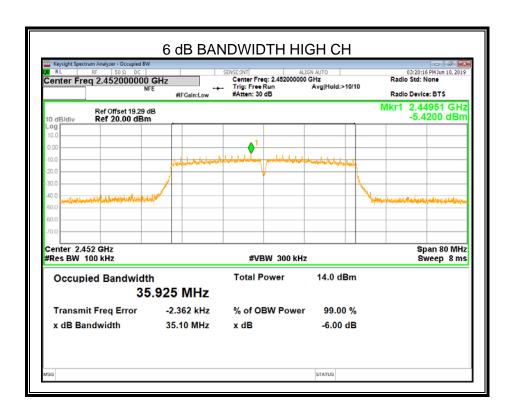




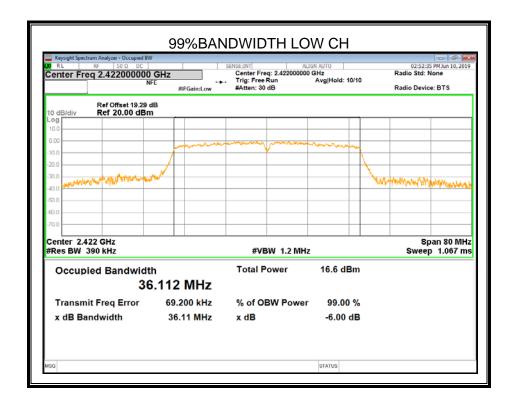


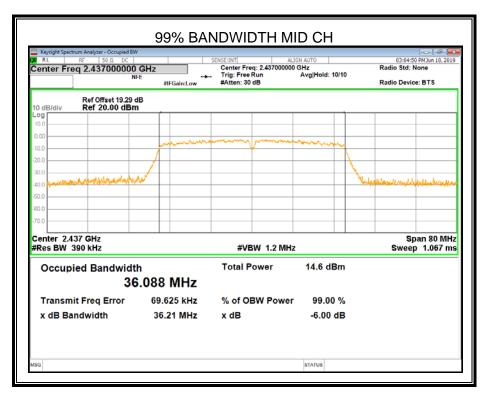


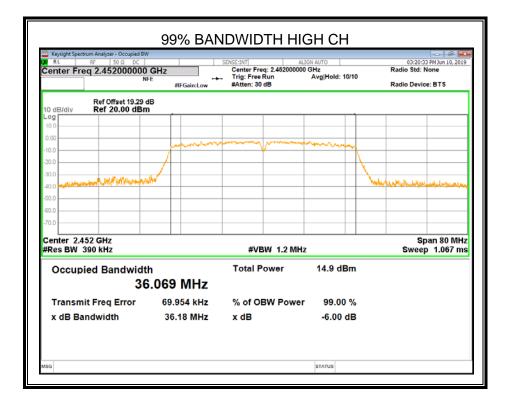

8.2.4. 802.11n HT40 MIMO MODE


ANTENNA 1

Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Limit (kHz)	Result
Low	35.11	36.112	≥500	Pass
Middle	35.08	36.088	≥500	Pass
High	35.10	36.069	≥500	Pass







Note: All modes and antennas had been tested, but only the worst data recorded in the report.

8.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

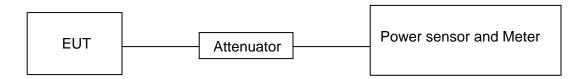
CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Ra				
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Output Power	1 watt or 30dBm (See Note 1/2)	2400-2483.5	

^{1.} The total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi 2. Limit=30dBm – 1.

Directional gain = G_{ANT} + 10 $Iog(N_{ANT})$ dBi, where N_{ANT} is the number of outputs, G_{ANT} is the Antenna gain.

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.


Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure peak power each channel.

Peak Detector use for Peak result.

AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.6°C	Relative Humidity	67%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

RESULTS

8.3.1. 802.11b SISO MODE

Frequency	ANT	Maximum PK Conducted Output Power (dBm)		Limit	Result
(MHz)		Single	Total		
Low	0	16.66			
Low	1	18.64			
Middle	0	17.49	,	29	PASS
Middle	1	20.19	/	29	PASS
High	0	17.30			
	1	20.08			

Frequency (MHz)	ANT	Maximum AV Condu (dBr Single	•	Limit	Result
	0	14.51			
Low	1	16.67			
Middle	0	15.52	,	20	PASS
ivildale	1	17.81	/	29	PASS
High	0	15.14			
High	1	17.88			

8.3.2. 802.11g SISO MODE

Frequency	ANT	Maximum PK Conducted Output Power (dBm)		Limit	Result
(MHz)		Single	Total		
Low	0	20.86			
Low	1	21.99			
Middle	0	21.69	,	20	PASS
Middle	1	22.72	/	29	PASS
High	0	21.34			
	1	22.34			

Frequency	ANT	Maximum AV Conducted Output Power (dBm)		Limit	Result
(MHz)		Single	Total		
Low	0	14.00			
Low	1	14.60			
Middle	0	14.65	,	20	PASS
ivildale	1	15.12	/	29	PASS
Lligh	0	14.32			
High	1	14.71			

8.3.3. 802.11n HT20 MIMO MODE

Frequency	ANT	Maximum PK Condu (dBi		Limit	Result
(MHz)		Single	Total		
Low	0	19.71	24.12		
Low	1	22.17	24.12	20	PASS
Middle	0	20.47	04.75		
ivildale	1	22.72	24.75	29	PASS
Lligh	0	20.12	24.32		
High	1	22.25	24.32		

Frequency (MHz)	ANT	Maximum AV Condu (dBi Single	<u>.</u>	Limit	Result
Low	0	12.87	16.22		
Low	1	13.53	10.22	29	PASS
Middle	0	13.61	47.00		
Middle	1	14.40	17.03	29	PASS
Lliah	0	13.26	16.50		
High	1	13.70	16.50		

8.3.4. 802.11n HT40 MIMO MODE

Frequency	ANT		PK Conducted Output Power (dBm)		Result
(MHz)		Single	Total		
Low	0	19.74	23.78		
LOW	Low 1 21.60	21.60	23.70	20	DACC
Middle	0	19.58	00.70		
Middle	1	21.62	23.73	29	PASS
Lliah	0	19.25	23.36		
High	1	21.22	23.30		

Frequency (MHz)	ANT	Maximum AV Condu (dBı Single		Limit	Result
1	0	12.73			
Low	ow 1 13.33 16.05	16.05			
Middle	0	12.82	15.98	29	PASS
ivildale	1	13.12	13.90	29	PASS
High	0	12.46	15.69		
High	1	12.88	15.69		

8.4. POWER SPECTRAL DENSITY

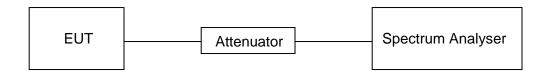
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz (See Note 1/2)	2400-2483.5	

^{1.} If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Directional gain = Gant + 10 log(Nant) dBi, where Nant is the number of outputs, Gant is the Antenna gain.

TEST PROCEDURE


Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

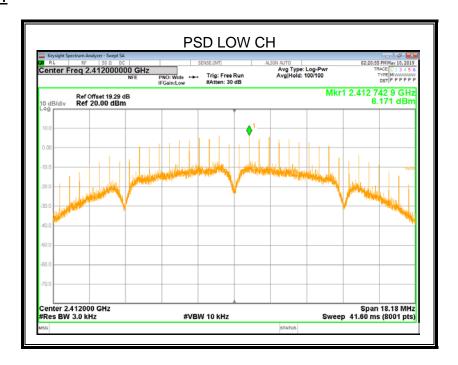
TEST SETUP

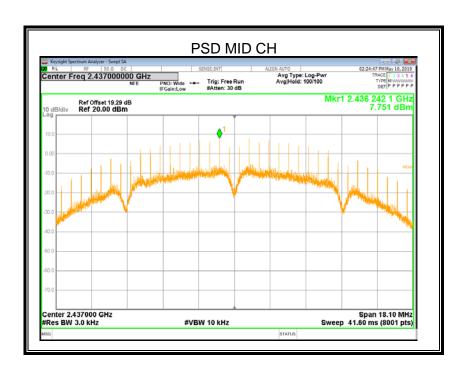
^{2.} Limit=8dBm – (Directional gain -6)dBi

REPORT No.: 4788997152-3

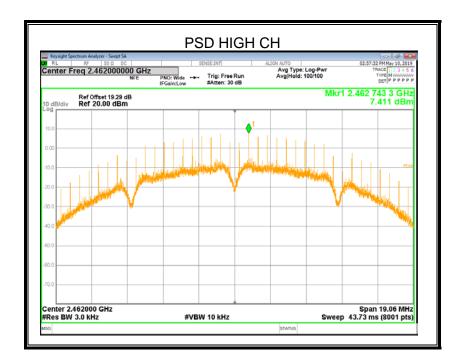
Page 42 of 189

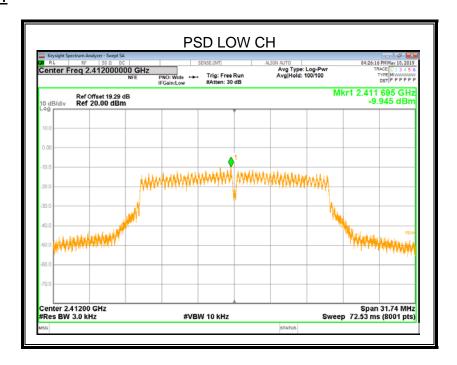
TEST ENVIRONMENT

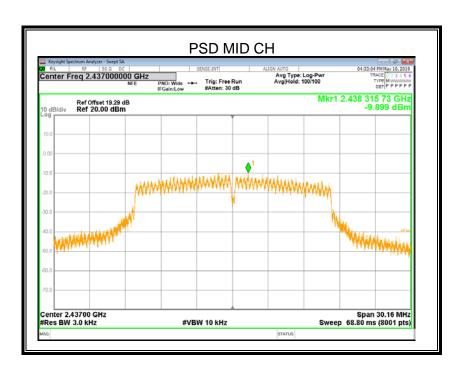

Temperature	24.1°C	Relative Humidity	58%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V


RESULTS

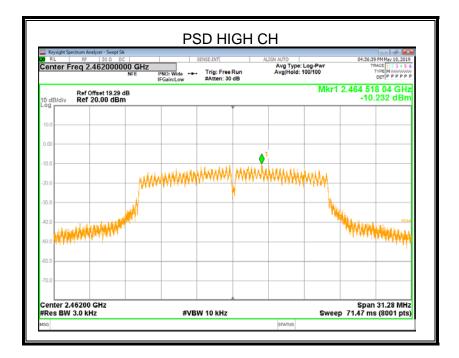
8.4.1. 802.11b SISO MODE


Frequency	ANT	Power Spectral Density (dBm/3kHz)		Limit
(MHz)		Single	Total	(dBm/3kHz)
Low	1	6.171		
Middle	1	7.751	NA	8
High	1	7.411		

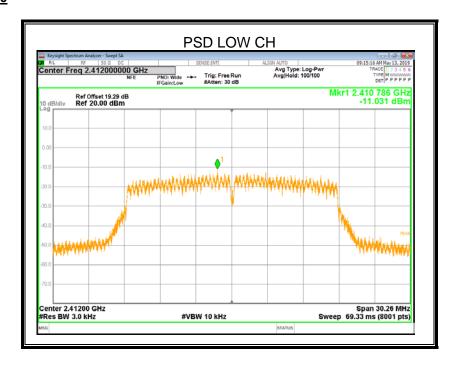

Note: All antennas had been test ,but only the worst data for Antenna 0 was recorded.

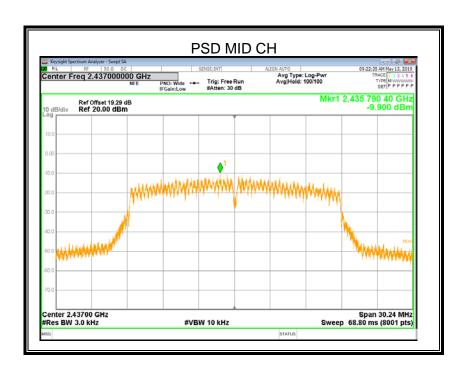


8.4.1. 802.11g SISO MODE

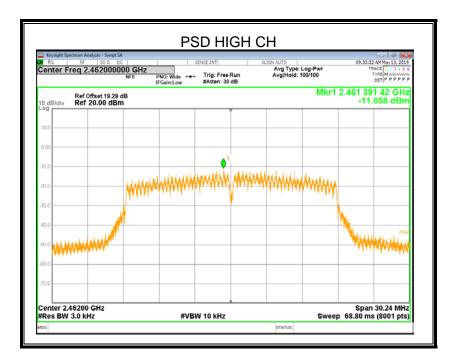

Frequency	ANT	Power Spectral Density (dBm/3kHz)		Limit
(MHz)		Single	Total	(dBm/3kHz)
Low	1	-9.945		
Middle	1	-9.899	NA	8
High	1	-10.232		

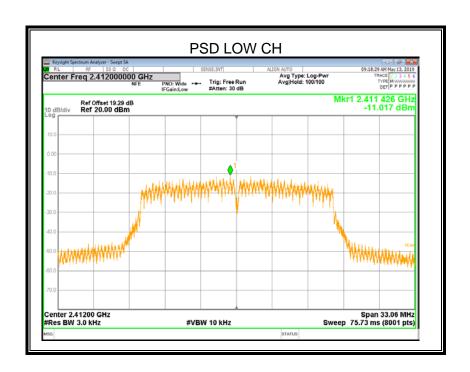
Note: All antennas had been test ,but only the worst data for Antenna 0 was recorded.

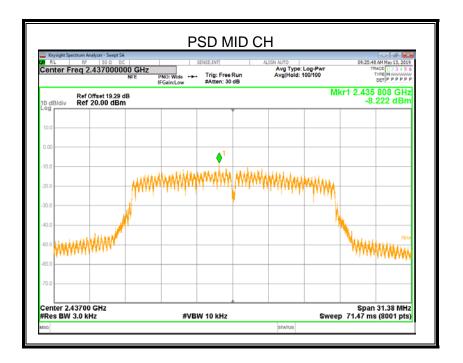


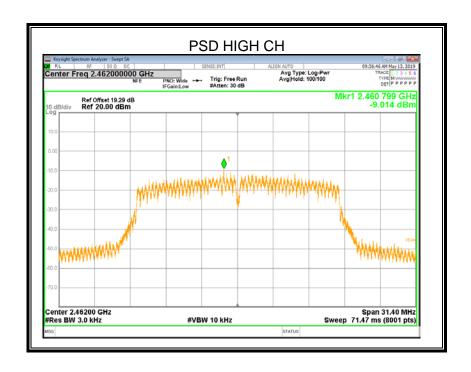

Page 48 of 189

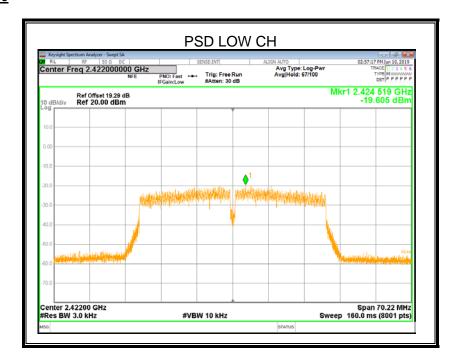
8.4.2. 802.11n HT20 MIMO MODE

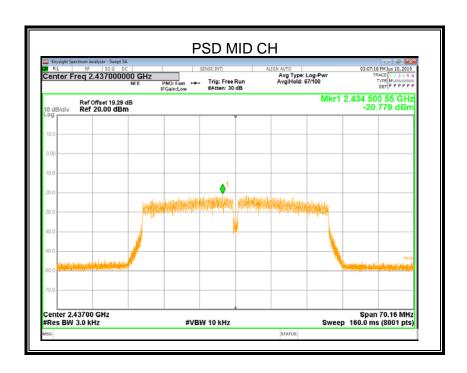

Frequency	ANT	Power Spectral Density (dBm/3kHz)		Limit
(MHz)		Single	Total	(dBm/3kHz)
Low	0	-11.031	-8.01	
	1	-11.017		
Middle	0	-9.900	-5.97	6.25
	1	-8.222		
High	0	-11.058	6.01	
	1	-9.014	-6.91	



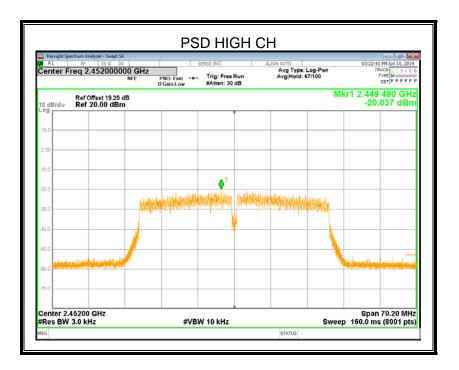


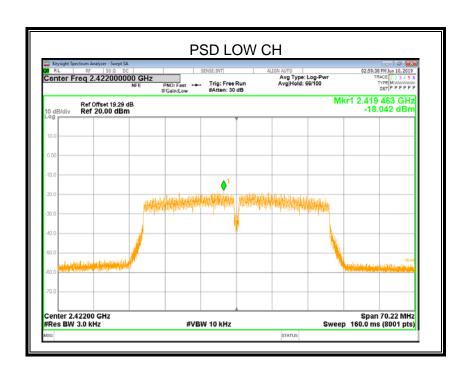


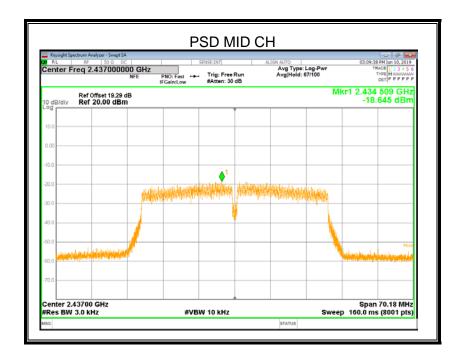


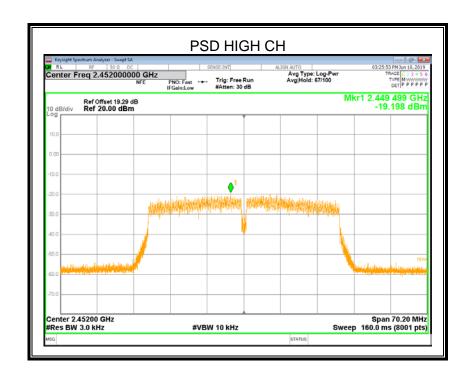


8.4.3. 802.11n HT40 MIMO MODE


Frequency	ANT	Power Spectral Density (dBm/3kHz)		Limit
(MHz)		Single	Total	(dBm/3kHz)
Low	0	-19.605	-15.74	
	1	-18.042		
Middle	0	-20.779	-16.57 -16.59	6.25
	1	-18.645		
High	0	-20.037		
	1	-19.198		







8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

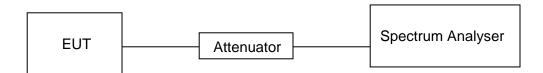
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

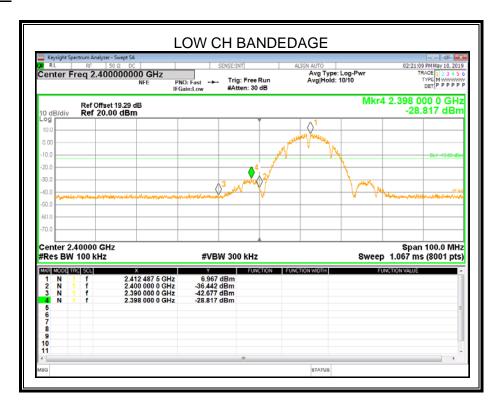
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

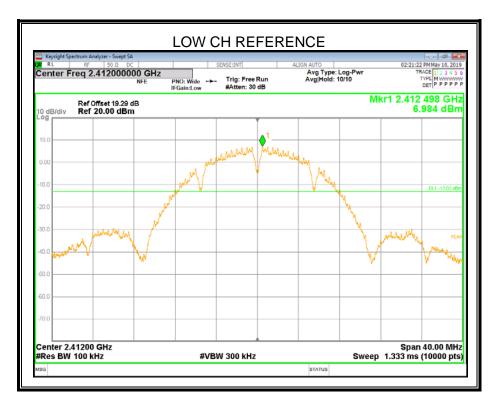

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

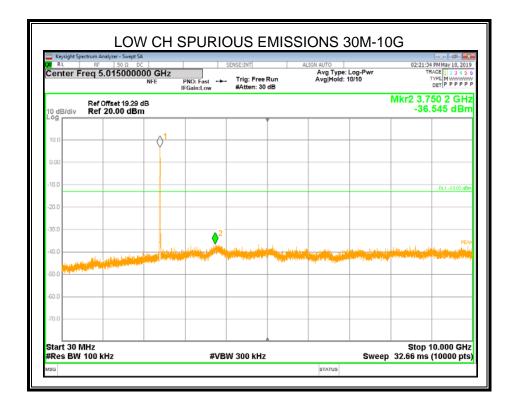
Use the peak marker function to determine the maximum amplitude level.

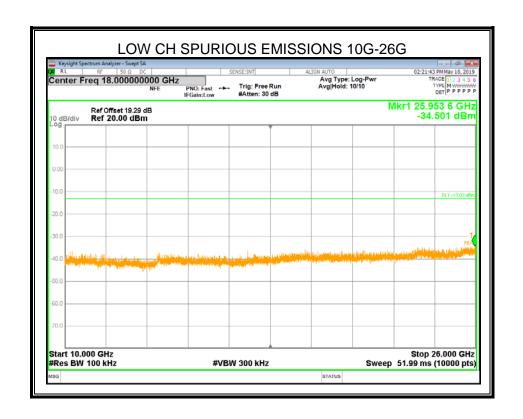
TEST SETUP

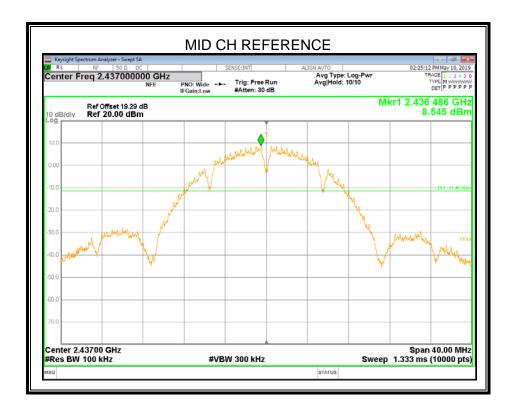

TEST ENVIRONMENT

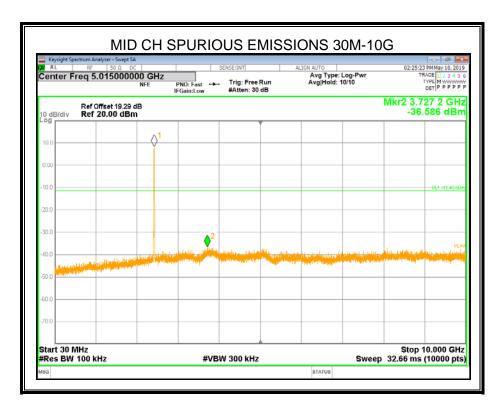

Temperature	23.8°C	Relative Humidity	54%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3V

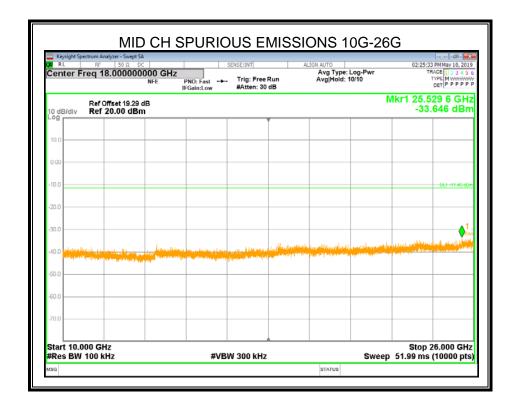
RESULTS

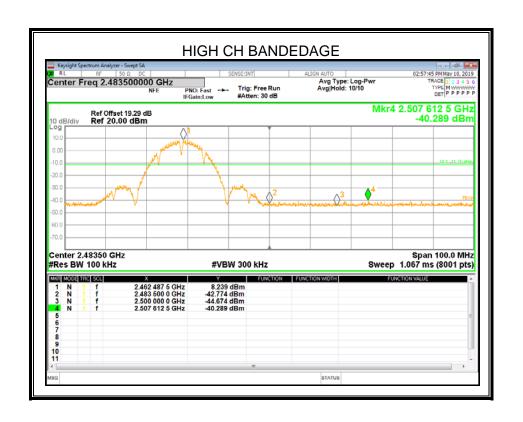


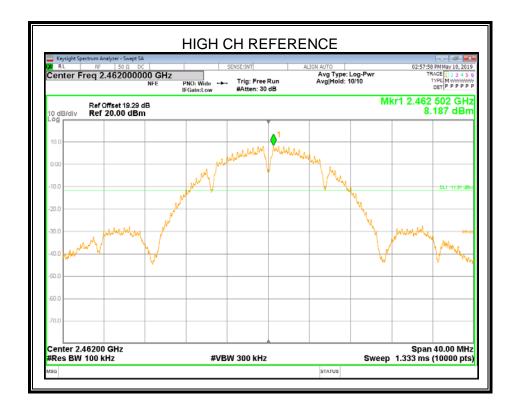

8.5.1. 802.11b SISO MODE

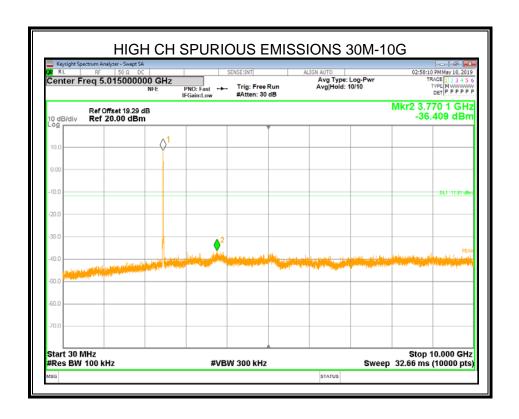


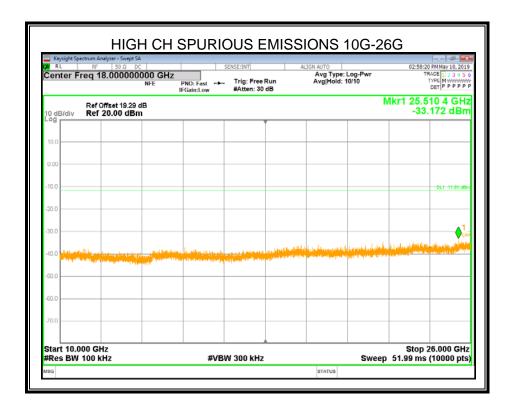


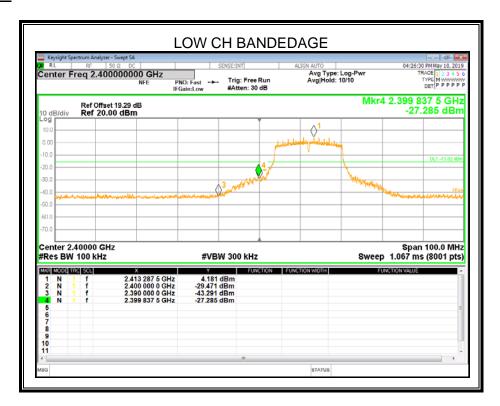


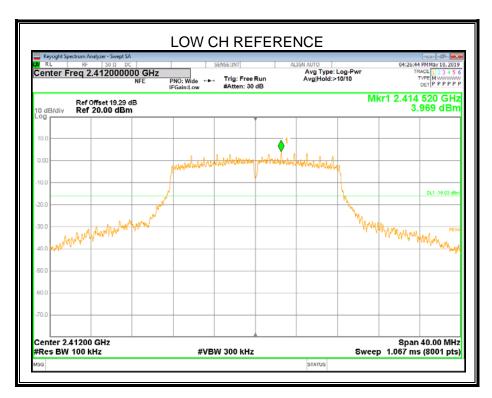




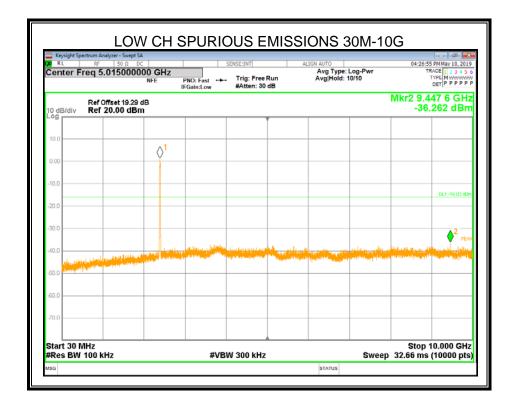


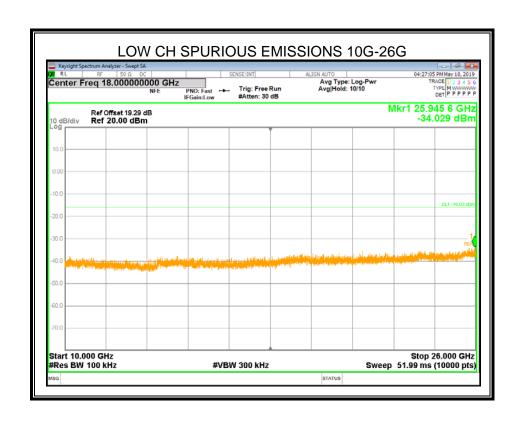


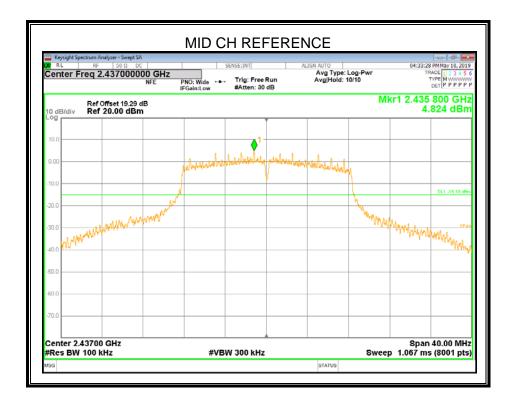


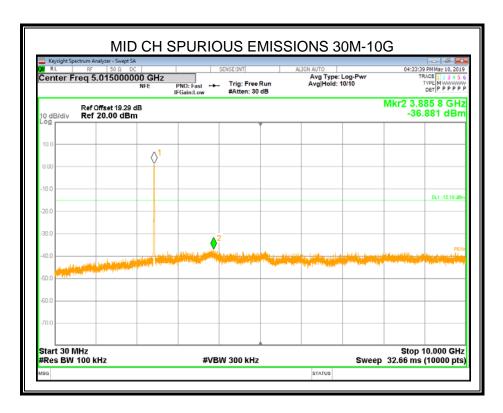


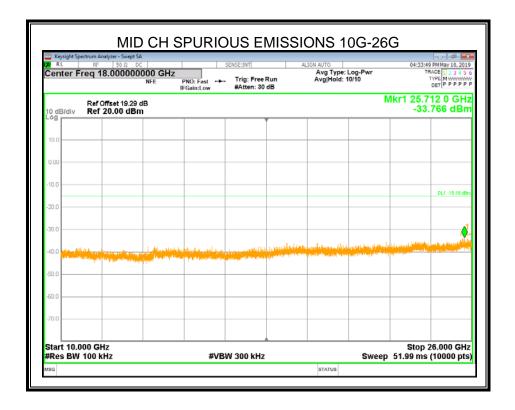
Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.

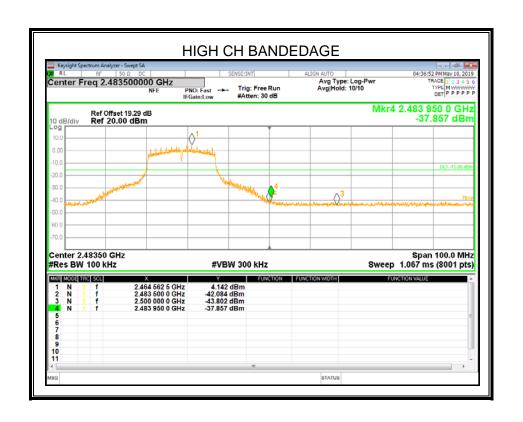


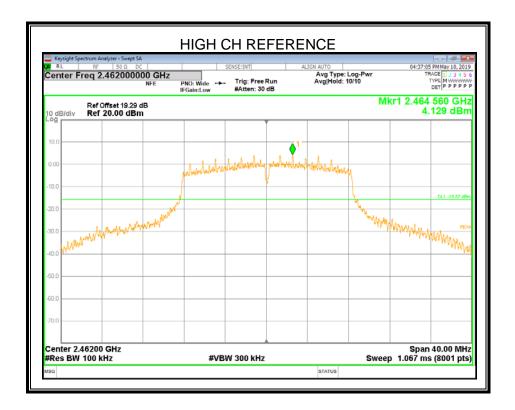

8.5.2. 802.11g SISO MODE

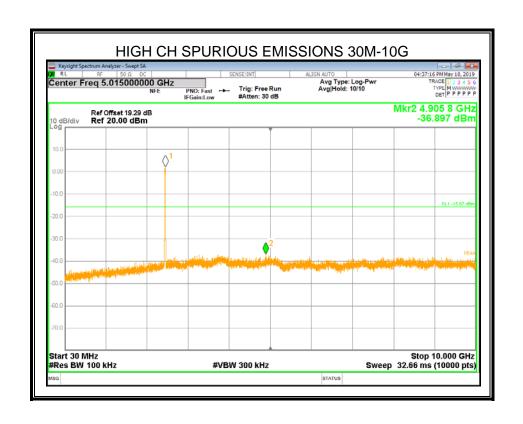


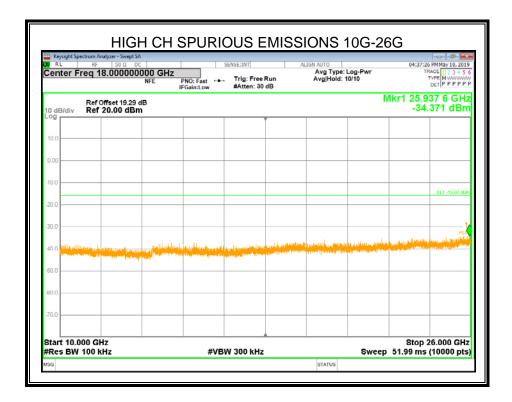












Note: All the modes and antenna ports had been tested, only the worst data recorded in the report.