
Product **Trade mark** Model/Type reference **Serial Number Report Number** FCC ID Date of Issue **Test Standards Test result**

- WIFI+BT Module
- GSD
- : WCT0SR2311
- N/A :
- EED32L00189801
- : 2AC23-WCT0S
- : Feb. 27, 2020
- 47 CFR Part 15Subpart C
- : PASS

Prepared for:

Hui Zhou Gaoshengda Technology Co., LTD NO.75 Zhongkai Development Area, Huizhou, Guangdong, China


> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

2 Version

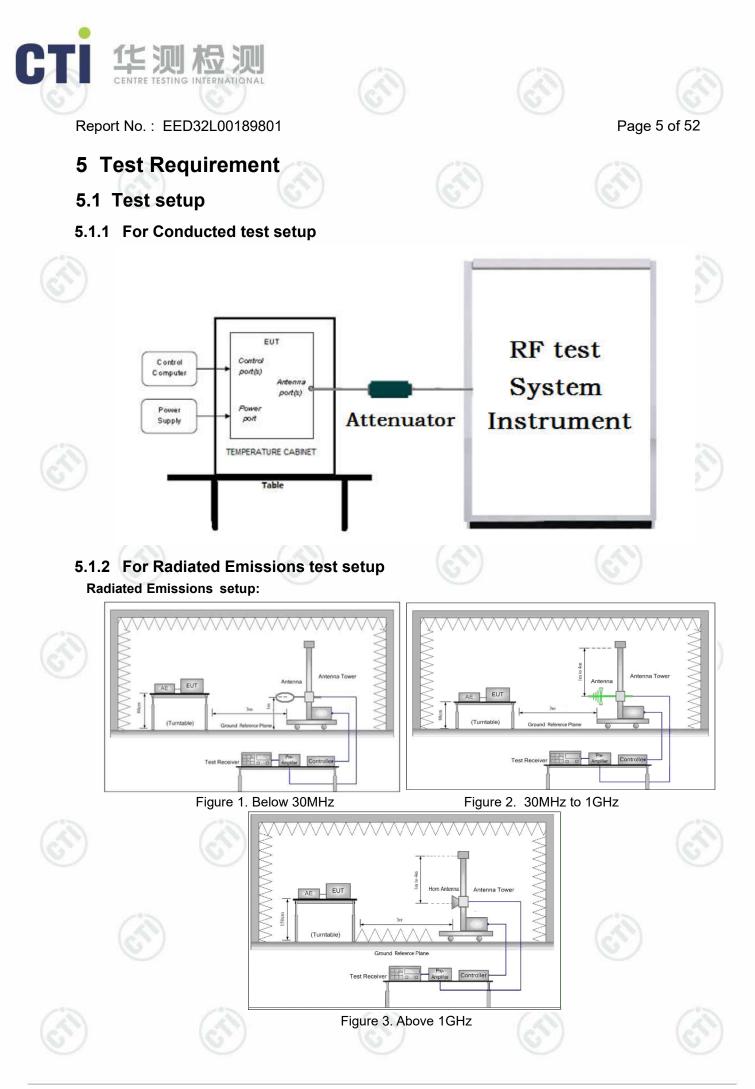
Version No.	Date	<u> </u>	Description)
00	Feb. 27, 2020		Original	
	12	12	13	10
	28)	(2S)		(3

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

CUM

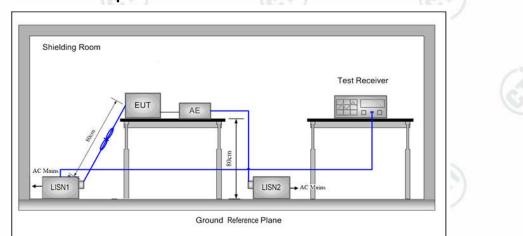
Page 3 of 52

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS


Remark:

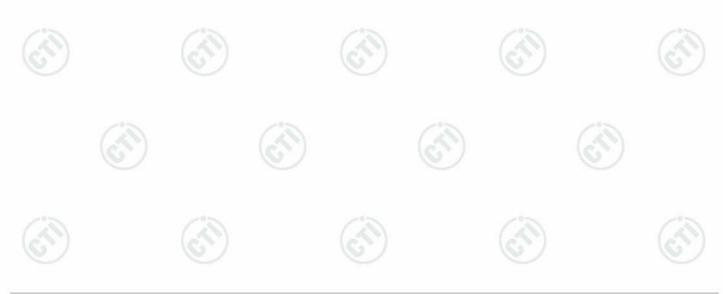
Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

4 Content 1 COVER PAGE			
2 VERSION			
3 TEST SUMMARY			
4 CONTENT			
5 TEST REQUIREMENT			
5.1 TEST SETUP 5.1.1 For Conducted test se 5.1.2 For Radiated Emissior 5.1.3 For Conducted Emissi 5.2 TEST ENVIRONMENT	tup ns test setup ons test setup		
5.3 TEST CONDITION 6 GENERAL INFORMATION			
 6.2 GENERAL DESCRIPTION OF E 6.3 PRODUCT SPECIFICATION SU 6.4 DESCRIPTION OF SUPPORT U 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARD 6.7 ABNORMALITIES FROM STAND 6.8 OTHER INFORMATION REQUE 6.9 MEASUREMENT UNCERTAINT 	IBJECTIVE TO THIS STANDARD JNITS S DARD CONDITIONS ESTED BY THE CUSTOMER		
7 EQUIPMENT LIST			
8 RADIO TECHNICAL REQUIRE	MENTS SPECIFICATION		
Appendix A): 6dB Occupied Appendix B): Conducted Pe Appendix C): Band-edge for Appendix D): RF Conducted Appendix E): Power Spectra Appendix F): Antenna Requ Appendix G): AC Power Line Appendix H): Restricted ban	Bandwidth ak Output Power RF Conducted Emissions I Spurious Emissions al Density irement e Conducted Emission ds around fundamental freque ous Emissions	ency (Radiated)	
PHOTOGRAPHS OF TEST SET			
PHOTOGRAPHS OF EUT CONS			
	(J)	(A)	 6



Page 6 of 52

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

	- () () () () () () () () () (
Operating Environment:	I A A A A A A A A A A A A A A A A A A A		e
Temperature:	24.0 °C		
Humidity:	55 % RH	ni2	
Atmospheric Pressure:	1010mbar		
6.21	(C.7.)		

5.3 Test Condition

Test channel:

10-00	Test Mode	Tx/Rx		RF Channel	100
~	Test Mode		Low(L)	Middle(M)	High(H)
5)	0501/		Channel 1	Channel 20	Channel 40
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	Keep the EUT in transmitting mod rate.	le with all kind of n	nodulation and a	all kind of data

6 General Information

6.1 Client Information

Applicant:	Hui Zhou Gaoshengda Technology Co.,LTD	
Address of Applicant:	NO.75 Zhongkai Development Area,Huizhou,Guangdong, China	
Manufacturer:	Hui Zhou Gaoshengda Technology Co.,LTD	100
Address of Manufacturer:	NO.75 Zhongkai Development Area,Huizhou,Guangdong, China	(2)
Factory:	Hui Zhou Gaoshengda Technology Co.,LTD	6
Address of Factory:	NO.75 Zhongkai Development Area,Huizhou,Guangdong, China	

Page 7 of 52

6.2 General Description of EUT

Product Name:	WIFI+BT Module			
Model No.(EUT):	WCT0SR2311		C.	
Trade mark:	GSD			
EUT Supports Radios application:	BT4.1 Dual mode 2402MHz to 2480MHz	~>		10
Power Supply:	DC 5V	(3)		(25)
Sample Received Date:	Jul. 17, 2019	U		S
Sample tested Date:	Jul. 17, 2019 to Sep. 09, 2019			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	4.1			
Modulation Technique:	DSSS			
Modulation Type:	GFSK	1		13
Number of Channel:	40	(3)		6
Test Power Grade:	Default			U
Test Software of EUT:	Bluetooth RF Test Tool V5.1.1.1			
Antenna Type and Gain:	Type: PIFA antenna Gain:2dBi			
Test Voltage:	DC 5V		S.	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.


6.7 Abnormalities from Standard Conditions

None.

None.

6.8 Other Information Requested by the Customer

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 9 of 52

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

7 Equipment List

		RF test	-		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-29-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Attenuator	HuaXiang	SHX370	15040701	03-01-2019	02-29-2020
Signal Generator	Keysight	N5181A	MY46240094	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	(The second seco	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	6	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-09-2019	01-08-2020
Communicati on test set	R&S	CMW500	107929	04-28-2019	04-27-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d	<u></u>	03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-01-2019	02-29-2020
high-low temperature test chamber	DongGuangQi nZhuo	LK-80GA	QZ20150611 879	03-01-2019	02-29-2020

(Conducted dist	urbance Tes	st		
Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
R&S	ESCI	100435	05-20-2019	05-19-2020	
Defu	TH128	1	06-14-2019	06-13-2020	
Agilent	E5515C	GB47050 534	03-01-2019	02-28-2022	
R&S	CMW500	102898	01-18-2019	01-17-2020	
R&S	ENV216	100098	05-08-2019	05-07-2020	
schwarzbeck	NNLK8121	8121-529	05-08-2019	05-07-2020	
R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-12-2020	
R&S	EZ-17 816.2063.03	100106	05-20-2019	05-19-2020	
TESEQ	ISN T800	30297	01-16-2019	01-15-2020	
changchun	DYM3	1188	06-20-2019	06-19-2020	
	Manufacturer R&S Defu Agilent R&S R&S schwarzbeck R&S R&S	ManufacturerModel No.R&SESCIDefuTH128AgilentE5515CR&SCMW500R&SENV216schwarzbeckNNLK8121R&SESH2-Z3 0299.7810.5 6R&SESH2-Z3 0299.7810.5 6R&SEZ-17 816.2063.03TESEQISN T800	Manufacturer Model No. Serial Number R&S ESCI 100435 Defu TH128 / Agilent E5515C GB47050 534 R&S CMW500 102898 R&S ENV216 100098 schwarzbeck NNLK8121 8121-529 R&S ESH2-Z3 0299.7810.5 6 100042 R&S EZ-17 816.2063.03 100106 TESEQ ISN T800 30297	Manufacturer Model No. Number Iteration (mm-dd-yyyy) R&S ESCI 100435 05-20-2019 Defu TH128 / 06-14-2019 Agilent E5515C GB47050 534 03-01-2019 R&S CMW500 102898 01-18-2019 R&S ENV216 100098 05-08-2019 schwarzbeck NNLK8121 8121-529 05-08-2019 R&S ESH2-Z3 0299.7810.5 6 100042 06-13-2017 R&S EZ-17 816.2063.03 100106 05-20-2019 TESEQ ISN T800 30297 01-16-2019	

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Equipment

3M Chamber &

Accessory Equipment

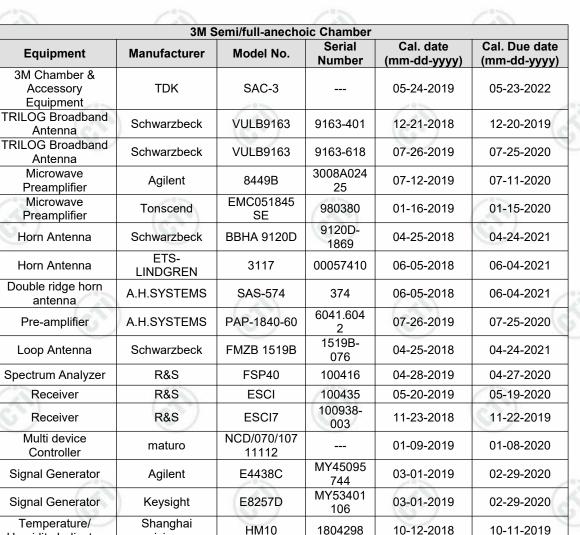
Antenna

Antenna Microwave

Preamplifier

Microwave

Preamplifier


Horn Antenna

Horn Antenna

Double ridge horn

antenna

Page 12 of 52

Pre-amplifier Loop Antenna Spectrum Analyzer Receiver Receiver Multi device Controller Signal Generator Signal Generator Temperature/ HM10 1804298 10-12-2018 Humidity Indicator qixiang Communication test GB47050 Agilent E5515C 03-01-2019 02-28-2022 set 534 SF106 Cable line Fulai(7M) 5219/6A 01-09-2019 01-08-2020 SF106 01-09-2019 Fulai(6M) 5220/6A 01-08-2020 Cable line 01-08-2020 Fulai(3M) SF106 5216/6A Cable line 01-09-2019 5217/6A Cable line Fulai(3M) SF106 01-09-2019 01-08-2020 FL3CX03WG High-pass filter Sinoscite 18NM12-01-09-2019 01-08-2020 0398-002 MICRO-SPA-F-01-08-2020 High-pass filter 01-09-2019 ---TRONICS 63029-4 FL5CX01CA0 band rejection filter Sinoscite 9CL12-0395-01-09-2019 01-08-2020 ____ 001 FL5CX01CA0 band rejection filter Sinoscite 8CL12-0393-01-09-2019 01-08-2020 001 FL5CX02CA0 band rejection filter Sinoscite 4CL12-0396-01-09-2019 01-08-2020 002 FL5CX02CA0 Sinoscite 3CL12-0394-01-09-2019 01-08-2020 band rejection filter 001

Hotline: 400-6788-333

Page 13 of 52

		3M full-anechoi			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-24-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-24-2021
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-21-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	Agilent	8449B	3008A02425	07-12-2019	07-11-2020
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-29-2020
Fully Anechoic Chamber	TDK	FAC-3)	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

Page 14 of 52

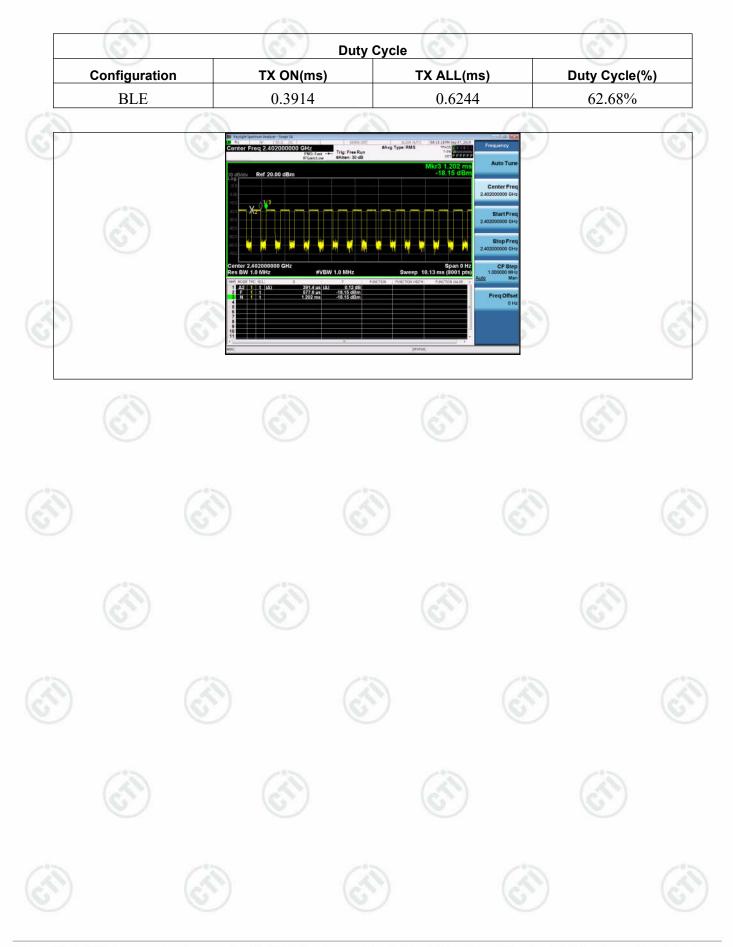
Report No.: EED32L00189801

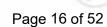
8 Radio Technical Requirements Specification

Reference documents for testing:

	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
2	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
π	act D	oculte Liet:	

Test Results List:


Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

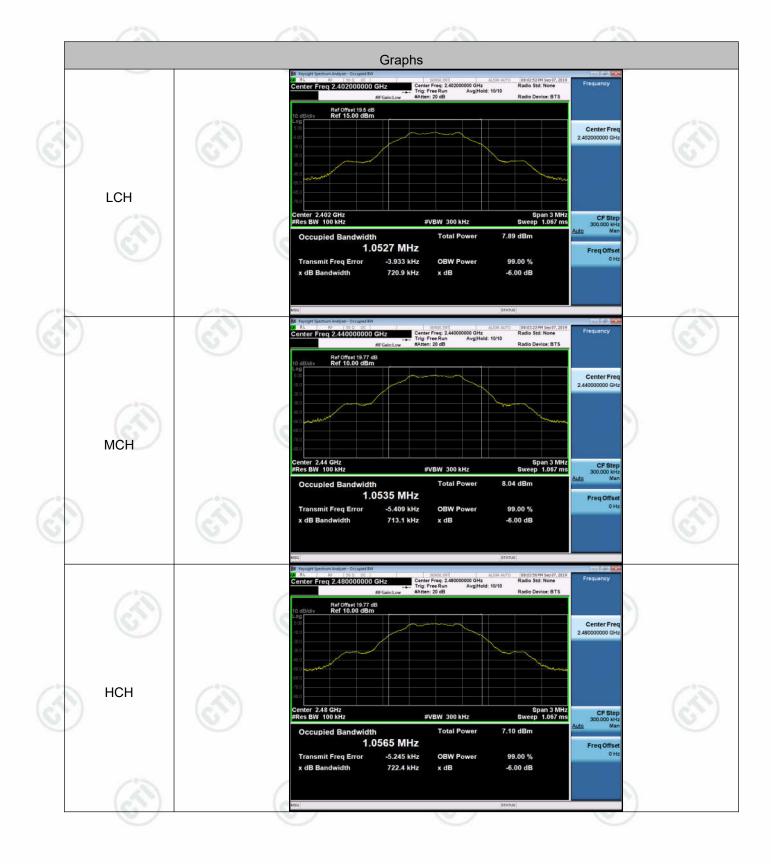


Appendix A): 6dB Occupied Bandwidth

	Test Result			U	
	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
12	BLE	LCH	0.7209	1.0400	PASS
6	BLE	МСН	0.7131	1.0431	PASS
~	BLE	НСН	0.7224	1.0412	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 17 of 52



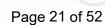
Page 18 of 52

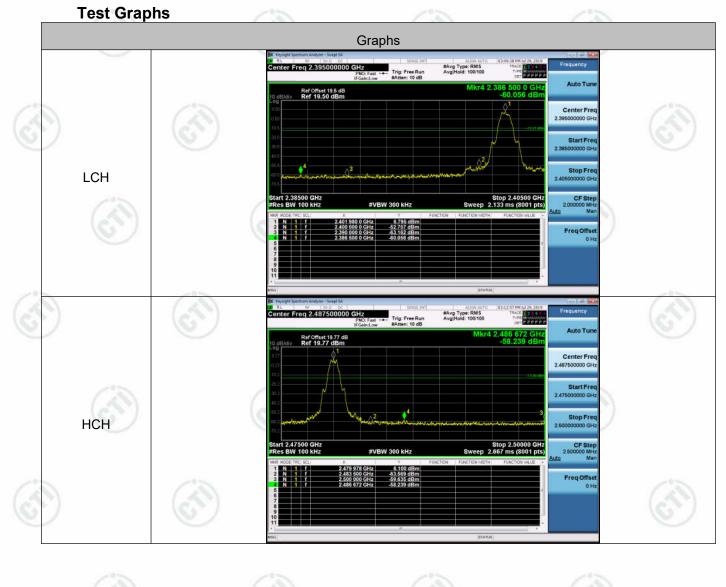
Appendix B): Conducted Peak Output Power

	Test Result	U		9
	Mode	Channel	Conduct Peak Power[dBm]	Verdict
-	BLE	LCH	7.399	PASS
52	BLE	МСН	7.476	PASS
4	BLE	нсн	6.725	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 20 of 52


Test Graphs



Appendix C): Band-edge for RF Conducted Emissions

	Resu	It Table	V		V	
20	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
6	BLE	LCH	6.795	-60.056	-13.21	PASS
Ľ	BLE	нсн	6.100	-58.239	-13.9	PASS

Appendix D): RF Conducted Spurious Emissions

М	ode	Channel	Pref [dB	m]	Puw[dBm	n] Verdict
р) в	BLE	LCH	6.51		<limit< th=""><th>PASS</th></limit<>	PASS
	BLE	MCH	6.543		<limit< th=""><th>PASS</th></limit<>	PASS
E		HCH	5.768		<limit< th=""><th>PASS</th></limit<>	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

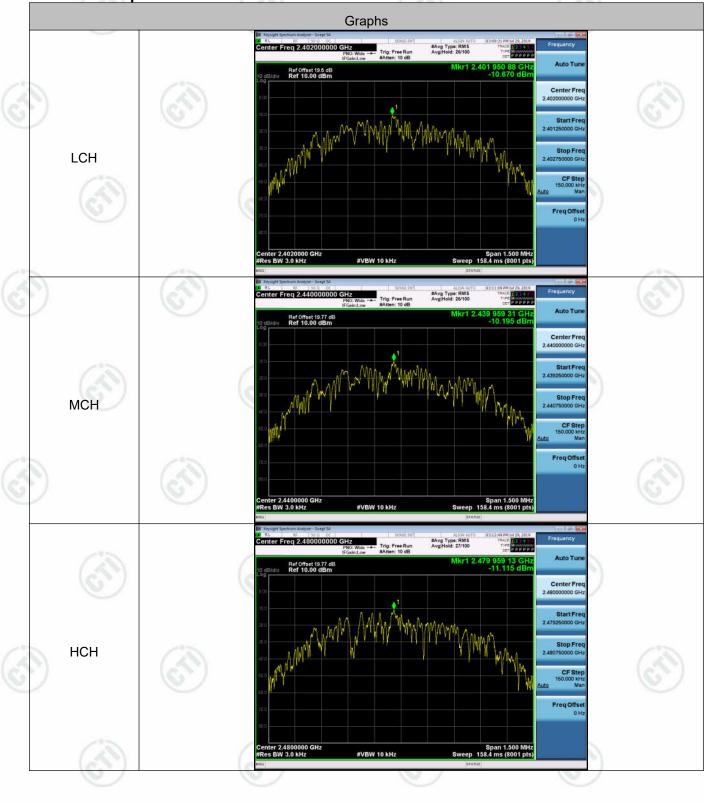
Page 23 of 52



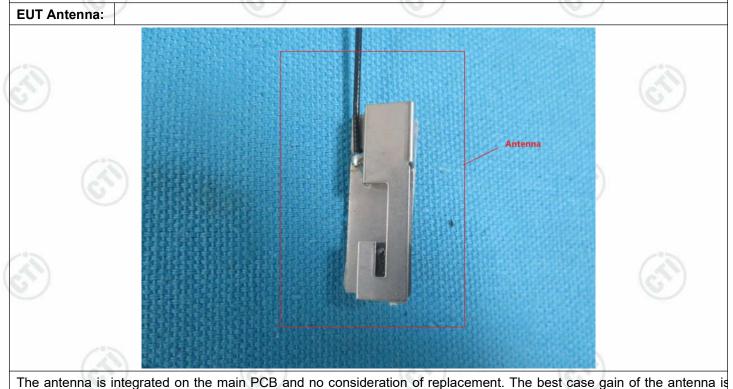
Page 25 of 52



Result Table	1		- 1
Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-10.670	PASS
BLE	мсн	-10.195	PASS
BLE	НСН	-11.115	PASS



Page 27 of 52


Appendix F): Antenna Requirement

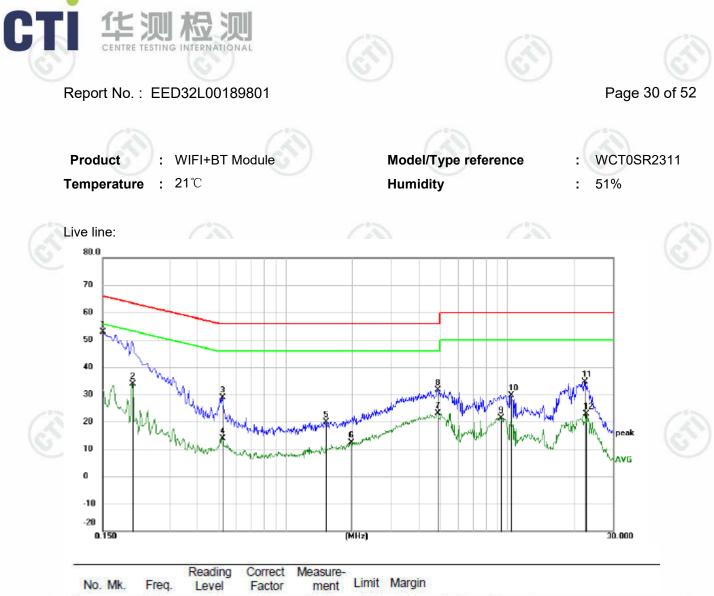
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

2dBi.

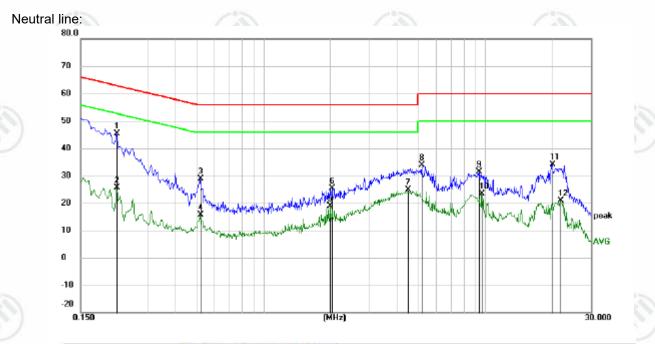

Page 29 of 52

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	z-30MHz	()	
	 1)The mains terminal disturbance 2) The EUT was connected to Stabilization Network) which power cables of all other u which was bonded to the g for the unit being measure multiple power cables to a exceeded. 	AC power source thr ch provides a $50\Omega/50$ inits of the EUT were round reference plane ed. A multiple socket of	ough a LISN 1 (Line μH + 5 Ω linear imp connected to a sec e in the same way a putlet strip was use	e Impedar edance. T cond LISN s the LISI d to conn
	3)The tabletop EUT was plac reference plane. And for flo horizontal ground reference	oor-standing arrangem		
	 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 	e vertical ground reference and to the horizontal ground the boundary of the up or LISNs mounted o retween the closest po	rence plane. The ve ound reference plan unit under test and n top of the grour pints of the LISN 1 a	ertical groune. The LI bonded to hd referer and the EU
	5) In order to find the maximum of the interface cables conducted measurement.			
Limit:		Limit (c	dBuV)	7
	Frequency range (MHz)	Quasi-peak	Average	- 8-
	0.15-0.5	66 to 56*	56 to 46*	6
	0.5-5	56	46	C
	5-30	60	50	

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

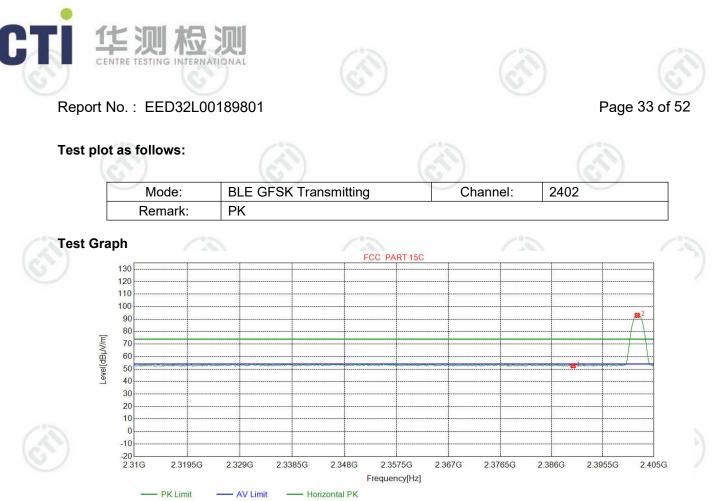

NO. M	ηĸ.	Freq.	Level	Factor	ment	Lunar	margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	1
1 *	Ú.	0.1500	43.02	9.97	52.99	66.00	-13.01	peak		(6
2		0.2040	23.95	10.02	33.97	53.45	-19.48	AVG		
3		0.5190	18.82	10.02	28.84	56.00	-27.16	peak		
4		0.5190	3.89	10.02	13.91	46.00	-32.09	AVG		
5		1.5270	10.07	9.87	19.94	56.00	-36.06	peak		
6		1.9725	2.48	9.83	12.31	46.00	-33.69	AVG		
7		4.8345	13.34	9.83	23.17	46.00	-22.83	AVG		
8		4.8705	21.68	9.83	31.51	56.00	-24.49	peak		
9		9.3075	11.35	9.93	21.28	50.00	-28.72	AVG		
10		10.3425	19.63	9.96	29.59	60.00	-30.41	peak		
11		22.2314	24.64	9.94	34.58	60.00	-25.42	peak		
12		22.5960	12.83	9.94	22.77	50.00	-27.23	AVG		

Page 31 of 52

No. N	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1 1	*	0.2175	35.30	10.03	45.33	62.91	-17.58	peak		
2		0.2175	15.61	10.03	25.64	52.91	-27.27	AVG		
3		0.5190	18.74	10.02	28.76	56.00	-27.24	peak		
4		0.5190	5.64	10.02	15.66	46.00	-30.34	AVG		
5		1.9995	8.98	9.83	18.81	46.00	-27.19	AVG		
6		2.0400	15.52	9.83	25.35	56.00	-30.65	peak		
7		4.4880	14.96	9.83	24.79	46.00	-21.21	AVG		
8		5.1765	23.96	9.83	33.79	60.00	-26.21	peak		
9		9.3569	21.43	9.94	31.37	60.00	-28.63	peak		
10		9.6090	13.45	9.95	23.40	50.00	-26.60	AVG		
11		19.9500	24.12	9.93	34.05	60.00	-25.95	peak		
12		21.8265	10.95	9.94	20.89	50.00	-29.11	AVG		

Notes:

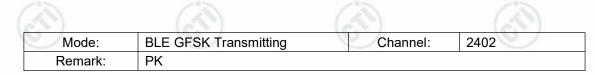
- 1. The following Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

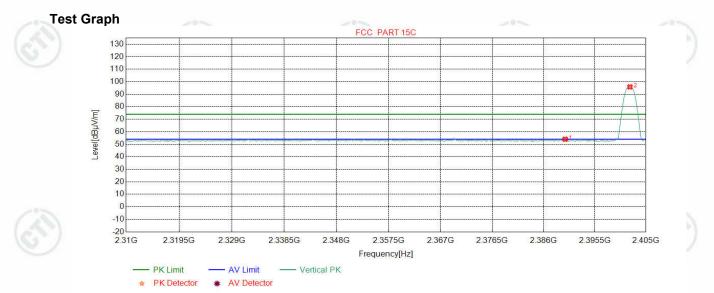


Appendix H): Restricted bands around fundamental frequency (Radiated)

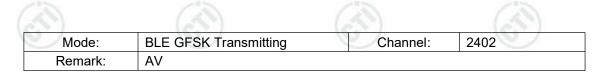
(Naulateu)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	‹
	Above 10Uz	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	(6)
Test Procedure:	Below 1GHz test procedu	ire as below:	1			C
	 Test method Refer as KDB a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 meter was mounted on the to c. The antenna height is well determine the maximum polarizations of the antenna was turned from 0 degree. The test-receiver system 	In the top of a ro choic camber. The of the highest ra- ters away from the p of a variable-house waried from one m value of the fire enna are set to nission, the EUT I to heights from rees to 360 degr	tating table ne table wa adiation. the interfer neight anter meter to for eld strengtl make the r was arran 1 meter to rees to find	e 0.8 meter as rotated 3 ence-recei nna tower. bur meters n. Both hor neasurement ged to its 4 meters the maxin	360 degrees iving antenna above the gr rizontal and v ent. worst case a and the rotat num reading.	to a, whi ound vertica nd the able
	 Bandwidth with Maximu f. Place a marker at the end of the frequency to show combands. Save the spectra for lowest and highest 	end of the restric opliance. Also m rum analyzer plo	easure any	emission	s in the restri	
	f. Place a marker at the e frequency to show com bands. Save the spect	end of the restrict apliance. Also m rum analyzer plo channel ure as below: ve is the test site aber change form 1 meter and tabl owest channel , t ments are perfo d found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highesi rmed in X, sis position	rom Semi- meter to 1 ter). Y, Z axis p ing which i	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca	dulati namb ove r
Limit:	 f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedution g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locit. The radiation measure Transmitting mode, and 	end of the restrict apliance. Also m rum analyzer plo channel ure as below: ve is the test site aber change form 1 meter and tabl owest channel , t ments are perfo d found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highes rmed in X, tis position uencies me	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca	dulati namb ove r
Limit:	 f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedution g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locitie. The radiation measure Transmitting mode, and j. Repeat above procedution 	end of the restrict apliance. Also m rum analyzer plot channel ure as below: ve is the test site aber change form 1 meter and tabl owest channel , t ments are perfo d found the X ax res until all frequ	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca as complete.	dulati namb ove r
Limit:	 f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedutes g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locit. The radiation measure Transmitting mode, and j. Repeat above procedutes 	end of the restrict opliance. Also m rum analyzer plot channel ure as below: /e is the test site ober change form 1 meter and tabl owest channel , to ments are perford d found the X ax res until all frequencies Limit (dBµV/	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, dis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca as complete. mark	dulati namb ove r
Limit:	 f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedutes g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locities i. The radiation measures Transmitting mode, and j. Repeat above procedutes Frequency 30MHz-88MHz 	end of the restrict apliance. Also m rum analyzer plot channel ure as below: /e is the test site aber change form 1 meter and tabl owest channel , t ments are perford found the X ax ures until all frequent Limit (dBµV/ 40.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca as complete. mark eak Value	dulati namb ove r
Limit:	 f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedutes g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locities i. The radiation measure Transmitting mode, and j. Repeat above procedutes Frequency 30MHz-88MHz 88MHz-216MHz 	end of the restrict apliance. Also m rum analyzer plot channel ure as below: ve is the test site aber change form 1 meter and tabl owest channel , to ments are perford d found the X ax res until all frequent Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	s in the restri ower and mo Anechoic Ch .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value	dulati nambo ove r
Limit:	 f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedutes g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locities i. The radiation measure Transmitting mode, and j. Repeat above procedutes Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz 	end of the restrict apliance. Also m rum analyzer plot channel ure as below: //e is the test site aber change form 1 meter and tabl owest channel , t ments are perford d found the X ax res until all freque Limit (dBµV/ 40.0 43.5 46.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	s in the restri ower and mo Anechoic Cf .5 meter(Ab oositioning fo it is worse ca as complete. mark eak Value eak Value eak Value	dulati nambo ove r
Limit:	 f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedures g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locities i. The radiation measure Transmitting mode, and j. Repeat above procedures Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 	end of the restrict apliance. Also m rum analyzer plot channel ure as below: /e is the test site aber change form 1 meter and tabl owest channel , t ments are perford d found the X ax res until all freque Limit (dBµV/ 40.0 43.5 46.0 54.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m))))	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po Averag	s in the restri ower and mo Anechoic Cf .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value eak Value	dulati nambo ove r

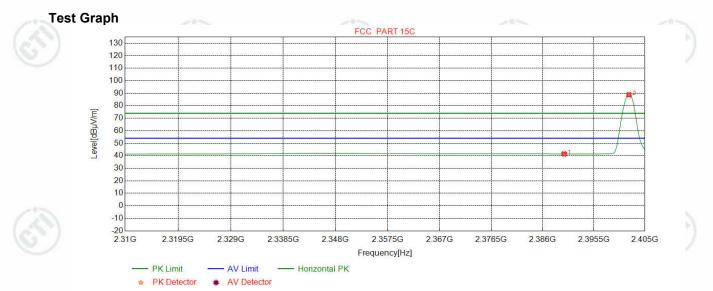
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.41	52.59	74.00	21.41	Pass	Horizontal
2	2401.9086	32.26	13.31	-42.43	89.82	92.96	74.00	-18.96	Pass	Horizontal
6		6			(\mathcal{A})		(2))		$(\sim \sim)$



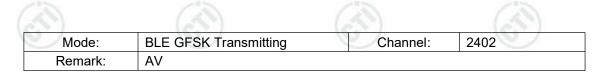


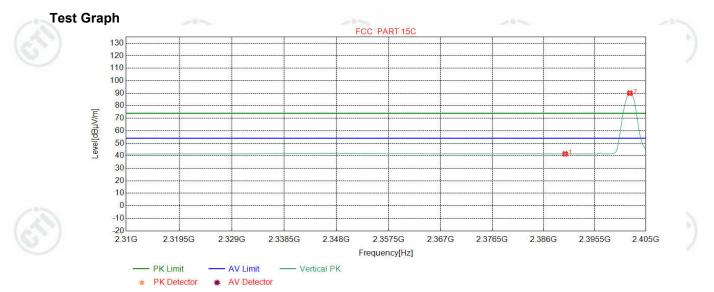
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.84	54.02	74.00	19.98	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	92.70	95.84	74.00	-21.84	Pass	Vertical
1.2		1					128			1





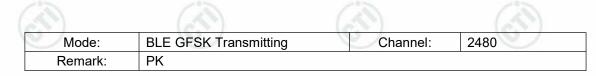
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.32	41.50	54.00	12.50	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	85.59	88.73	54.00	-34.73	Pass	Horizontal
1	6	1.1				-	120			1

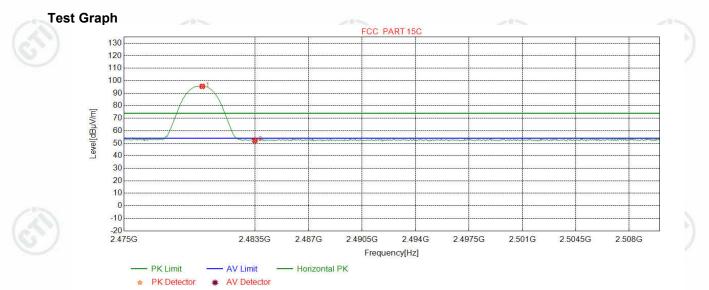




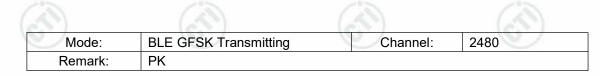
٦	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	38.36	41.54	54.00	12.46	Pass	Vertical
	2	2402.0275	32.26	13.31	-42.43	86.91	90.05	54.00	-36.05	Pass	Vertical
1		6	1.4					128			120

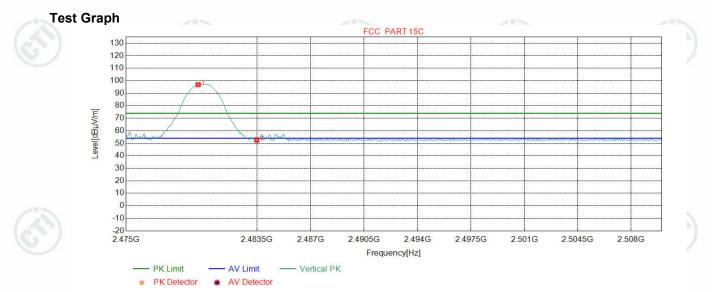




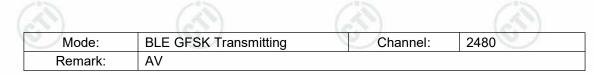


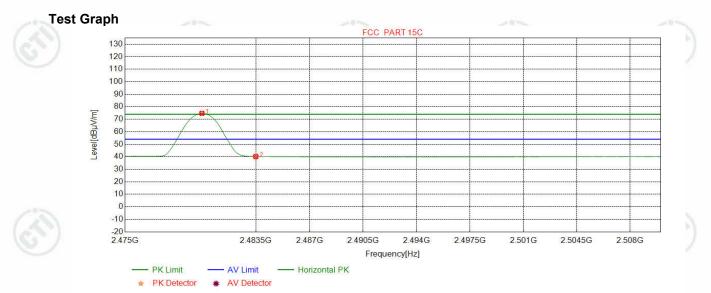
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0814	32.37	13.39	-42.40	92.11	95.47	74.00	-21.47	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	48.96	52.32	74.00	21.68	Pass	Horizontal
12	(1.4								



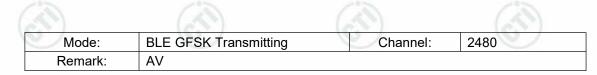


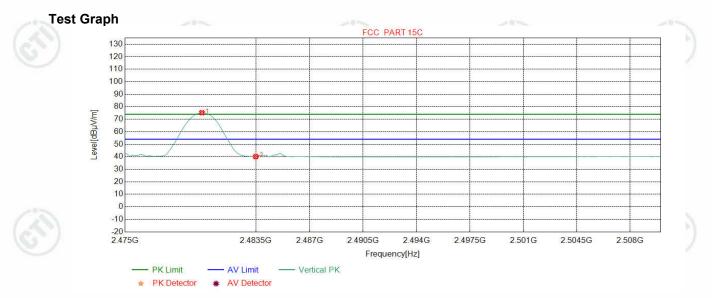
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6871	32.37	13.39	-42.39	93.49	96.86	74.00	-22.86	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.22	52.58	74.00	21.42	Pass	Vertical
1		10								

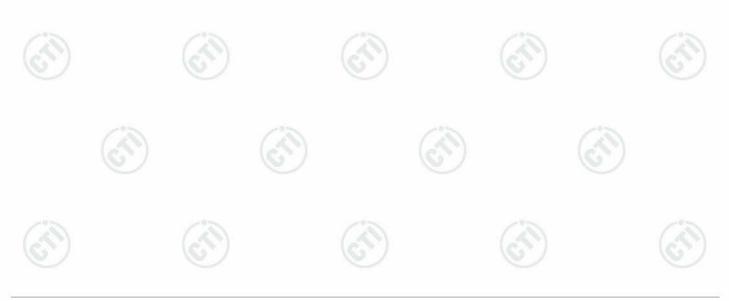




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	71.34	74.71	54.00	-20.71	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.80	40.16	54.00	13.84	Pass	Horizontal
12		1.4								






NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	71.81	75.18	54.00	-21.18	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.78	40.14	54.00	13.86	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
(0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(\mathbf{C})		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:		·			·]	

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	12	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(62)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

j. Repeat above procedures until all frequencies measured was complete.

te: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 42 of 52

Report No.: EED32L00189801

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	e:		BLE GF	SK Trans	smitting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	36.85	16.65	40.00	23.35	Pass	Н	PK
2	54.6405	12.46	0.84	-32.09	31.62	12.83	40.00	27.17	Pass	Н	PK
3	87.5268	8.83	1.08	-32.08	35.74	13.57	40.00	26.43	Pass	Н	PK
4	226.1536	11.58	1.78	-31.92	41.12	22.56	46.00	23.44	Pass	Н	PK
5	452.1862	16.23	2.52	-31.87	41.48	28.36	46.00	17.64	Pass	Н	PK
6	879.7080	21.86	3.55	-31.66	34.86	28.61	46.00	17.39	Pass	Н	PK
7	54.9315	12.41	0.84	-32.08	40.75	21.92	40.00	18.08	Pass	V	PK
8	71.8112	8.66	0.97	-32.06	38.39	15.96	40.00	24.04	Pass	V	PK
9	130.0170	7.70	1.33	-32.02	37.14	14.15	43.50	29.35	Pass	V	PK
10	208.8859	11.13	1.71	-31.94	47.02	27.92	43.50	15.58	Pass	V	PK
11	452.2832	16.24	2.52	-31.88	39.81	26.69	46.00	19.31	Pass	V	PK
12	844.9785	21.44	3.50	-31.82	36.23	29.35	46.00	16.65	Pass	V	PK

		A		12	A	(L)	162		(AN		
Mode	Mode:			SK Tran	smitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	36.61	16.41	40.00	23.59	Pass	Н	PK
2	88.4969	9.05	1.09	-32.08	34.75	12.81	43.50	30.69	Pass	Н	PK
3	130.0170	7.70	1.33	-32.02	38.28	15.29	43.50	28.21	Pass	Н	PK
4	226.0566	11.58	1.78	-31.92	41.23	22.67	46.00	23.33	Pass	Н	PK
5	452.1862	16.23	2.52	-31.87	41.71	28.59	46.00	17.41	Pass	Н	PK
6	974.9715	22.55	3.75	-30.95	37.15	32.50	54.00	21.50	Pass	Н	PK
7	54.2524	12.52	0.83	-32.08	40.98	22.25	40.00	17.75	Pass	V	PK
8	71.9082	8.64	0.97	-32.05	38.79	16.35	40.00	23.65	Pass	V	PK
9	208.8859	11.13	1.71	-31.94	47.32	28.22	43.50	15.28	Pass	V	PK
10	452.2832	16.24	2.52	-31.88	38.63	25.51	46.00	20.49	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	35.66	26.09	46.00	19.91	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	35.36	30.71	54.00	23.29	Pass	V	PK

Page 43 of 52

	197			1000		100	C. Theorem	215				
Mode	Mode:			SK Trans	smitting			Channel:		2480	480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	36.5967	11.21	0.67	-32.11	37.05	16.82	40.00	23.18	Pass	Н	PK	
2	87.7208	8.88	1.08	-32.09	35.20	13.07	40.00	26.93	Pass	Н	PK	
3	226.0566	11.58	1.78	-31.92	41.90	23.34	46.00	22.66	Pass	Н	PK	
4	452.3802	16.24	2.52	-31.88	40.53	27.41	46.00	18.59	Pass	Н	PK	
5	687.5318	19.70	3.14	-32.06	36.60	27.38	46.00	18.62	Pass	Н	PK	
6	974.9715	22.55	3.75	-30.95	35.24	30.59	54.00	23.41	Pass	Н	PK	
7	54.4464	12.49	0.84	-32.09	40.11	21.35	40.00	18.65	Pass	V	PK	
8	120.0250	9.20	1.30	-32.07	36.43	14.86	43.50	28.64	Pass	V	PK	
9	208.8859	11.13	1.71	-31.94	46.94	27.84	43.50	15.66	Pass	V	PK	
10	290.7621	13.02	2.03	-31.88	41.23	24.40	46.00	21.60	Pass	V	PK	
11	452.2832	16.24	2.52	-31.88	39.18	26.06	46.00	19.94	Pass	V	PK	
12	974.9715	22.55	3.75	-30.95	36.37	31.72	54.00	22.28	Pass	V	PK	
	1		1			1			•	0	1	

Page 44 of 52

Report No.: EED32L00189801

-	Transmitte	r Emiss	sion ab	ove 1G	Hz	1	10		13		
Mode	Mode:			SK Tran	smitting			Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1200.4200	28.10	2.66	-42.89	57.51	45.38	74.00	28.62	Pass	Н	PK
2	1677.6678	29.57	3.17	-42.71	55.44	45.47	74.00	28.53	Pass	Н	PK
3	3064.0043	33.23	4.80	-42.09	50.09	46.03	74.00	27.97	Pass	Н	PK
4	6231.2154	35.85	5.30	-41.14	46.50	46.51	74.00	27.49	Pass	Н	PK
5	8970.3980	37.63	6.35	-40.66	45.37	48.69	74.00	25.31	Pass	Н	PK
6	13064.6710	39.57	8.10	-41.66	46.90	52.91	74.00	21.09	Pass	Н	PK
7	1199.8200	28.10	2.66	-42.89	60.79	48.66	74.00	25.34	Pass	V	PK
8	1680.8681	29.59	3.18	-42.71	56.85	46.91	74.00	27.09	Pass	V	PK
9	3370.0247	33.35	4.54	-41.90	49.59	45.58	74.00	28.42	Pass	V	PK
10	7629.3086	36.55	6.13	-40.83	46.62	48.47	74.00	25.53	Pass	V	PK
11	11230.5487	38.74	7.22	-41.23	47.04	51.77	74.00	22.23	Pass	V	PK
12	14253.7503	39.95	8.58	-41.77	47.57	54.33	74.00	19.67	Pass	V	PK
						1					

Mode:			BLE GF	SK Trans	smitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1199.6200	28.10	2.66	-42.89	58.84	46.71	74.00	27.29	Pass	Н	PK
2	1683.4683	29.61	3.18	-42.70	55.19	45.28	74.00	28.72	Pass	Н	PK
3	3598.0399	33.48	4.34	-41.61	48.95	45.16	74.00	28.84	Pass	Н	PK
4	5908.1939	35.65	5.10	-41.00	45.90	45.65	74.00	28.35	Pass	Н	PK
5	8189.3460	36.48	6.37	-40.83	46.58	48.60	74.00	25.40	Pass	Н	PK
6	12401.6268	39.54	7.85	-41.12	46.81	53.08	74.00	20.92	Pass	Н	PK
7	1200.4200	28.10	2.66	-42.89	58.75	46.62	74.00	27.38	Pass	V	PK
8	1677.2677	29.57	3.17	-42.71	56.40	46.43	74.00	27.57	Pass	V	PK
9	4740.1160	34.50	4.70	-40.71	45.48	43.97	74.00	30.03	Pass	V	PK
10	7481.2988	36.58	5.92	-40.79	47.40	49.11	74.00	24.89	Pass	V	PK
11	12459.6306	39.58	7.65	-41.11	46.26	52.38	74.00	21.62	Pass	V	PK
12	15733.8489	41.37	9.72	-43.17	47.28	55.20	74.00	18.80	Pass	V	PK

E of FO

Page 45 of 52

	100			1000			S Trans		20				
Mode	Mode:			SK Trans	smitting	tting Channel:					2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1200.4200	28.10	2.66	-42.89	59.40	47.27	74.00	26.73	Pass	Н	PK		
2	1678.0678	29.58	3.17	-42.71	55.67	45.71	74.00	28.29	Pass	Н	PK		
3	3353.0235	33.34	4.52	-41.90	49.88	45.84	74.00	28.16	Pass	Н	PK		
4	5549.1699	35.08	5.16	-40.69	46.20	45.75	74.00	28.25	Pass	Н	PK		
5	8242.3495	36.50	6.23	-40.79	47.07	49.01	74.00	24.99	Pass	Н	PK		
6	11768.5846	39.11	7.47	-41.29	46.39	51.68	74.00	22.32	Pass	Н	PK		
7	1200.2200	28.10	2.66	-42.89	59.92	47.79	74.00	26.21	Pass	V	PK		
8	1500.4500	28.40	2.99	-42.67	58.32	47.04	74.00	26.96	Pass	V	PK		
9	3738.0492	33.59	4.32	-41.32	49.67	46.26	74.00	27.74	Pass	V	PK		
10	4770.1180	34.50	4.59	-40.68	46.96	45.37	74.00	28.63	Pass	V	PK		
11	7054.2703	36.15	5.70	-41.14	46.26	46.97	74.00	27.03	Pass	V	PK		
12	10134.4756	37.99	6.87	-40.62	46.74	50.98	74.00	23.02	Pass	V	PK		
	1.	1			0	1				0	1		

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

