

Page 1 of 70

TEST REPORT

- **Product Name** Trade mark Model/Type reference **Serial Number Report Number** FCC ID Date of Issue **Test Standards** Test result
- WIFI module 2
- GSD
- : W7LM1110, W7LM1110A
- N/A 2
- EED32I00297001 5
- 2AC23-W7LM1110
- Dec. 19, 2016
- 47 CFR Part 15 Subpart C (2015) 2
- PASS

Prepared for:

Hui Zhou Gaoshengda Technology Co., LTD NO.75 Zhongkai Development Area, Huizhou, Guangdong, China

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668

FAX: +86-755-3368 3385

Compiled by:

even Nan

Kevin lan (Project Engineer)

Sheek 110

Sheek Luo (Lab supervisor)

Check No.: 2457512532

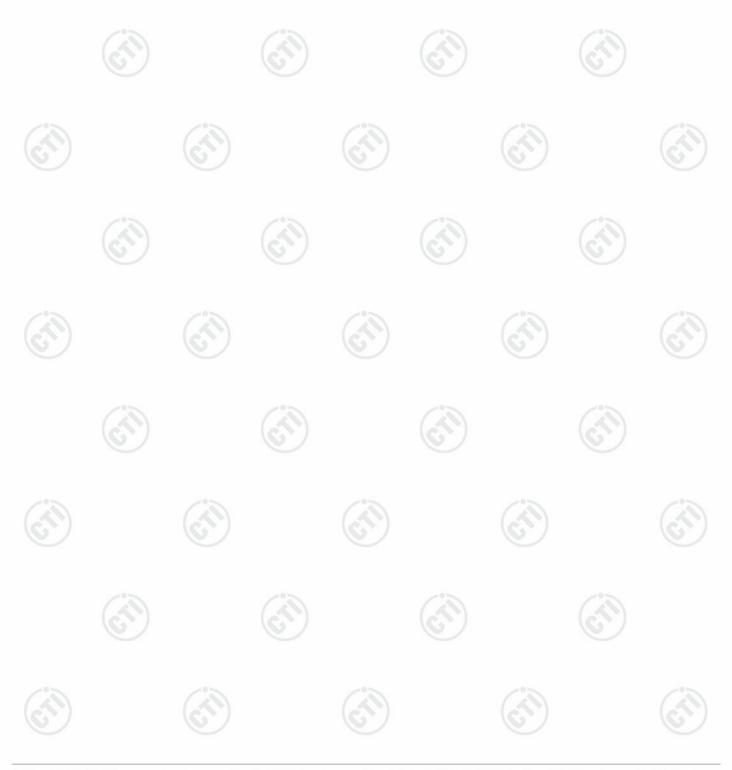
Tested By:

Tom-Tom chen (Test Project)

l ar

Kevin yang (Reviewer)

Dec. 19, 2016



Approved by:

2 Version

Version No.	Date	6	Description	otion 🕥	
00	Dec. 19, 2016		Original		
	~			10	
		(dS)		(2)	

3 Test Summary

Page 3 of 70

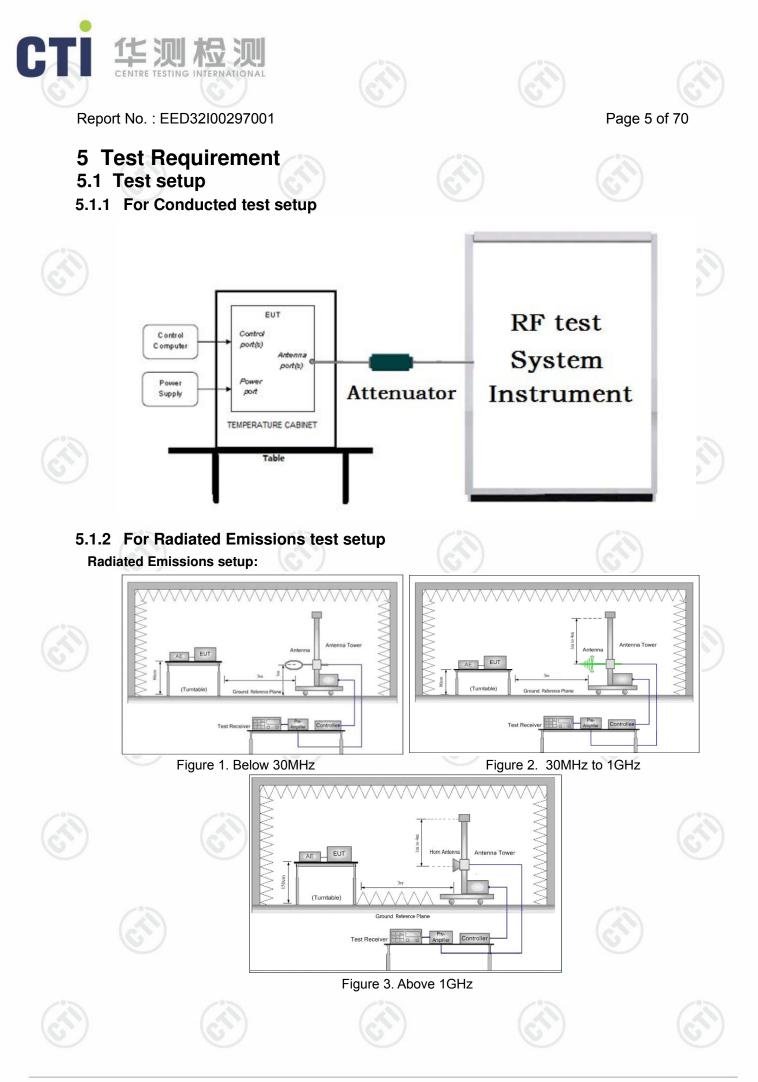
5 Test Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

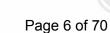
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

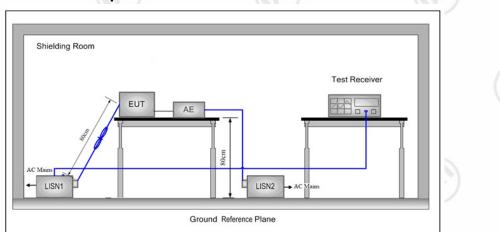
The tested sample and the sample information are provided by the client.

Model No.: W7LM1110, W7LM1110A


Only the model W7LM1110 was tested, since the modules ontology, Antenna type and Antenna gain are all the same, only the Antenna size is different.

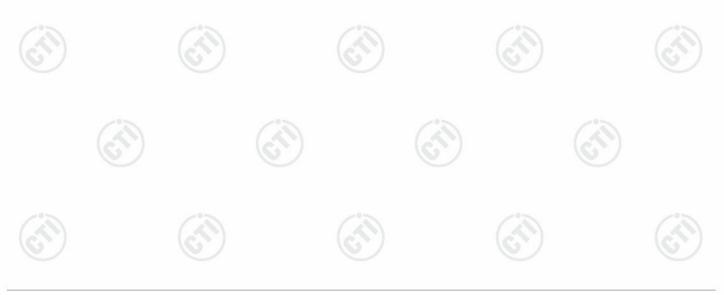


1 COVER PAGE		
2 VERSION	 	••••••
3 TEST SUMMARY	 	•••••
4 CONTENT	 	
5 TEST REQUIREMENT		
5.1 TEST SETUP		
5.1.1 For Conducted test setup	 	
5.1.2 For Radiated Emissions test setup		
5.1.3 For Conducted Emissions test setup		
5.2 TEST ENVIRONMENT		
5.3 TEST CONDITION	 	
6 GENERAL INFORMATION	 	••••••
6.1 CLIENT INFORMATION	 	
6.2 GENERAL DESCRIPTION OF EUT		
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STAN		
6.4 DESCRIPTION OF SUPPORT UNITS		
6.5 TEST LOCATION		
6.6 TEST FACILITY		
6.7 DEVIATION FROM STANDARDS		
6.8 ABNORMALITIES FROM STANDARD CONDITIONS		
6.9 OTHER INFORMATION REQUESTED BY THE CUSTOME		
6.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE L		
7 EQUIPMENT LIST		
8 RADIO TECHNICAL REQUIREMENTS SPECIFICAT		
Appendix A): Conducted Peak Output Power	 	
Appendix B): 6dB Occupied Bandwidth		
Appendix C): Band-edge for RF Conducted Emissi		
Appendix D): RF Conducted Spurious Emissions		
Appendix E): Power Spectral Density		
Appendix F): Antenna Requirement		
Appendix G): AC Power Line Conducted Emission		
Appendix H): Restricted bands around fundamenta Appendix I): Radiated Spurious Emissions		
PHOTOGRAPHS OF TEST SETUP		
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAI		



5.1.3 For Conducted Emissions test setup

Conducted Emissions setup


5.2 Test Environment

Operating Environment:			e
Temperature:	22°C		
Humidity:	53% RH		
Atmospheric Pressure:	1010mbar	(A) (A	N.
Test Oswallting			

5.3 Test Condition

Test channel:

Test Made	Tv	RF Channel			
Test Mode	Тх	Low(L)	Middle(M)	High(H)	
802.11b/g/n(HT20) 2412	2442MULE 2462 MULE	Channel 1	Channel 6	Channel11	
	2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz	
	2422MHz ~2452 MHz	Channel 1	Channel 4	Channel7	
802.11n(HT40)		2422MHz	2437MHz	2452MHz	
Transmitting mode:	The EUT transmitted the channel(s).	ation test signal at t	he specific		

Page 7 of 70

Mode		8	02.11b					
Data Rate	1Mbp	os 2Mbp	s 5.5Mbp	s 11Mbps	5		<	
Power(dBm)	20.2	5 20.3 ⁻	1 20.34	20.38				
Mode				802	2.11g	(2)		6
Data Rate	Rate 6Mbps		s 12Mbps	18Mbps	24Mbp	s 36Mbp	s 48Mbps	54Mbps
Power(dBm)) 22.6	4 22.6	1 22.60	22.57	22.54	22.53	22.50	22.41
Mode	I	-	I	802.11n (HT20)				
Data Rate	6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	20.63	20.61	20.59	20.55	20.53	20.50	20.47	20.34
Mode		•		802.11n	(HT40)	L L		1
Data Rate	13.5Mbps	27Mbps	40.5Mbps	54Mbps	81Mbps	108Mbps	121.5Mbps	135Mbps
Power(dBm)	20.78	20.74	20.71	20.70	20.66	20.64	20.61	20.55

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

General Information 6

6.1 Client Information

Applicant:	Hui Zhou Gaoshengda Technology Co., LTD	
Address of Applicant:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China	
Manufacturer:	Hui Zhou Gaoshengda Technology Co., LTD	~
Address of Manufacturer:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China	

6.2 General Description of EUT

Product Name:	WIFI module			
Model No.(EUT):	W7LM1110, W7LM1110A		~	
Trade Mark:	GSD		(\mathcal{A})	
EUT Supports Radios application:	WiFi b/g/n(HT20/HT40): 2412-2462MHz		C	
Power Supply:	DC 5V			
Sample Received Date:	Nov. 18, 2016	(i)		(2)
Sample tested Date:	Nov. 18, 2016 to Dec. 19, 2016	(\mathcal{C})		(\mathcal{O})

6.3 Product Specification subjective to this standard

	•
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40): OFDM (64QAM, 16QAM, QPSK,BPSK)
Test Power Grade:	19(manufacturer declare)
Test Software of EUT:	MT7601USB.exe(manufacturer declare)
Antenna Type and Gain:	PIFA Antenna
Antenna Gain:	3dBi
Test Voltage:	AC 120V/60Hz, AC 240V/50Hz

	Operation Frequency each of channel(802.11b/g/n HT20)							
	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
/	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

Page 9 of 70

Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2422MHz	4	2437MHz	7	2452MHz
2	2427MHz	5	2442MHz		
3	2432MHz	6	2447MHz	(\mathcal{A})	

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Assoc	iated equipment name	Manufacture	S/N	Model	Supplied by
AE1	Laptop	Lenovo	EB22995690	E46L	СТІ
AE2	Mouse	L.Selectron	E0703009435HVKF	OP-200	СТІ
AE3	PC	DELL	JMNBGZX	OPTIPLEX330	CTI
AE4	Monitor	EIZO	2160033 TA	S1703	СТІ
AE5	Keyboard	Lenovo	60203893	LXH-EKB-10YA	СТІ
AE6	Mouse	HP	674316-001	SM-2022	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101 Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385 No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

Page 10 of 70

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096. Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

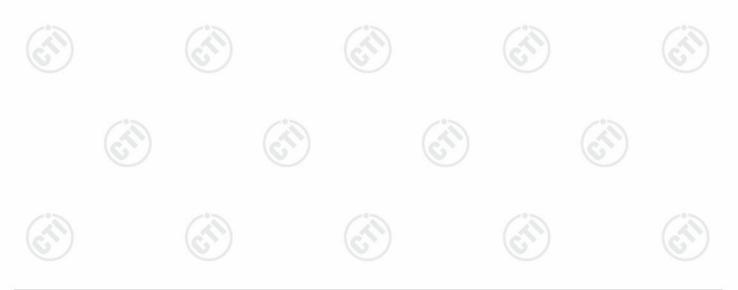
6.9 Other Information Requested by the Customer

None.

Hotline: 400-6788-333

Page 11 of 70

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2		0.31dB (30MHz-1GHz)	
2	RF power, conducted	0.57dB (1GHz-18GHz)	
	Dedicted Sourious emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
1	Conduction emission	3.6dB (9kHz to 150kHz)	
4	Conduction emission	3.2dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	2.8%	
7	DC power voltages	0.025%	



7 Equipment List

RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017		
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017		
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017		
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017		
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017		
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017		
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017		

Page 12 of 70

Conducted disturbance Test								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017			
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017			
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017			
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017			
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017			
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017			

Page 13 of 70

		emi/full-anech		Cal. date	Cal. Due date
Equipment	Manufacturer	Mode No.	Serial Number	(mm-dd-yyyy)	(mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/1071 1112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029- 4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001	\odot	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-12-2016	01-11-2017

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
3	KDB 558074 D01 v03r05	DTS Meas Guidance

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Appendix A): Conducted Peak Output Power

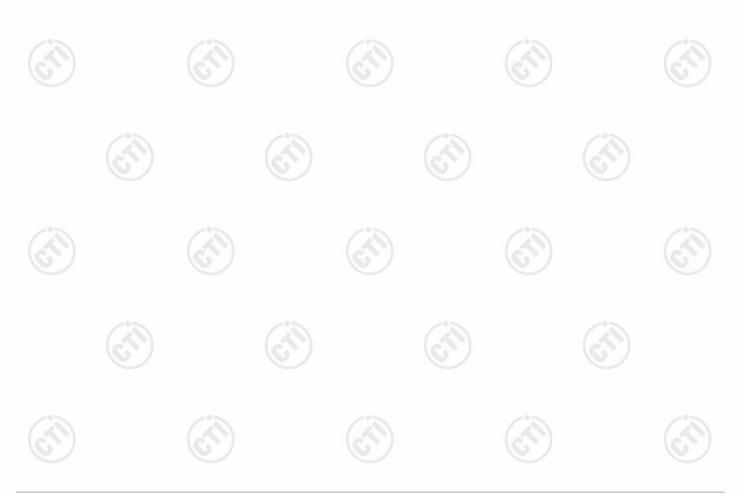
Test Procedure

1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.

- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

Result Table

			16.5	
Mode	Channel	Conducted Peak Output Power [dBm]	Verdict	
11B	LCH	20.38	PASS	
11B	MCH	20.05	PASS	
11B	НСН	20.35	PASS	
11G	LCH	22.64	PASS	
11G	MCH	22.74	PASS	
11G	НСН	23.15	PASS	
11N20SISO	LCH	20.63	PASS	
11N20SISO	MCH	21.15	PASS	
11N20SISO	НСН	21.55	PASS	
11N40SISO	LCH	20.78	PASS	
11N40SISO	МСН	21.64	PASS	
11N40SISO	HCH	21.74	PASS	



Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	10.07	12.244	PASS	(\sim)
11B	МСН	9.050	12.081	PASS	
11B	НСН	9.032	12.117	PASS	
11G	LCH	16.35	16.481	PASS	
11G	МСН	16.36	16.473	PASS	
11G	НСН	16.36	16.486	PASS	Peak
11N20SIS	O LCH	17.31	17.577	PASS	detecto
11N20SIS	O MCH	17.08	17.557	PASS	
11N20SIS	ю нсн	17.53	17.574	PASS	6)
11N40SIS	O LCH	36.29	36.173	PASS	
11N40SIS	O MCH	36.29	36.144	PASS	
11N40SIS	ю нсн	35.93	36.160	PASS	

Page 17 of 70

Page 18 of 70

Page 19 of 70

Page 20 of 70

Appendix C): Band-edge for RF Conducted Emissions

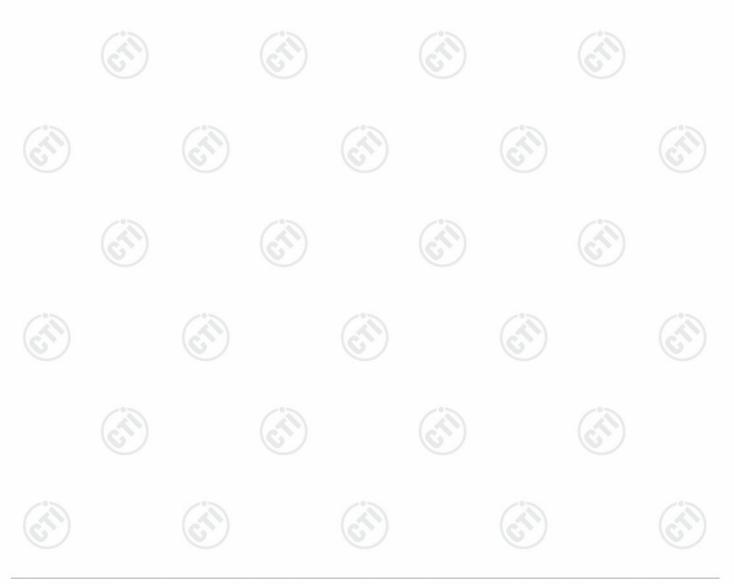
Result Table

de	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
В	LCH	6.019	-50.260	-23.98	PASS
В	НСН	5.443	-50.439	-24.56	PASS
G	LCH	3.635	-45.373	-26.37	PASS
G	НСН	3.808	-40.921	-26.19	PASS
SISO	LCH	1.690	-47.359	-28.31	PASS
SISO	НСН	3.246	-45.418	-26.75	PASS
SISO	LCH	-0.949	-41.157	-30.95	PASS
ISISO	НСН	-0.921	-44.333	-30.92	PASS
	de B G G OSISO OSISO OSISO	B LCH B HCH G LCH G HCH OSISO LCH OSISO HCH OSISO LCH	de Channel Power[dBm] B LCH 6.019 B HCH 5.443 G LCH 3.635 G HCH 3.808 DSISO LCH 1.690 DSISO HCH 3.246 DSISO LCH -0.949	Indext Channel Power[dBm] Level [dBm] B LCH 6.019 -50.260 B HCH 5.443 -50.439 G LCH 3.635 -45.373 G HCH 3.808 -40.921 DSISO LCH 1.690 -47.359 DSISO HCH 3.246 -45.418 DSISO LCH -0.949 -41.157	Index Channel Power[dBm] Level [dBm] Limit [dBm] B LCH 6.019 -50.260 -23.98 B HCH 5.443 -50.439 -24.56 G LCH 3.635 -45.373 -26.37 G HCH 3.808 -40.921 -26.19 DSISO LCH 1.690 -47.359 -28.31 DSISO HCH 3.246 -45.418 -26.75 DSISO LCH -0.949 -41.157 -30.95

Test Graph

Page 22 of 70

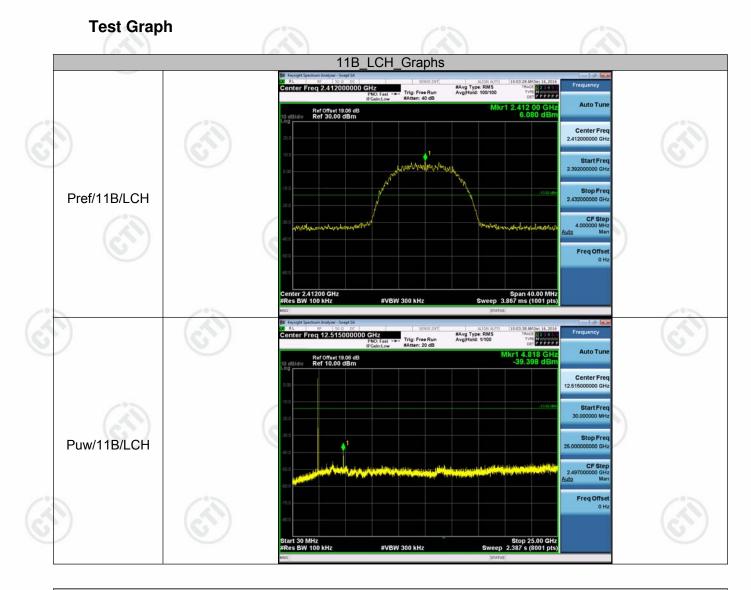
Page 23 of 70



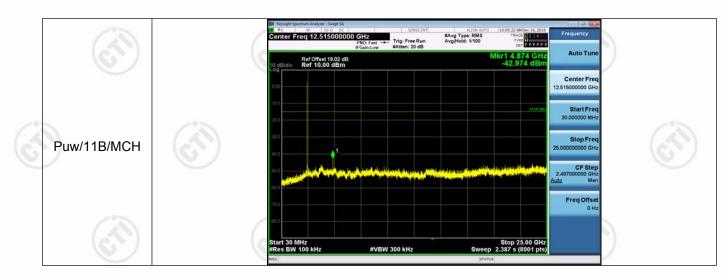
Page 24 of 70

Report No. : EED32I00297001

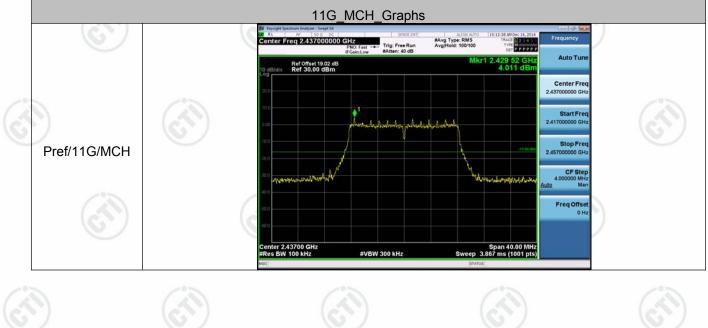
Appendix D): RF Conducted Spurious Emissions


Result Tab	le 🤇	<u>N) (S)</u>	(S))
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	6.08	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	5.113	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	6.037	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	3.289	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	4.011	<limit< td=""><td>PASS</td></limit<>	PASS
11G	НСН	3.737	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	1.451	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	МСН	2.034	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	3.023	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-0.595	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	0.19	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	НСН	0.34	<limit< td=""><td>PASS</td></limit<>	PASS

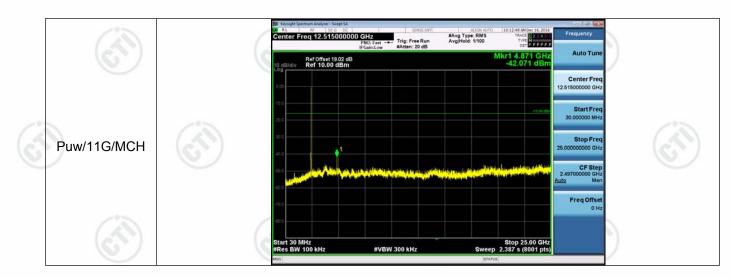
Page 25 of 70

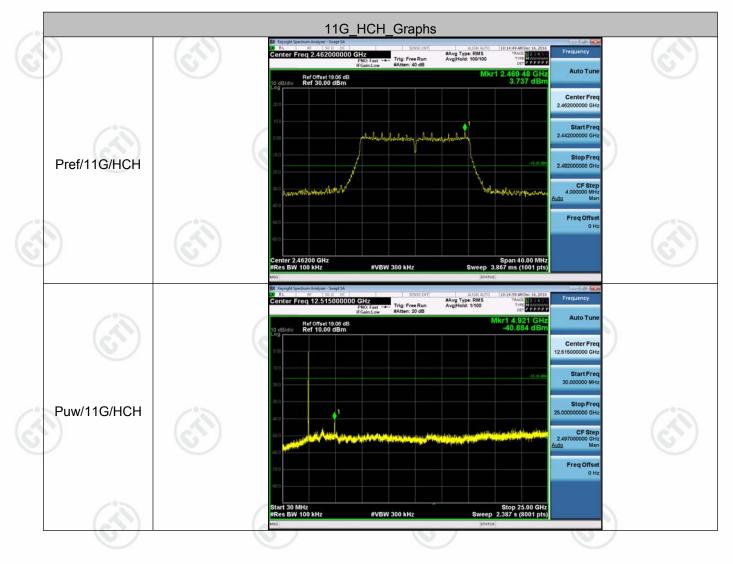


Page 26 of 70

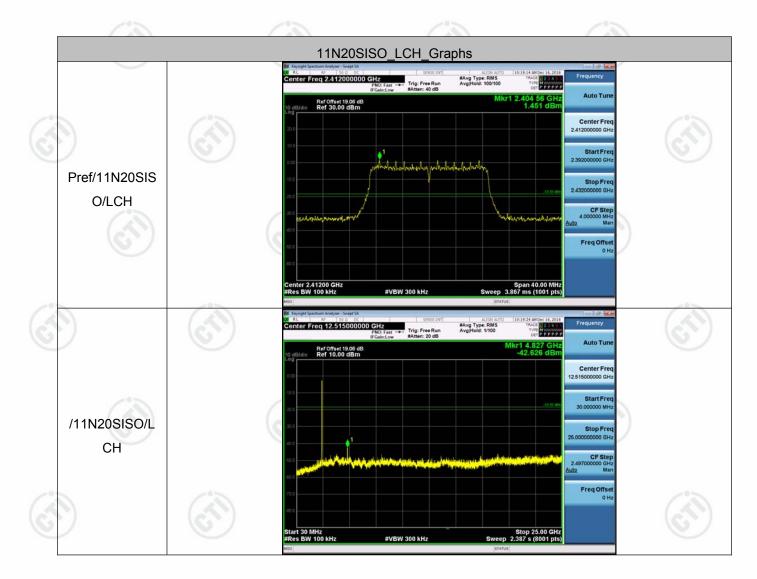


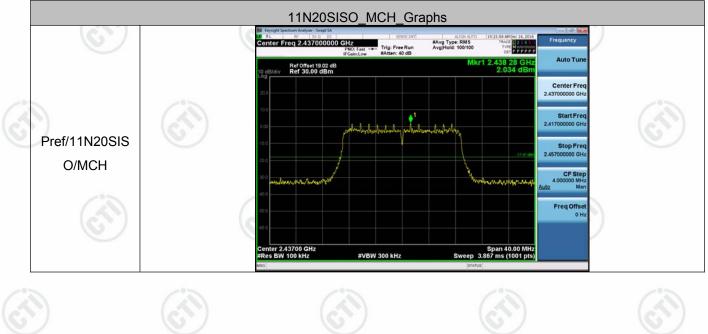
Page 27 of 70



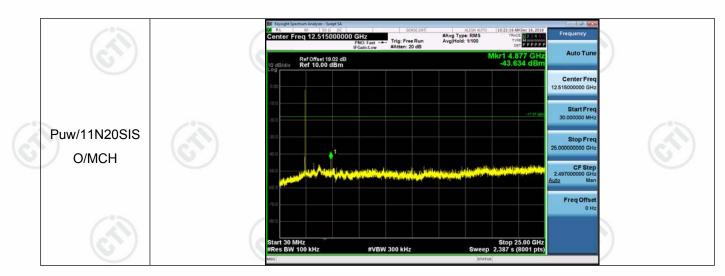


Page 28 of 70



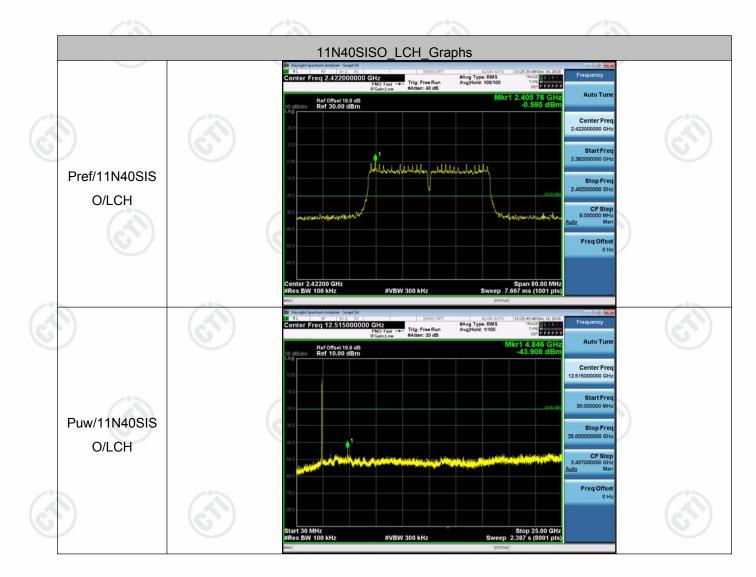


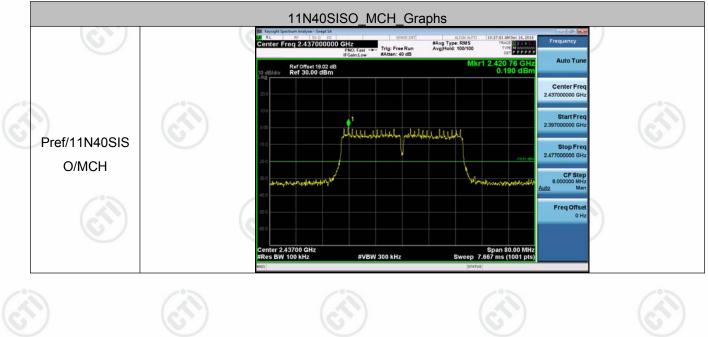
Page 29 of 70



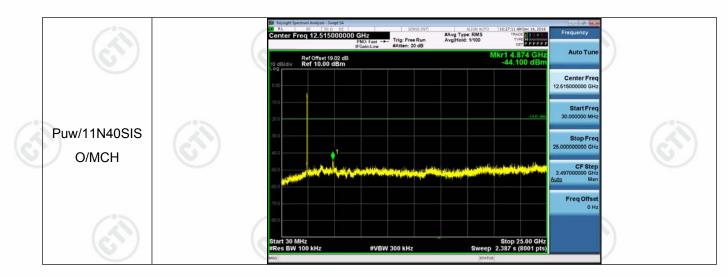


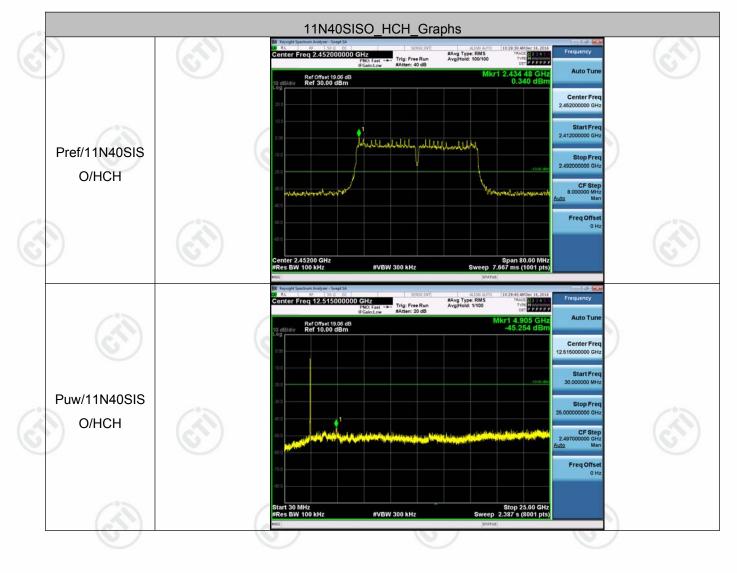
Page 30 of 70



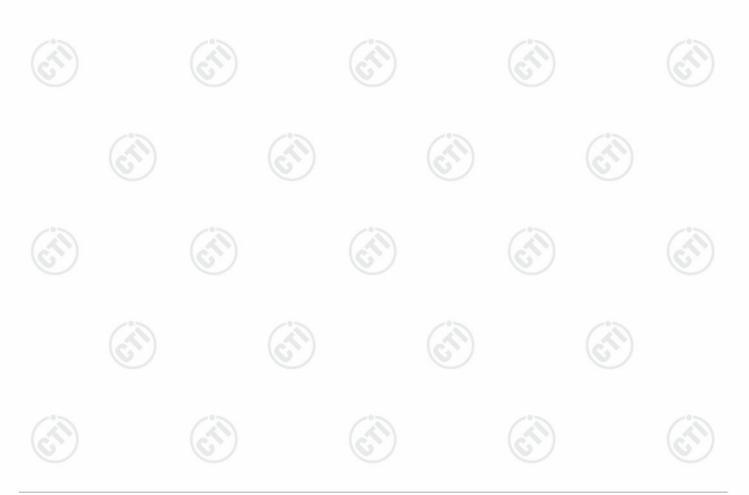


Page 31 of 70





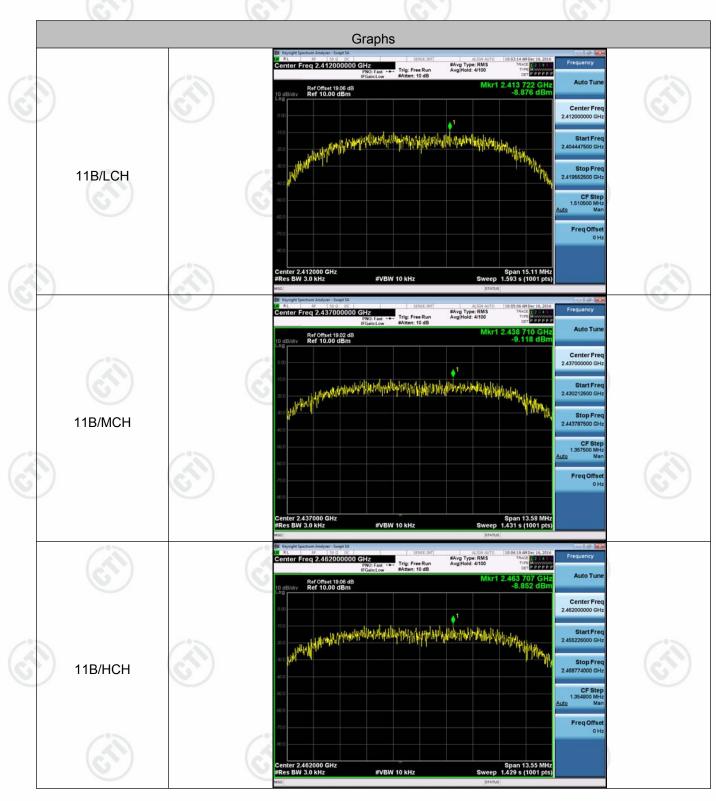
Page 32 of 70



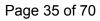
Appendix E): Power Spectral Density

Result Table

Mode	Channel	Power Spectral Density[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
11B	LCH	-8.876	8	PASS
11B	МСН	-9.118	8	PASS
11B	НСН	-8.852	8	PASS
11G	LCH	-12.163	8	PASS
11G	МСН	-12.131	8	PASS
11G	НСН	-11.049	8	PASS
11N20SISO	LCH	-13.358	8	PASS
11N20SISO	МСН	-13.421	8	PASS
11N20SISO	нсн	-13.317	8	PASS
11N40SISO	LCH	-16.665	8	PASS
11N40SISO	МСН	-14.836	8	PASS
11N40SISO	НСН	-15.801	8	PASS
6)			67)	



Page 34 of 70



CTI 华烈极测 CENTRE TESTING INTERNATIONAL

Report No. : EED32I00297001

CTI 华烈 检测 CENTRE TESTING INTERNATIONAL

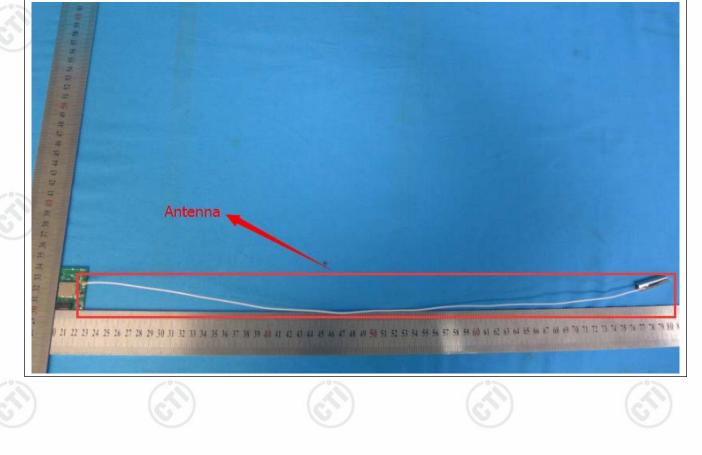
Report No. : EED32I00297001

Page 36 of 70

CTI 华观检测 CENTRE TESTING INTERNATIONAL

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 3Bi.

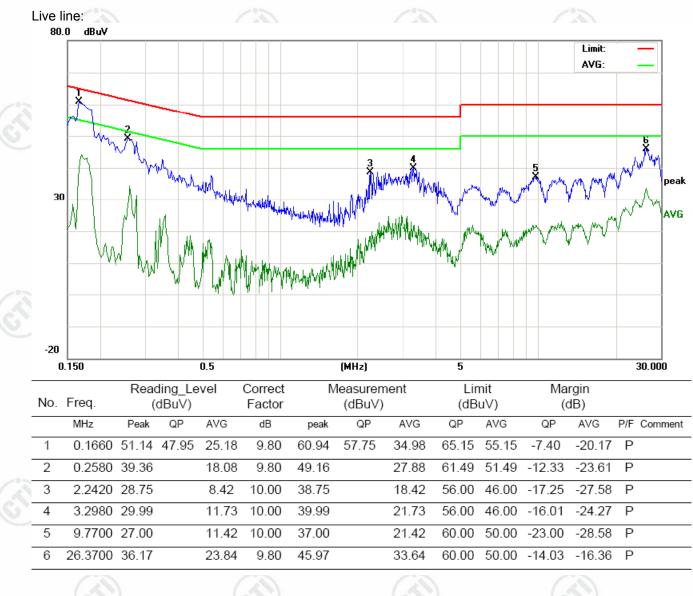
Hotline: 400-6788-333

Page 39 of 70

Appendix G): AC Power Line Conducted Emission

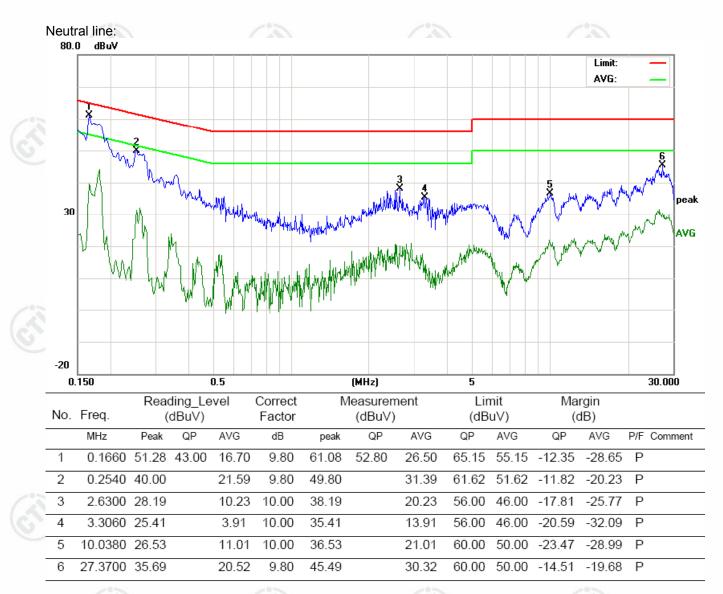
Test Procedure:	Test frequency range :150KHz	z-30MHz						
	1)The mains terminal disturba	nce voltage test was o	conducted in a shield	ed room.				
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multip power cables to a single LISN provided the rating of the LISN was not							
(A)	 exceeded. 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 							
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.							
	5) In order to find the maximum the interface cables must measurement.							
Limit:		6)	(\mathcal{C})					
		Limit (dBµV)					
	Frequency range (MHz)	Quasi-peak	Average	-				
	0.15-0.5	66 to 56*	56 to 46*					
*)	0.5-5	56	46	(c^{γ})				
	5-30	60	50					
	5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the range 0.15 M to 0.50 MHz. NOTE : The lower limit is applicable at the transition frequency							

Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were

detected.



Page 40 of 70

Page 41 of 70

Notes:

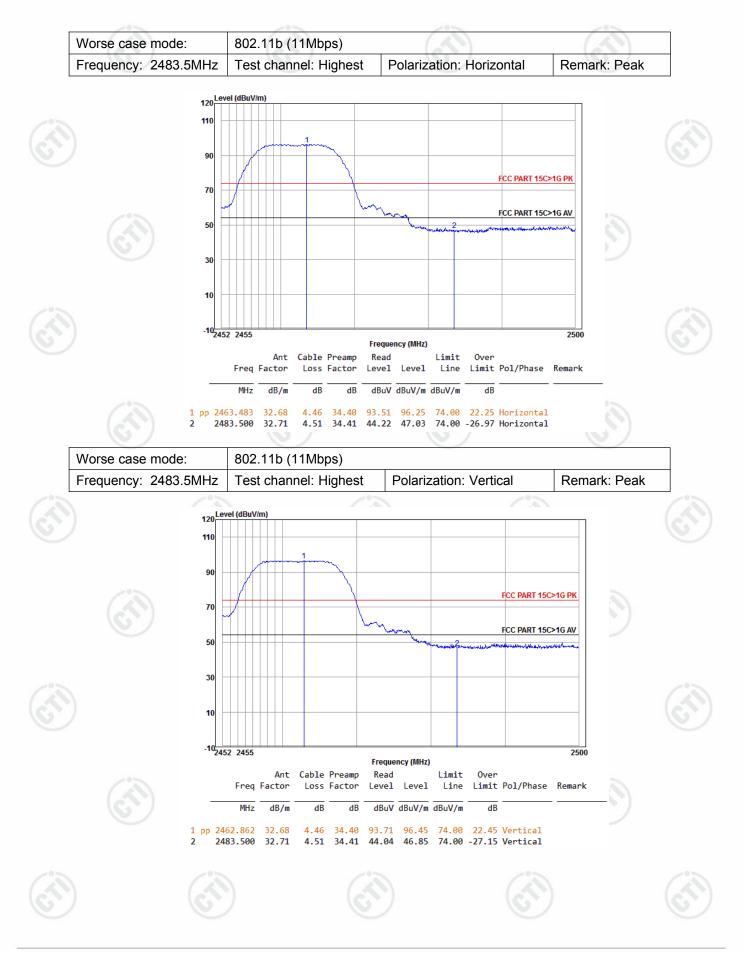
1. The following Quasi-Peak and Average measurements were performed on the EUT:

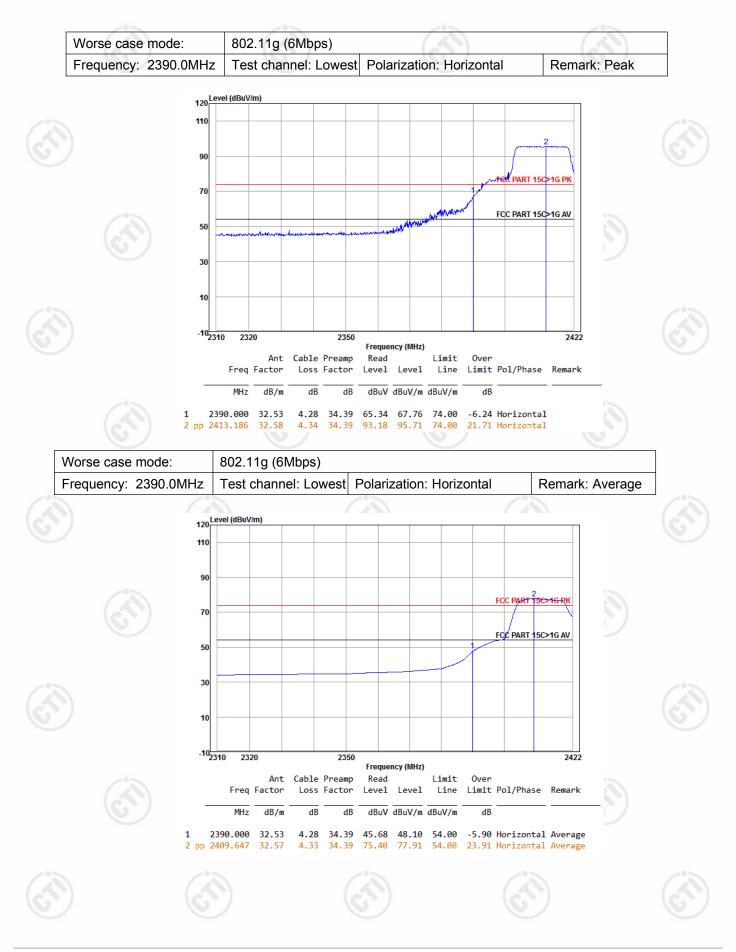
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. AC 120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Appendix H): Restricted bands around fundamental frequency (Radiated)

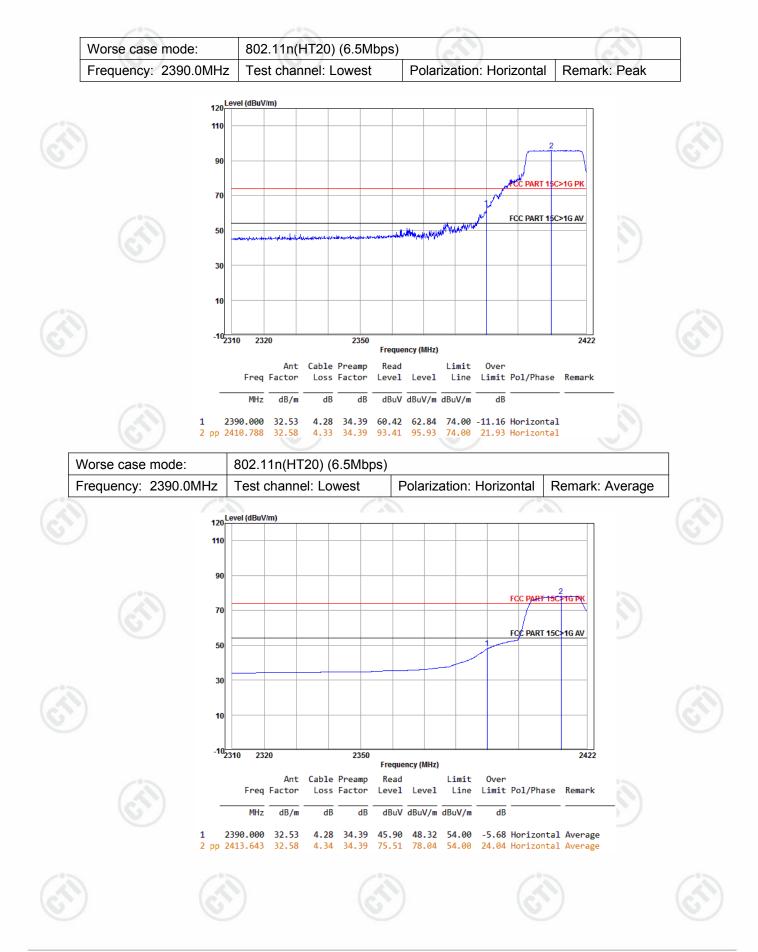
					_	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	τ.
		Peak	1MHz	3MHz	Peak	10
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	 Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-anerodetermine the position b. The EUT was set 3 meters was mounted on the tool of the EUT was set 3 meters and the antenna height is determine the maximul polarizations of the ameters of the antenna was tuned was turned from 0 deg e. The test-receiver system Bandwidth with Maximular f. Place a marker at the antenna the system and the antenna the system and the antenna test at the antenna test at the system and the system an	ure as below: on the top of a rot choic camber. Th of the highest rad eters away from th op of a variable-he varied from one r m value of the fie tenna are set to n mission, the EUT d to heights from rees to 360 degre em was set to Pea um Hold Mode.	ating table e table wa diation. he interfer eight anter meter to fo eld strength nake the n was arran 1 meter to ees to find ak Detect l	e 0.8 meter is rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters the maxin Function a	rs above the g 360 degrees f iving antenna above the gro rizontal and v ent. worst case ar and the rotata num reading. nd Specified	to a, wh ounc rertic nd th
	frequency to show con bands. Save the spect for lowest and highest	npliance. Also me rum analyzer plot	easure any	emission	s in the restric	
	frequency to show con bands. Save the spect	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table west channel , th ements are perfor d found the X axi	easure any t. Repeat f , change fr n table 0.8 e is 1.5 me ne Highest med in X, is positioni	emissions for each po rom Semi- meter to 1 eter). channel Y, Z axis p ng which i	s in the restric ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas	dulat namb ove
Limit:	frequency to show com bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table west channel , th ements are perfor d found the X axi	easure any t. Repeat f , change fr table 0.8 e is 1.5 me he Highest med in X, is positioni	emissions for each po meter to 1 eter). channel Y, Z axis p ng which i easured wa	s in the restric ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas	dulat namb ove
Limit:	frequency to show com bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table west channel , th ements are perfor d found the X axi ures until all frequ	easure any t. Repeat f t table 0.8 e is 1.5 me is 1.5 me is positioni iencies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa	s in the restric ower and mod Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete.	dulat namb ove
Limit:	frequency to show combands. Save the spect for lowest and highest Above 1GHz test procedung. Different between abort to fully Anechoic Channa 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedung Frequency	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table west channel , th ements are perfor d found the X axi ures until all frequ Limit (dBµV/r	easure any t. Repeat f t table 0.8 e is 1.5 me ie Highest med in X, is positioni iencies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa Rei Quasi-po	Anechoic Ch Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	dulat namb ove
Limit:	frequency to show combands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table west channel , th ements are perfor d found the X axi ures until all frequ Limit (dBµV/r 40.0	easure any t. Repeat f t table 0.8 e is 1.5 me is Highest med in X, is positioni iencies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i asured wa Rei Quasi-po	Anechoic Ch Anechoic Ch .5 meter(Abd oositioning for t is worse cas as complete. mark eak Value	dulat namb ove
Limit:	frequency to show combands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table west channel , th ements are perfor d found the X axi ures until all freque Limit (dBµV/r 40.0 43.5	easure any t. Repeat f n table 0.8 e is 1.5 me ie Highest med in X, is positioni iencies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa Rei Quasi-po Quasi-po	s in the restrictory of the section	dulat namb ove
Limit:	frequency to show combands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also me rum analyzer plot channel ure as below: ve is the test site, nber change form 1 meter and table west channel , th ements are perform d found the X axi ures until all frequ Limit (dBµV/r 40.0 43.5 46.0	easure any t. Repeat f n table 0.8 e is 1.5 me ne Highest med in X, is positioni iencies me m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa Rei Quasi-po Quasi-po Quasi-po	s in the restriction over and mode Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete. mark eak Value eak Value eak Value	dulat namb ove


Test plot as follows: Worse case mode: 802.11b (11Mbps) Frequency: 2390.0MHz Test channel: Lowest Polarization: Horizontal Remark: Peak 120 Level (dBuV/m) 110 90 FCC PART 1 70 FCC PART 15C>1G AV 50 30 10 -102310 2320 2350 2422 Frequency (MHz) Ant Cable Preamp Read Limit 0ver Freq Factor Loss Factor Level Level Line Limit Pol/Phase Remark MHz dB/m dB dB dBuV dBuV/m dBuV/m dB 1 2390.000 2 pp 2412.844 32.53 4.28 34.39 45.05 47.47 74.00 -26.53 Horizontal 32.58 4.34 34.39 93.72 96.25 74.00 22.25 Horizontal Worse case mode: 802.11b (11Mbps) Test channel: Lowest Polarization: Vertical Frequency: 2390.0MHz Remark: Peak 120 Level (dBuV/m) 110 90 FCC PART 15 70 FCC PART 150 >1G AV 50 h. 30 10 -102310 2320 2350 2422 Frequency (MHz) Ant Cable Preamp Read Limit 0ver Freq Factor Limit Pol/Phase Remark Loss Factor Level Level Line dB/m dB dB dBuV dBuV/m dBuV/m dB MHz 2390.000 32.53 4.28 34.39 45.44 47.86 74.00 -26.14 Vertical 1 2413.415 4.34 34.39 96.21 74.00 22.21 Vertical 2 pp 32.58 93.68

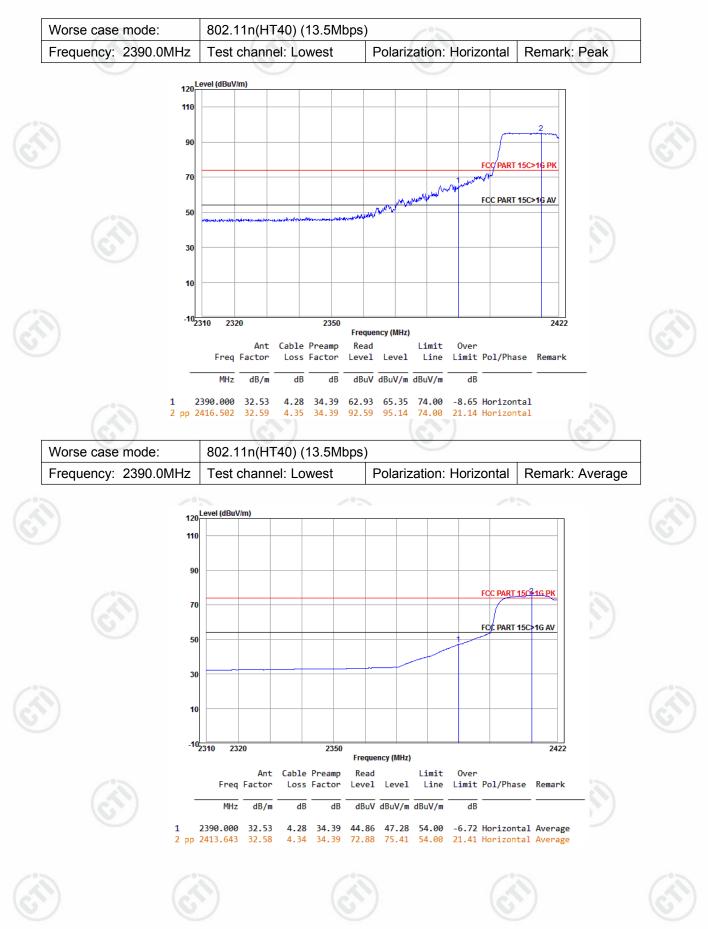

Page 44 of 70

Page 46 of 70

Page 47 of 70



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 51 of 70

Page 53 of 70

1) Through Pre-scan transmitting mode with all kind of modulation and data rate, and the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.

Page 54 of 70

2) The field strength is calculated by adding the Antenna Factor

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 Final Test Level =Receiver Reading - Correct Factor
 Correct Factor = Preamplifier Factor – Antenna Factor–Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:		(2			(\sim)	
	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
$(\mathbf{c}^{\mathbf{v}})$		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Limit:

Below 1GHz test procedure as below:

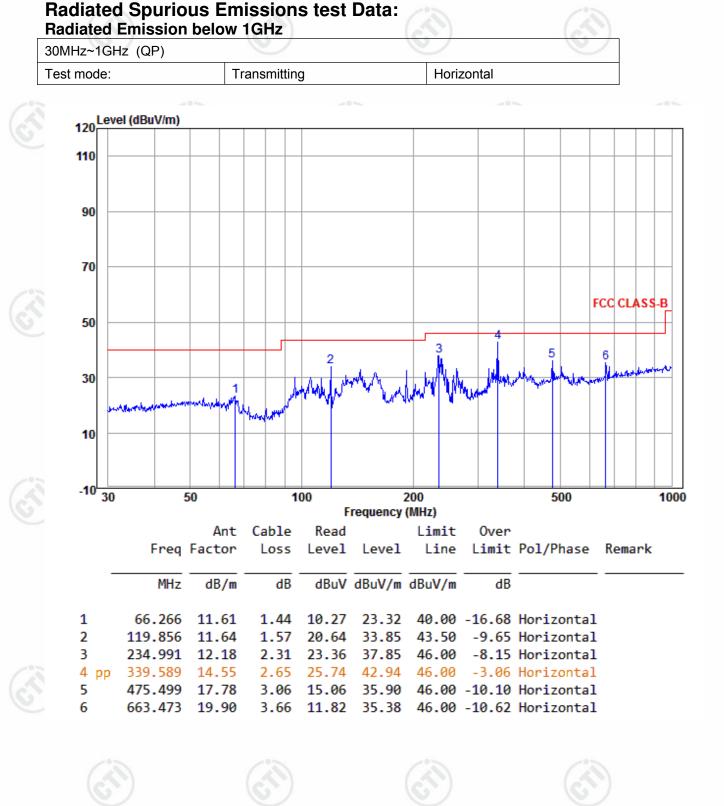
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

lote: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Page 56 of 70

Page 57 of 70

Page 58 of 70

Transmitter Emission above 1GHz

Test mode:	802.11b(11	Mbps)	Test F	requency:	2412MHz	z Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1135.731	30.07	2.44	35.03	46.30	43.78	74.00	-30.22	Pass	Horizontal	
1439.090	30.75	2.77	34.73	46.12	44.91	74.00	-29.09	Pass	Horizontal	
4824.000	34.73	5.10	34.35	44.49	49.97	74.00	-24.03	Pass	Horizontal	
5660.469	35.64	6.67	34.30	41.87	49.88	74.00	-24.12	Pass	Horizontal	
7236.000	36.42	6.69	34.90	38.74	46.95	74.00	-27.05	Pass	Horizontal	
9648.000	37.93	7.70	35.07	39.03	49.59	74.00	-24.41	Pass	Horizontal	
1319.777	30.50	2.65	34.84	45.40	43.71	74.00	-30.29	Pass	Vertical	
3634.910	33.07	5.50	34.57	43.61	47.61	74.00	-26.39	Pass	Vertical	
4824.000	34.73	5.10	34.35	45.21	50.69	74.00	-23.31	Pass	Vertical	
6017.064	35.91	7.41	34.31	40.82	49.83	74.00	-24.17	Pass	Vertical	
7236.000	36.42	6.69	34.90	38.81	47.02	74.00	-26.98	Pass	Vertical	
9648.000	37.93	7.70	35.07	38.54	49.10	74.00	-24.90	Pass	Vertical	

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Limit		Antenna Polaxis
1093.183	29.96	2.38	35.08	46.31	43.57	74.00	-30.43	Pass	Horizontal
3757.208	32.97	5.48	34.58	43.69	47.56	74.00	-26.44	Pass	Horizontal
4874.000	34.84	5.09	34.33	44.98	50.58	74.00	-23.42	Pass	Horizontal
5956.109	35.87	7.33	34.30	42.07	50.97	74.00	-23.03	Pass	Horizontal
7311.000	36.43	6.76	34.90	40.99	49.28	74.00	-24.72	Pass	Horizontal
9748.000	38.03	7.61	35.05	38.90	49.49	74.00	-24.51	Pass	Horizontal
1195.049	30.21	2.51	34.97	47.18	44.93	74.00	-29.07	Pass	Vertical
1319.777	30.50	2.65	34.84	49.36	47.67	74.00	-26.33	Pass	Vertical
4874.000	34.84	5.09	34.33	45.32	50.92	74.00	-23.08	Pass	Vertical
5910.798	35.83	7.23	34.30	42.07	50.83	74.00	-23.17	Pass	Vertical
7311.000	36.43	6.76	34.90	39.21	47.50	74.00	-26.50	Pass	Vertical
9748.000	38.03	7.61	35.05	38.54	49.13	74.00	-24.87	Pass	Vertical

Page 59 of 70

								(A)	
Test mode:	802.11b(11	Mbps)	Test Freq	Juency: 24	62MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1195.049	30.21	2.51	34.97	47.41	45.16	74.00	-28.84	Pass	Horizontal
3993.903	32.80	5.44	34.60	43.50	47.14	74.00	-26.86	Pass	Horizontal
4924.000	34.94	5.07	34.32	45.05	50.74	74.00	-23.26	Pass	Horizontal
6203.700	36.01	7.22	34.43	41.74	50.54	74.00	-23.46	Pass	Horizontal
7386.000	36.44	6.83	34.90	39.22	47.59	74.00	-26.41	Pass	Horizontal
9848.000	38.14	7.53	35.03	38.60	49.24	74.00	-24.76	Pass	Horizontal
1079.357	29.92	2.37	35.10	48.84	46.03	74.00	-27.97	Pass	Vertical
1364.182	30.60	2.69	34.80	46.95	45.44	74.00	-28.56	Pass	Vertical
3700.260	33.02	5.49	34.57	45.80	49.74	74.00	-24.26	Pass	Vertical
4924.000	34.94	5.07	34.32	44.99	50.68	74.00	-23.32	Pass	Vertical
7386.000	36.44	6.83	34.90	41.24	49.61	74.00	-24.39	Pass	Vertical
9848.000	38.14	7.53	35.03	37.73	48.37	74.00	-25.63	Pass	Vertical


Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	12MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Limit		Antenna Polaxis
1110.008	30.00	2.41	35.06	45.67	43.02	74.00	-30.98	Pass	Horizontal
1319.777	30.50	2.65	34.84	49.04	47.35	74.00	-26.65	Pass	Horizontal
4824.000	34.73	5.10	34.35	44.22	49.70	74.00	-24.30	Pass	Horizontal
6379.864	36.10	7.05	34.54	41.60	50.21	74.00	-23.79	Pass	Horizontal
7236.000	36.42	6.69	34.90	41.09	49.30	74.00	-24.70	Pass	Horizontal
9648.000	37.93	7.70	35.07	38.75	49.31	74.00	-24.69	Pass	Horizontal
1182.943	30.18	2.50	34.98	45.66	43.36	74.00	-30.64	Pass	Vertical
1668.044	31.18	2.98	34.54	47.36	46.98	74.00	-27.02	Pass	Vertical
4824.000	34.73	5.10	34.35	43.84	49.32	74.00	-24.68	Pass	Vertical
5747.586	35.71	6.87	34.30	42.64	50.92	74.00	-23.08	Pass	Vertical
7236.000	36.42	6.69	34.90	40.38	48.59	74.00	-25.41	Pass	Vertical
9648.000	37.93	7.70	35.07	38.70	49.26	74.00	-24.74	Pass	Vertical

	Test mode:	802.11g(6N	lbps)	Test Free	quency: 24	37MHz	Remark: P	Remark: Peak		
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Gain Level level (dBuV/m) Limit		Over Limit (dB)	Result	Antenna Polaxis	
2	1121.367	30.03	2.42	35.05	46.44	43.84	74.00	-30.16	Pass	Horizontal
5	1319.777	30.50	2.65	34.84	49.52	47.83	74.00	-26.17	Pass	Horizontal
-	4874.000	34.84	5.09	34.33	44.56	50.16	74.00	-23.84	Pass	Horizontal
	6363.645	36.09	7.06	34.53	41.78	50.40	74.00	-23.60	Pass	Horizontal
	7311.000	36.43	6.76	34.90	41.09	49.38	74.00	-24.62	Pass	Horizontal
	9748.000	38.03	7.61	35.05	37.91	48.50	74.00	-25.50	Pass	Horizontal
	1087.632	29.94	2.38	35.09	46.06	43.29	74.00	-30.71	Pass	Vertical
	1374.639	30.62	2.71	34.79	45.68	44.22	74.00	-29.78	Pass	Vertical
- 0.3	1668.044	31.18	2.98	34.54	47.59	47.21	74.00	-26.79	Pass	Vertical
4	4874.000	34.84	5.09	34.33	42.12	47.72	74.00	-26.28	Pass	Vertical
2	7311.000	36.43	6.76	34.90	40.13	48.42	74.00	-25.58	Pass	Vertical
	9748.000	38.03	7.61	35.05	38.82	49.41	74.00	-24.59	Pass	Vertical


Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	62MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Limit		Antenna Polaxis
1319.777	30.50	2.65	34.84	49.71	48.02	74.00	-25.98	Pass	Horizontal
1537.557	30.94	2.86	34.64	49.18	48.34	74.00	-25.66	Pass	Horizontal
4924.000	34.94	5.07	34.32	44.52	50.21	74.00	-23.79	Pass	Horizontal
5910.798	35.83	7.23	34.30	41.52	50.28	74.00	-23.72	Pass	Horizontal
7386.000	36.44	6.83	34.90	40.18	48.55	74.00	-25.45	Pass	Horizontal
9848.000	38.14	7.53	35.03	40.31	50.95	74.00	-23.05	Pass	Horizontal
1090.404	29.95	2.38	35.09	46.31	43.55	74.00	-30.45	Pass	Vertical
1340.089	30.54	2.67	34.82	46.67	45.06	74.00	-28.94	Pass	Vertical
1663.803	31.17	2.97	34.54	46.54	46.14	74.00	-27.86	Pass	Vertical
4946.072	34.99	5.06	34.31	42.01	47.75	74.00	-26.25	Pass	Vertical
7386.000	36.44	6.83	34.90	41.07	49.44	74.00	-24.56	Pass	Vertical
9848.000	38.14	7.53	35.03	39.74	50.38	74.00	-23.62	Pass	Vertical

Test mode:	802.11n(HT	⁻ 20)(6.5N	/lbps)	Test Frequ	uency: 2412MHz Rema			ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Lin (dBµ'	-	Over Limit (dB)	Result	Antenna Polaxis
1319.777	30.50	2.65	34.84	49.15	47.46	74.	00	-26.54	Pass	Horizontal
1553.293	30.97	2.88	34.63	47.88	47.10	74.	00	-26.90	Pass	Horizontal
4824.000	34.73	5.10	34.35	42.30	47.78	74.	00	-26.22	Pass	Horizontal
5836.044	35.78	7.07	34.30	40.59	49.14	74.	00	-24.86	Pass	Horizontal
7236.000	36.42	6.69	34.90	38.93	47.14	74.	00	-26.86	Pass	Horizontal
9648.000	37.93	7.70	35.07	40.43	50.99	74.	00	-23.01	Pass	Horizontal
1159.096	30.13	2.47	35.01	46.41	44.00	74.	00	-30.00	Pass	Vertical
1461.238	30.79	2.79	34.71	45.50	44.37	74.	00	-29.63	Pass	Vertical
4824.000	34.73	5.10	34.35	43.20	48.68	74.	00	-25.32	Pass	Vertical
5971.290	35.88	7.37	34.30	41.40	50.35	74.	00	-23.65	Pass	Vertical
7236.000	36.42	6.69	34.90	40.22	48.43	74.	00	-25.57	Pass	Vertical
9648.000	37.93	7.70	35.07	38.99	49.55	74.	00	-24.45	Pass	Vertical

Test mode:	802.11n(HT	20)(6.5N	lbps)	Test Frequency: 2437MHz Remark: Peak				ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)			Over Limit (dB)	Result	Antenna Polaxis
1162.051	30.13	2.47	35.00	46.10	43.70	74	.00	-30.30	Pass	Horizontal
1319.777	30.50	2.65	34.84	49.93	48.24	74	.00	-25.76	Pass	Horizontal
4874.000	34.84	5.09	34.33	44.63	50.23	74	.00	-23.77	Pass	Horizontal
5956.109	35.87	7.33	34.30	41.24	50.14	74	.00	-23.86	Pass	Horizontal
7311.000	36.43	6.76	34.90	41.01	49.30	74	.00	-24.70	Pass	Horizontal
9748.000	38.03	7.61	35.05	38.86	49.45	74	.00	-24.55	Pass	Horizontal
1201.149	30.23	2.52	34.96	45.71	43.50	74	.00	-30.50	Pass	Vertical
1605.554	31.07	2.92	34.59	44.23	43.63	74	.00	-30.37	Pass	Vertical
4874.000	34.84	5.09	34.33	42.54	48.14	74	.00	-25.86	Pass	Vertical
6001.768	35.90	7.43	34.30	41.09	50.12	74	.00	-23.88	Pass	Vertical
7311.000	36.43	6.76	34.90	40.64	48.93	74	.00	-25.07	Pass	Vertical
9748.000	38.03	7.61	35.05	40.04	50.63	74	.00	-23.37	Pass	Vertical

Page 62 of 70

Test mode:	802.11n(HT	20)(6.5N	(lbps)	Test Frequency: 2462MHz Remark: Pe				ark: Peak	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)		Final test level (dBµV/m)	Lim (dBµ\	I imit		Result	Antenna Polaxis	
1195.049	30.21	2.51	34.97	46.14	43.89	74.00		-30.11	Pass	Horizontal	
1439.090	30.75	2.77	34.73	46.47	45.26	74.00		-28.74	Pass	Horizontal	
4924.000	34.94	5.07	34.32	43.22	48.91	74.00		-25.09	Pass	Horizontal	
5762.235	35.72	6.90	34.30	41.31	49.63	74.00		-24.37	Pass	Horizontal	
7386.000	36.44	6.83	34.90	40.30	48.67	74.00		-25.33	Pass	Horizontal	
9848.000	38.14	7.53	35.03	39.98	50.62	74.0	00	-23.38	Pass	Horizontal	
1185.958	30.19	2.50	34.98	46.87	44.58	74.0	00	-29.42	Pass	Vertical	
1668.044	31.18	2.98	34.54	46.32	45.94	74.00		-28.06	Pass	Vertical	
4924.000	34.94	5.07	34.32	44.36	50.05	74.00		-23.95	Pass	Vertical	
5956.109	35.87	7.33	34.30	41.55	50.45	74.00		-23.55	Pass	Vertical	
7386.000	36.44	6.83	34.90	40.86	49.23	74.00		-24.77	Pass	Vertical	
9848.000	38.14	7.53	35.03	39.84	50.48	74.00		-23.52	Pass	Vertical	

	Test mode:	802.11n(HT	Mbps)	Test Freque	Hz	Remark: Peak					
	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Lin (dBµ\		Over Limit (dB)	Result	Antenna Polaxis
	1127.091	30.05	2.43	35.04	46.54	43.98	74.00		-30.02	Pass	Horizontal
4	1553.293	30.97	2.88	34.63	47.02	46.24	74.0	00	-27.76	Pass	Horizontal
2	4844.000	34.77	5.10	34.34	40.78	46.31	74.0	00	-27.69	Pass	Horizontal
	5940.967	35.86	7.30	34.30	41.50	50.36	74.0	00	-23.64	Pass	Horizontal
	7266.000	36.43	6.72	34.90	40.36	48.61	74.0	00	-25.39	Pass	Horizontal
	9688.000	37.97	7.66	35.06	38.55	49.12	74.0	00	-24.88	Pass	Horizontal
	1093.183	29.96	2.38	35.08	47.07	44.33	74.0	00	-29.67	Pass	Vertical
	1350.362	30.57	2.68	34.81	45.65	44.09	74.0	00	-29.91	Pass	Vertical
	4844.000	34.77	5.10	34.34	41.30	46.83	74.00		-27.17	Pass	Vertical
1	5776.922	35.73	6.93	34.30	41.55	49.91	74.0	00	-24.09	Pass	Vertical
	7266.000	36.43	6.72	34.90	40.11	48.36	74.0	00	-25.64	Pass	Vertical
4	9688.000	37.97	7.66	35.06	39.65	50.22	74.0	00	-23.78	Pass	Vertical

(A)

Page 63 of 70

			200		243			~~~	
Test mode:	802.11n(HT	Vbps)	∣ lest ⊦i	requency: 24	37MHz	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m	Over Limit (dB)	Result	Antenna Polaxis
1138.626	30.07	2.44	35.03	45.89	43.37	74.00	-30.63	Pass	Horizonta
1319.777	30.50	2.65	34.84	47.42	45.73	74.00	-28.27	Pass	Horizonta
4874.000	34.84	5.09	34.33	45.00	50.60	74.00	-23.40	Pass	Horizonta
6315.233	36.07	7.11	34.50	42.24	50.92	74.00	-23.08	Pass	Horizonta
7311.000	36.43	6.76	34.90	40.72	49.01	74.00	-24.99	Pass	Horizonta
9748.000	38.03	7.61	35.05	39.90	50.49	74.00	-23.51	Pass	Horizonta
1198.095	30.22	2.51	34.97	45.96	43.72	74.00	-30.28	Pass	Vertical
1668.044	31.18	2.98	34.54	47.30	46.92	74.00	-27.08	Pass	Vertical
4874.000	34.84	5.09	34.33	43.03	48.63	74.00	-25.37	Pass	Vertical
5732.974	35.70	6.83	34.30	41.93	50.16	74.00	-23.84	Pass	Vertical
7311.000	36.43	6.76	34.90	40.43	48.72	74.00	-25.28	Pass	Vertical
9748.000	38.03	7.61	35.05	39.25	49.84	74.00	-24.16	Pass	Vertical

Test mode:	802.11n(HT	40)(13.5	Mbps) 7	Test Frequency: 2452MHz Rema				ark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis	
1127.091	30.05	2.43	35.04	46.94	44.38	74.00		-29.62	Pass	Horizontal	
1319.777	30.50	2.65	34.84	47.99	46.30	74.00		-27.70	Pass	Horizontal	
4904.000	34.90	5.07	34.33	42.51	48.15	74.00		-25.85	Pass	Horizontal	
5925.863	35.85	7.27	34.30	41.36	50.18	74.00		-23.82	Pass	Horizontal	
7356.000	36.44	6.80	34.90	40.34	48.68	74	.00	-25.32	Pass	Horizontal	
9808.000	38.10	7.56	35.04	38.92	49.54	74.00		-24.46	Pass	Horizontal	
1176.935	30.17	2.49	34.99	45.71	43.38	74	.00	-30.62	Pass	Vertical	
1659.574	31.16	2.97	34.54	46.83	46.42	74.00		-27.58	Pass	Vertical	
4904.000	34.90	5.07	34.33	43.11	48.75	74.00		-25.25	Pass	Vertical	
5895.771	35.82	7.20	34.30	41.68	50.40	74.00		-23.60	Pass	Vertical	
7356.000	36.44	6.80	34.90	40.24	48.58	74.00		-25.42	Pass	Vertical	
9808.000	38.10	7.56	35.04	39.10	49.72	74.00		-24.28	Pass	Vertical	

Note:

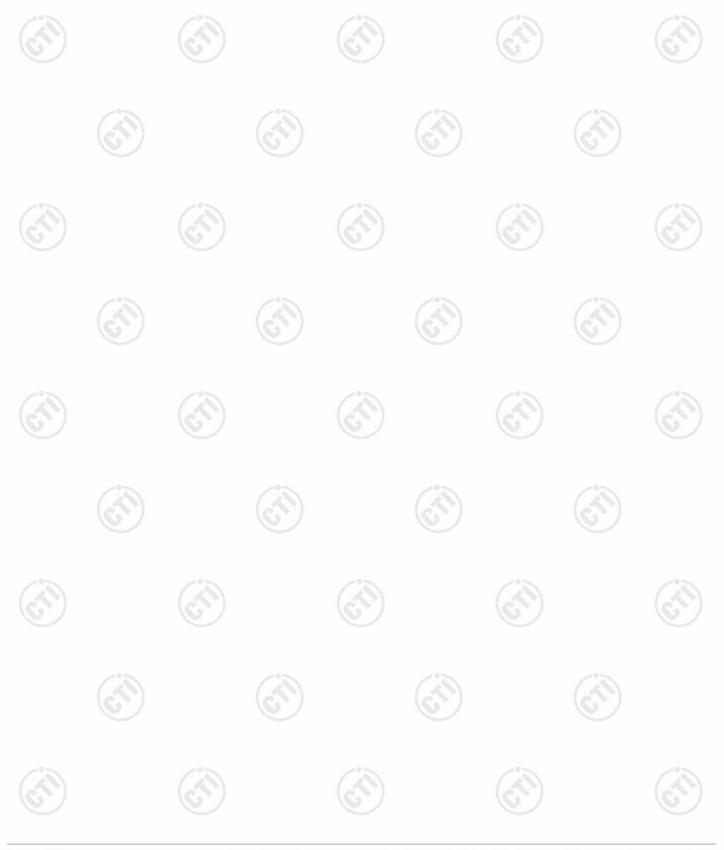
1) Through Pre-scan transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

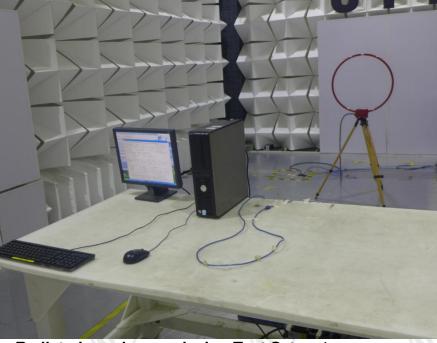
3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been

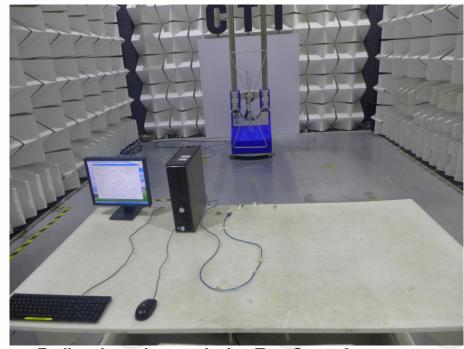


Page 64 of 70

displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

4) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

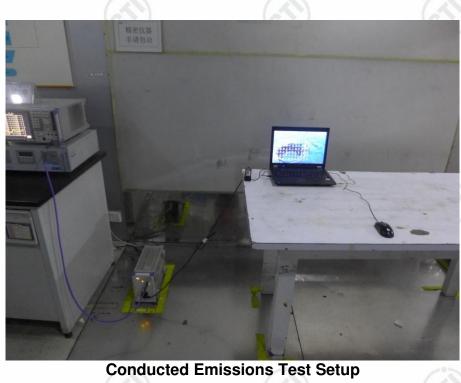




Page 65 of 70

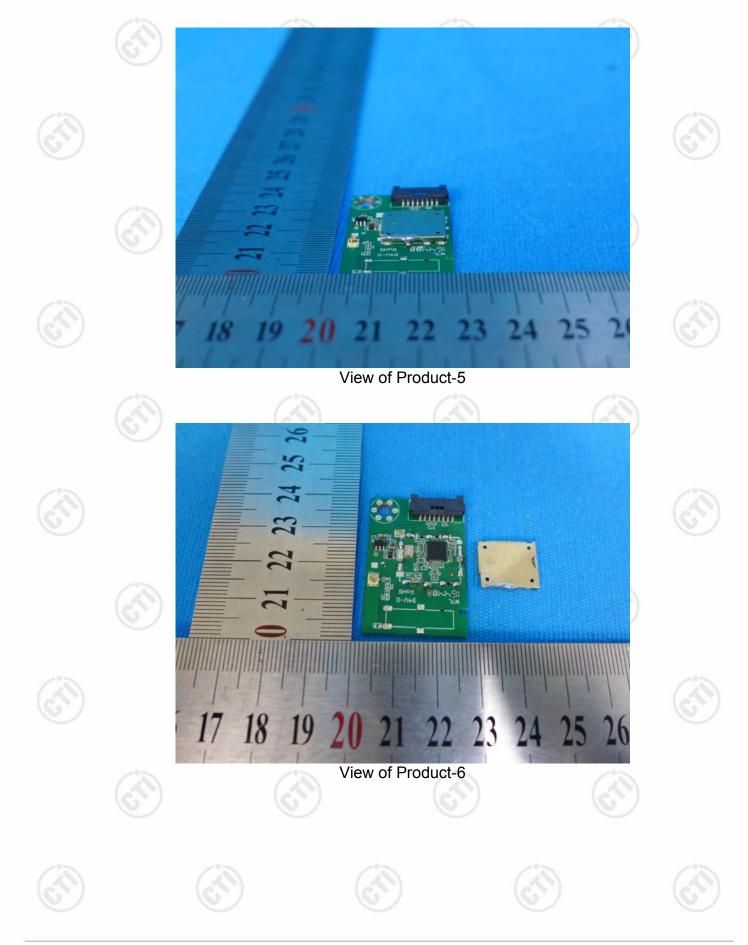
Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)



Radiated spurious emission Test Setup-3(Above 1GHz)





Page 69 of 70

