

Page 75 of 207

Page 76 of 207

Page 78 of 207

Page 79 of 207

Page 81 of 207

Page 82 of 207

Report No. : EED32L00320701

Appendix E): Power Spectral Density Result Table

Mode	Antenna	Channel	Power Spectral Density [dBm/3kHz]	Verdict
11B	Ant1	LCH	-8.970	PASS
11B	Ant2	LCH	-10.133	PASS
11B	Ant1	MCH	-9.575	PASS
11B	Ant2	MCH	-9.788	PASS
11B	Ant1	HCH	-10.039	PASS
11B	Ant2	НСН	-9.956	PASS
11G	Ant1	LCH	-16.418	PASS
11G	Ant2	LCH	-15.068	PASS
11G	Ant1	MCH	-14.143	PASS
11G	Ant2	MCH	-14.289	PASS
11G	Ant1	НСН	-15.697	PASS
11G	Ant2	НСН	-16.502	PASS
11N20SISO	Ant1	LCH	-15.539	PASS
11N20SISO	Ant2	LCH	-17.219	PASS
11N20SISO	Ant1	MCH	-16.976	PASS
11N20SISO	Ant2	MCH	-16.861	PASS
11N20SISO	Ant1	НСН	-17.906	PASS
11N20SISO	Ant2	НСН	-17.931	PASS
11N20MIMO	Ant1	LCH	-20.767	PASS
11N20MIMO	Ant2	LCH	-16.927	PASS
11N20MIMO	Ant1+2	LCH	-15.43	PASS
11N20MIMO	Ant1	MCH	-20.207	PASS
11N20MIMO	Ant2	MCH	-19.365	PASS
11N20MIMO	Ant1+2	MCH	-16.76	PASS
11N20MIMO	Ant1	НСН	-20.123	PASS
11N20MIMO	Ant2	HCH	-16.088	PASS
11N20MIMO	Ant1+2	HCH	-14.64	PASS
11N40SISO	Ant1	LCH	-21.300	PASS
11N40SISO	Ant2	LCH	-21.635	PASS
11N40SISO	Ant1	MCH	-20.939	PASS
11N40SISO	Ant2	MCH	-21.643	PASS
11N40SISO	Ant1	HCH	-20.920	PASS
11N40SISO	Ant2	HCH	-21.622	PASS
11N40MIMO	Ant1	LCH	-24.778	PASS
11N40MIMO	Ant2	LCH	-23.668	PASS
11N40MIMO	Ant1+2	LCH	-21.18	PASS
11N40MIMO	Ant1	MCH	-24.712	PASS
11N40MIMO	Ant2	MCH	-24.579	PASS
11N40MIMO	Ant1+2	MCH	-21.63	PASS
11N40MIMO	Ant1	HCH	-24.775	PASS
11N40MIMO	Ant2	HCH	-23.751	PASS
11N40MIMO	Ant1+2	HCH	-21.22	PASS

Page 84 of 207

CTI 华烈极测 CENTRE TESTING INTERNATIONAL

CTI 华观检测 CENTRE TESTING INTERNATIONAL

Page 86 of 207

CTI 华刻 检 测 CENTRE TESTING INTERNATIONAL

CTI 华初战测 CENTRE TESTING INTERNATIONAL Report No. : EED32L00320701

Page 87 of 207

Page 88 of 207

CTI 华观检测 CENTRE TESTING INTERNATIONAL

Page 91 of 207

CTI 华观极观 CENTRE TESTING INTERNATIONAL

Report No. : EED32L00320701

CTI 华观检测 CENTRE TESTING INTERNATIONAL

Page 92 of 207

CTI 华观检测 CENTRE TESTING INTERNATIONAL

CTI 华观检测 CENTRE TESTING INTERNATIONAL

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 96 of 207

Page 97 of 207

Appendix G): AC Power Line Conducted Emission

nains terminal EUT was cor pilization Network ver cables of a ch was bonded unit being mea ver cables to a seded. tabletop EUT rence plane. A zontal ground	disturban nected to vork) whic all other u d to the gr asured. A single LIS was plac And for flo	ce voltage test was of AC power source to th provides a 50Ω/5 units of the EUT we ound reference plan multiple socket outle SN provided the ratin ed upon a non-met	conducted in a shielde through a LISN 1 (Li 50μ H + 5Ω linear im re connected to a se e in the same way as et strip was used to co g of the LISN was not allic table 0.8m above	ed room. ne Impedance pedance. The econd LISN 2, the LISN 1 for onnect multiple					
EUT was con polization Network ver cables of a ch was bonded unit being mea ver cables to a seded. tabletop EUT rence plane. <i>V</i> zontal ground	nnected to vork) whic all other u d to the gr asured. A single LIS was plac And for flo	AC power source to the provides a 50Ω/5 units of the EUT we ound reference plan multiple socket outle SN provided the ratin ed upon a non-met	through a LISN 1 (Li 50 μ H + 5 Ω linear im re connected to a se e in the same way as et strip was used to co g of the LISN was not allic table 0.8m above	ne Impedance pedance. The cond LISN 2, the LISN 1 for onnect multiple					
tabletop EUT rence plane. / zontal ground	was plac And for flo	ed upon a non-met	allic table 0.8m abov	o the ground					
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,								
(4) The test was performed with a vertical ground reference plane. The rear of the EU shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The vertical ground reference plane. The LISN was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.									
der to find the interface cabl asurement.	maximum les must	n emission, the relative be changed accord	ve positions of equip ing to ANSI C63.10	nent and all of on conducted					
67)		(C)	(C)						
	(8.41.1_)	Limit (dBµV)						
luency range ((MHZ)	Quasi-peak	Average						
0.15-0.5	13	66 to 56*	56 to 46*	1					
0.5-5	(6)	56	46	(\mathcal{S})					
5-30	~	60	50						
	rence plane w placed 0.8 m rence plane f ance was betw ie EUT and as der to find the interface cab asurement. 0.15-0.5 0.5-5 5-30 mit decreases .50 MHz.	rence plane was bonde placed 0.8 m from the rence plane for LISNs ance was between the o the EUT and associated of der to find the maximum interface cables must asurement.	rence plane was bonded to the horizontal g placed 0.8 m from the boundary of the unit rence plane for LISNs mounted on top of ance was between the closest points of the ne EUT and associated equipment was at lead der to find the maximum emission, the relativity interface cables must be changed accord asurement.	rence plane was bonded to the horizontal ground reference plane placed 0.8 m from the boundary of the unit under test and bonderence plane for LISNs mounted on top of the ground reference ance was between the closest points of the LISN 1 and the EUT. The EUT and associated equipment was at least 0.8 m from the LIS der to find the maximum emission, the relative positions of equiprinterface cables must be changed according to ANSI C63.10 asurement.					

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were

detected.

NO.	WIN.	Freq.	Level	Factor	ment	LITTIL	margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.2535	43.96	10.06	54.02	61.64	-7.62	QP	
2		0.2535	26.80	10.06	36.86	51.64	-14.78	AVG	
3		0.5010	27.41	10.00	37.41	56.00	-18.59	QP	
4		0.5010	12.20	10.00	22.20	46.00	-23.80	AVG	
5		3.0750	20.75	9.83	30.58	56.00	-25.42	QP	
6		3.1245	11.21	9.83	21.04	46.00	-24.96	AVG	
7		4.7715	20.51	9.83	30.34	56.00	-25.66	QP	
8		4.7985	9.21	9.83	19.04	46.00	-26.96	AVG	
9		8.7944	30.49	9.92	40.41	60.00	-19.59	QP	
10		8.8890	21.40	9.92	31.32	50.00	-18.68	AVG	
11	5	15.0630	27.91	9.98	37.89	60.00	-22.11	QP	
12	i.	15.3150	17.00	9.98	26.98	50.00	-23.02	AVG	

Page 99 of 207

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	52.26	9.97	62.23	66.00	-3.77	QP	
2		0.1500	31.93	9.97	41.90	56.00	-14.10	AVG	
3		0.3840	32.24	10.02	42.26	58.19	-15.93	QP	
4		0.3840	17.19	10.02	27.21	48.19	-20.98	AVG	
5		1.8015	8.13	9.85	17.98	46.00	-28.02	AVG	
6		1.8105	17.54	9.85	27.39	56.00	-28.61	QP	
7		4.7490	11.42	9.83	21.25	46.00	-24.75	AVG	
8		4.8300	23.33	9.83	33.16	56.00	-22.84	QP	
9		8.5155	27.75	9.91	37.66	60.00	-22.34	QP	
10		8.6100	18.27	9.91	28.18	50.00	-21.82	AVG	
11		15.3510	17.88	9.98	27.86	50.00	-22.14	AVG	
12		15.4140	27.53	9.98	37.51	60.00	-22.49	QP	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Hotline: 400-6788-333

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark]
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
2)	Above TGHZ	Peak	1MHz	10Hz	Average	S)
Test Procedure:	Below 1GHz test procedu	re as below:	1			
	 Test method Refer as KDB a. The EUT was placed or at a 3 meter semi-anect determine the position of b. The EUT was set 3 met was mounted on the top c. The antenna height is v determine the maximum polarizations of the ante d. For each suspected em the antenna was tuned was turned from 0 degrie e. The test-receiver syster Bandwidth with Maximu f. Place a marker at the e frequency to show com bands. Save the spectrie 	558074 D01 in the top of a ro hoic camber. The of the highest ra- ers away from of a variable-h- aried from one in value of the fil- enna are set to ission, the EUT to heights from ees to 360 degr in was set to Per- im Hold Mode. Ind of the restrice pliance. Also mo- um analyzer plo-	tating table ne table wa adiation. the interfer neight anter meter to for eld strengtl make the r was arran 1 meter to rees to find eak Detect cted band of easure any ot. Repeat f	e 0.8 meter is rotated 3 ence-recei na tower. ur meters h. Both hor neasureme ged to its 4 meters the maxin Function a losest to the emissions for each po	rs above the g 360 degrees to iving antenna, above the gro rizontal and ve ent. worst case and and the rotatal num reading. nd Specified he transmit s in the restric ower and mod	which which und to rtical d then ole
	for fowest and highest t					
	Above 1GHz test procedu g. Different between above to fully Anechoic Chaml 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and i. Repeat above procedur	re as below: e is the test site per change form I meter and tab vest channel , the nents are perfo I found the X aver res until all frequencies	e, change fi n table 0.8 le is 1.5 m he Highest rmed in X, kis position uencies me	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa	Anechoic Cha .5 meter(Abo positioning for t is worse case as complete.	imber ve e.
Limit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chaml 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur	re as below: e is the test site per change form meter and tab vest channel, the nents are perfo found the X ave es until all frequent Limit (dBuV/	e, change fi n table 0.8 le is 1.5 m he Highest rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa	Anechoic Cha .5 meter(Abo positioning for t is worse case as complete.	umber ve e.
Limit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chaml 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz	re as below: e is the test site per change form I meter and tab vest channel , the nents are perfo I found the X ax es until all frequent Limit (dBµV/ 40.0	e, change fi n table 0.8 le is 1.5 me he Highest rmed in X, kis position uencies me (m @3m)	om Semi- meter to 1 eter). channel Y, Z axis p ng which i asured wa Rei Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse case as complete. mark eak Value	imber ve
Limit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chaml 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz	re as below: e is the test site per change form meter and tab vest channel , the nents are perfor found the X ax res until all frequency Limit (dBµV/ 40.0 43.5	e, change fi n table 0.8 le is 1.5 me he Highest rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse case as complete. mark eak Value eak Value	e.
Limit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chaml 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	re as below: e is the test site per change form meter and tab vest channel , the nents are perfo found the X ax es until all freque Limit (dBµV/ 40.0 43.5	e, change fi n table 0.8 le is 1.5 me he Highest rmed in X, kis position <u>uencies me</u> (m @3m) 0	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa Rei Quasi-po Quasi-po	Anechoic Cha .5 meter(Abo oositioning for t is worse case as complete. mark eak Value eak Value eak Value	e.
Limit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chaml 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	re as below: e is the test site per change form meter and tab vest channel , the nents are perfo l found the X ax es until all freque Limit (dBµV/ 40.0 43.5 46.0 54.0	e, change fi n table 0.8 le is 1.5 me he Highest rmed in X, kis position uencies me (m @3m) 0 5 0	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa Rei Quasi-po Quasi-po Quasi-po	Anechoic Cha .5 meter(Abo positioning for t is worse case as complete. mark eak Value eak Value eak Value eak Value	e.
Limit:	Above 1GHz test procedu g. Different between abov to fully Anechoic Chaml 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	re as below: e is the test site per change form meter and tab vest channel , the nents are perfo l found the X ax es until all freque Limit (dBµV/ 40.0 43.5 46.0 54.0	e, change fi n table 0.8 le is 1.5 me he Highest rmed in X, kis position uencies me (m @3m)) 5)	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po Quasi-po	Anechoic Cha .5 meter(Above positioning for t is worse case as complete. mark eak Value eak Value eak Value eak Value ge Value	e.
Limit:	Above 1GHz test procedu g. Different between above to fully Anechoic Chamle 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measurement Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz	re as below: e is the test site per change form meter and tab vest channel , the nents are perform found the X ax res until all freque Limit (dBµV/ 40.0 43.5 46.0 54.0 74.0	e, change fi n table 0.8 le is 1.5 m he Highest rmed in X, kis position uencies me /m @3m) 0 5 0 0	rom Semi- meter to 1 eter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag Peak	Anechoic Cha .5 meter(Above positioning for t is worse case as complete. mark eak Value eak Value eak Value eak Value eak Value eak Value eak Value eak Value	e.

Page 101 of 207

Test plot as follows: Ant 1:

Mode:	802.11 b(11Mbps) Transmitting	Channel:	2412
Remark:	PK	·	·

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	48.76	51.94	74.00	22.06	Pass	Horizontal
2	2411.9024	32.28	13.35	-42.43	94.45	97.65	74.00	-23.65	Pass	Horizontal
S)	6	S)		(3)		(5))		(\mathcal{A})

Page 102 of 207

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	48.88	52.06	74.00	21.94	Pass	Vertical
2	2411.7584	32.28	13.35	-42.43	96.17	99.37	74.00	-25.37	Pass	Vertical
1	(1.1					128			1

Page 103 of 207

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.23	41.41	54.00	12.59	Pass	Horizontal
2	2413.3417	32.28	13.36	-42.43	87.82	91.03	54.00	-37.03	Pass	Horizontal
1.00		1					128			1.00

Page 104 of 207

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.28	41.46	54.00	12.54	Pass	Vertical
2	2412.3342	32.28	13.36	-42.43	89.38	92.59	54.00	-38.59	Pass	Vertical
1		100				-	128			1

Page 105 of 207

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2461.8723	32.35	13.48	-42.41	96.65	100.07	74.00	-26.07	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.73	53.09	74.00	20.91	Pass	Horizontal
1	(1.4		•			68			

Page 106 of 207

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.3242	32.35	13.47	-42.41	96.55	99.96	74.00	-25.96	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	48.69	52.05	74.00	21.95	Pass	Vertical
1.20	(1.4					128			120

Page 107 of 207

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.8886	32.35	13.47	-42.41	90.42	93.83	54.00	-39.83	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	40.16	43.52	54.00	10.48	Pass	Horizontal
1		1.1				-	128			1

Page 108 of 207

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.9287	32.35	13.48	-42.41	90.39	93.81	54.00	-39.81	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	40.21	43.57	54.00	10.43	Pass	Vertical
1		1.1				-	13			1

Page 109 of 207

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.11	53.29	74.00	20.71	Pass	Horizontal
2	2413.4856	32.28	13.36	-42.43	92.88	96.09	74.00	-22.09	Pass	Horizontal
1	(1.1					128			1

