

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

WIFI+BT Module

MODEL NUMBER: DCT2SM2501

FCC ID: 2AC23-DCT2S

IC: 12290A-DCT2S

REPORT NUMBER: 4790089699.2-2

ISSUE DATE: September 24, 2021

Prepared for

Hui Zhou Gaoshengda Technology Co.,LTD No.2,Jin-da Road,Huinan High-tech Industrial Park,Hui-ao Avenue,Huizhou City,Guangdong,China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	09/24/2021	Initial Issue	

Summary of Test Results			
Clause Test Items		FCC/ISED Rules	Test Results
1	20dB Bandwidth and 99% Occupied Bandwidth	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a) RSS-Gen Clause 6.7	Pass
2	Conducted Output Power	FCC 15.247 (b) (1) RSS-247 Clause 5.1 (b)	Pass
3	Carrier Hopping Channel Separation	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (b)	Pass
4	Number of Hopping Frequency	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
5	Time of Occupancy (Dwell Time)	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
6	Conducted Bandedge	FCC 15.247 (d) RSS-247 Clause 5.5	Pass
7	Radiated Bandedge and Spurious	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass
8	Conducted Emission Test for AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	Pass
9	Antenna Requirement	FCC 15.203 RSS-GEN Clause 6.8	Pass
Note:			

Note:

1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	ATI	ESTATION OF TEST RESULTS	6
2.	TES	ST METHODOLOGY	7
3.	FAC	CILITIES AND ACCREDITATION	7
4.	CAI	IBRATION AND UNCERTAINTY	8
4	4.1.	MEASURING INSTRUMENT CALIBRATION	8
4	1.2.	MEASUREMENT UNCERTAINTY	8
5.	EQI	JIPMENT UNDER TEST	9
5	5.1.	DESCRIPTION OF EUT	9
5	5.2.	MAXIMUM PEAK OUTPUT POWER	9
5	5.3.	PACKET TYPE CONFIGURATION	9
5	5.4.	CHANNEL LIST	10
5	5.5.	TEST CHANNEL CONFIGURATION	10
5	5.6.	WORST-CASE CONFIGURATIONS	10
5	5.7.	THE WORSE CASE POWER SETTING PARAMETER	11
5	5.8.	DESCRIPTION OF AVAILABLE ANTENNAS	11
5	5.9.	DESCRIPTION OF TEST SETUP	12
6.	-	ASURING INSTRUMENT AND SOFTWARE USED	13
6. 7.	ME		
7.	ME	ASURING INSTRUMENT AND SOFTWARE USED	15
7 .	ME.	ASURING INSTRUMENT AND SOFTWARE USED	15 15
7 . 7 7	ME AN 7.1.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE	15 15 16
7 . 7 7 7	ME AN 7.1. 7.2.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH.	15 15 16 18
7 . 7 7 7 7	ME AN 7.1. 7.2. 7.3.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER	15 15 16 18 19
7 . 7 7 7 7 7	MEA AN 7.1. 7.2. 7.3. 7.4.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION.	15 16 18 19 21
7 . 7 7 7 7 7 7 7	ME AN 7.1. 7.2. 7.3. 7.4. 7.5.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES	15 16 18 19 21 23
7 . 7 7 7 7 7 7 7	ME AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION. NUMBER OF HOPPING FREQUENCIES. TIME OF OCCUPANCY (DWELL TIME).	15 15 16 18 19 21 23 25
7. 7 7 7 7 7 7 7 7 8.	MEA AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. RAI 8.1.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES TIME OF OCCUPANCY (DWELL TIME) CONDUCTED BANDEDGE AND SPURIOUS EMISSION DIATED TEST RESULTS RESTRICTED BANDEDGE	 15 16 18 19 21 23 25 27 33
7. 7 7 7 7 7 7 7 7 8.	MEA AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. RAI	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES TIME OF OCCUPANCY (DWELL TIME) CONDUCTED BANDEDGE AND SPURIOUS EMISSION DIATED TEST RESULTS RESTRICTED BANDEDGE 1. GFSK MODE	 15 16 18 19 21 23 25 27 33 33
7. 7 7 7 7 7 7 7 8. 8.	MEA AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. 8.1. 8.1.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES TIME OF OCCUPANCY (DWELL TIME) CONDUCTED BANDEDGE AND SPURIOUS EMISSION DIATED TEST RESULTS RESTRICTED BANDEDGE 1. GFSK MODE 2. 8DPSK MODE	 15 16 18 19 21 23 25 27 33 36
7. 7 7 7 7 7 7 7 8. 8.	MEA AN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. RAI 8.1. 8.1. 8.1.	ASURING INSTRUMENT AND SOFTWARE USED TENNA PORT TEST RESULTS ON TIME AND DUTY CYCLE 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH CONDUCTED OUTPUT POWER CARRIER FREQUENCY SEPARATION NUMBER OF HOPPING FREQUENCIES TIME OF OCCUPANCY (DWELL TIME) CONDUCTED BANDEDGE AND SPURIOUS EMISSION DIATED TEST RESULTS RESTRICTED BANDEDGE 1. GFSK MODE 2. 8DPSK MODE SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)	 15 16 18 19 21 23 25 27 33 33 36 39

8.3.2. 8DPSK MODE	51
8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) 8.4.1. 8DPSK MODE	
8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) 8.5.1. 8DPSK MODE	
8.6. SPURIOUS EMISSIONS BELOW 30 MHz 8.6.1. 8DPSK MODE	
9. AC POWER LINE CONDUCTED EMISSIONS 9.1. 8DPSK MODE	
9.1. 8DPSK MODE 10. ANTENNA REQUIREMENTS	
11. Appendix	
11.1.Appendix A: 20dB Emission Bandwidth11.1.1.Test Result11.1.2.Test Graphs	68
11.2.Appendix B: Occupied Channel Bandwidth11.2.1.Test Result11.2.2.Test Graphs	71
11.3. Appendix C: Maximum Peak Conducted Output Power. 11.3.1. Test Result	
11.4.Appendix D: Carrier Frequency Separation11.4.1.Test Result11.4.2.Test Graphs	75
11.5.Appendix E: Time of Occupancy11.5.1.Test Result11.5.2.Test Graphs	77
11.6.Appendix F: Number of Hopping Channels11.6.1.Test Result11.6.2.Test Graphs	82
11.7.Appendix G: Band Edge Measurements11.7.1.Test Result11.7.2.Test Graphs	84
11.8.Appendix H: Conducted Spurious Emission11.8.1.Test Result11.8.2.Test Graphs	88
11.9.Appendix I: Duty Cycle11.9.1.Test Result11.9.2.Test Graphs	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Hui Zhou Gaoshengda Technology Co.,LTD
Address:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China

Manufacturer Information

Company Name:	Hui Zhou Gaoshengda Technology Co.,LTD	
Address:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China	

EUT Information

WIFI+BT Module
DCT2SM2501
GSD
September 2, 2021
Normal
4194933
September 6, 2021 ~ September 23, 2021

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C	PASS		
ISED RSS-247 Issue 2	PASS		
ISED RSS-GEN Issue 5	PASS		

Prepared By:

Aucus

Checked By:

Sherry lies

Shawn Wen Laboratory Leader

Denny Huang Project Engineer

Approved By:

ephenbuo

Stephen Guo Laboratory Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	 A2LA (Certificate No.: 4102.01) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1187) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Delcaration of Conformity (DoC) and Certification rules ISED (Company No.: 21320) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046. VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793.
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the
	Facility Name: Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62 dB	
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB	
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB	
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)	
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	WIFI+BT Module		
Model	DCT2SM2501		
Technology	Bluetooth – BR & EDR		
Transmit Frequency Range	2402 MHz ~ 2480 MHz		
Mode	Basic Rate Enhanced Data Rate		
Modulation	GFSK	∏/4-DQPSK	8DPSK
Packet Type (Maximum Payload):	DH5	2DH5	3DH5
Data Rate	1 Mbps	2 Mbps	3 Mbps
Ratings	DC 3.3 V		

5.2. MAXIMUM PEAK OUTPUT POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)
GFSK	2402 ~ 2480	0-78[79]	7.35
8DPSK	2402 ~ 2480	0-78[79]	10.07

5.3. PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)
	DH1	27
GFSK	DH3	183
	DH5	339
	2DH1	54
∏/4-DQPSK	2DH3	367
	2DH5	679
	3DH1	83
8DPSK	3DH3	552
	3DH5	1021

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.4. CHANNEL LIST

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
GFSK	Hopping	2402 MHz ~ 2480 MHz
8DPSK	Hopping	2402 MHz ~ 2480 MHz

5.6. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. FORM No.: 10-SL-F0086

5.7. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Se	oftware	DutApiMimoBt			
Modulation Type		Test Software setting value			
	Number	CH 00	CH 39	CH 78	
GFSK	1	default	default	default	
8DPSK	1	default default default			

5.8. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	PIFA	2

Test Mode	Transmit and Receive Mode	Description			
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.			
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.			
Note: 1.BT&WLAN 2.4G, BT & WLAN 5G, WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client)					

5.9. DESCRIPTION OF TEST SETUP

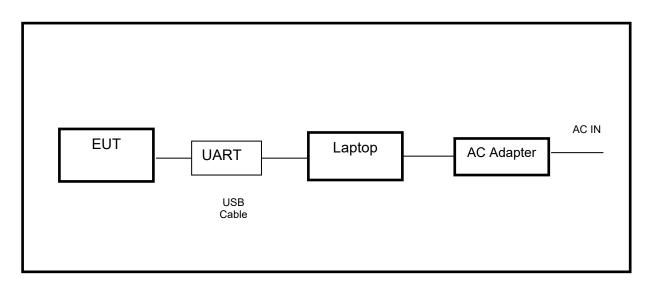
SUPPORT EQUIPMENT

ľ	tem	Equipment	Brand Name	Model Name	Remarks
	1	Laptop	Lenovo	XIAOXIN 5000	/
	2	Power Adapter	Lenovo	ADLX65YAC3A	Input: AC 100 ~ 240 V, 1.8 A Output: DC 20 V, 2.25 A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	0.3	/

Note: The cable is provided by customer.


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	1

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. FORM No.: 10-SL-F0086

6. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
EMI Test Receiver	R&S	ESR3	101961	Nov. 12, 2020	Nov. 11, 2021	
Two-Line V- Network	R&S	ENV216	101983	Nov. 12, 2020	Nov. 11, 2021	
Software						
Description			Manufacturer	Name	Version	
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1	

	Radiated Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Nov. 12, 2020	Nov. 11, 2021		
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Aug. 2, 2021	Aug. 2, 2023		
Preamplifier	HP	8447D	2944A09099	Nov. 12, 2020	Nov. 11, 2021		
EMI Measurement Receiver	R&S	ESR26	101377	Nov. 12, 2020	Nov. 11, 2021		
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024		
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Nov. 20, 2020	Nov. 19, 2021		
Horn Antenna	Schwarzbeck	BBHA9170	#691	Jul. 20, 2021	Jul. 20, 2023		
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Nov. 12, 2020	Nov. 11, 2021		
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Nov. 12, 2020	Nov. 11, 2021		
Loop antenna	Schwarzbeck	1519B	00008	Jan.17, 2019	Jan.17,2022		
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Nov. 12, 2020	Nov. 11, 2021		
Preamplifier	Mini-Circuits	ZX60-83LN- S+	SUP01201941	Nov. 20, 2020	Nov. 19, 2021		
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Nov. 12, 2020	Nov. 11, 2021		
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Nov. 12, 2020	Nov. 11, 2021		
Software							
[Description		Manufacturer	Name	Version		
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1		

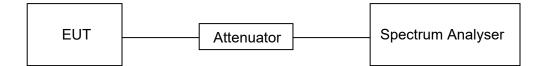
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Tonsend RF Test System							
Equipment	Manufacturer	М	odel No.	Serial No.	Last	Cal.	Due. Date
Wideband Radio Communication Tester	R&S	C	MW500	155523	Nov.2	0,2020	Nov.19,2021
PXA Signal Analyzer	Keysight	N	19030A	MY55410512	Nov.2	0,2020	Nov.19,2021
MXG Vector Signal Generator	Keysight	N	5182B	MY56200284	Nov.2	0,2020	Nov.19,2021
MXG Vector Signal Generator	Keysight	N	15172B	MY56200301	Nov.2	0,2020	Nov.19,2021
DC power supply	Keysight	Keysight E3642A MY		MY55159130	Nov.24	4,2020	Nov.23,2021
Software							
Description	Manufactu	nufacturer Name		Ņ	Version		
Tonsend SRD Test Syste	m Tonsenc	Tonsend JS1120-3 RF Test System		-3 RF Test Sys	stem	2.6	6.77.0518

Other instruments					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	Keysight	N9030A	MY55410512	Nov. 20, 2020	Nov. 19, 2021
Dual Channel Power Meter	Keysight	N1912A	MY55416024	Nov. 20, 2020	Nov. 19, 2021
Power Sensor	Keysight	USB Wideband Power Sensor	MY5100022	Nov. 20, 2020	Nov. 19, 2021

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only.

PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	27.2 °C	Relative Humidity	63.2 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

RESULTS

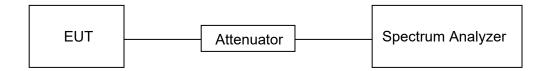
Please refer to appendix I.

7.2. 20 dB BANDWIDTH AND 99 % OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 6.9.2.

Center Frequency	The center frequency of the channel under test
Detector	Peak
	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

Connect the EUT to the spectrum analyser and use the following settings:

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

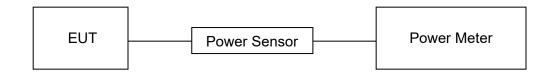
Temperature	27.2 °C	Relative Humidity	63.2 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

RESULTS

Please refer to appendix A and B.

7.3. CONDUCTED OUTPUT POWER

<u>LIMITS</u>


CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (b) (1) ISED RSS-247 Clause 5.4 (b)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	27.2 °C	Relative Humidity	63.2 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

RESULTS

Please refer to appendix C.

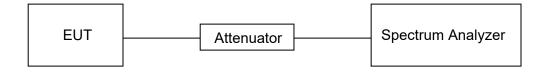
7.4. CARRIER FREQUENCY SEPARATION

LIMITS

	CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1) ISED RSS-247 Clause 5.1 (b)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	27.2 °C	Relative Humidity	63.2 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

RESULTS

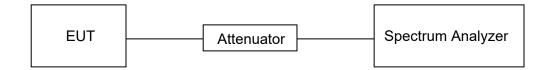
Please refer to Appendix D.

7.5. NUMBER OF HOPPING FREQUENCIES

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit				
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Number of Hopping Frequency	at least 15 hopping channels		

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	27.2 °C	Relative Humidity	63.2 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

RESULTS

Please refer to appendix F.

7.6. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

TEST PROCEDURE

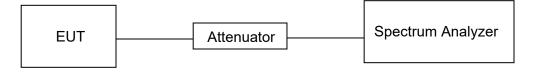
Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

For FHSS Mode (79 Channel):


DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel):

DH1/3DH1 Dwell Time: Burst Width * (800/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (800/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (800/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	27.2 °C	Relative Humidity	63.2 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

RESULTS

Please refer to appendix E.

7.7. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 2				
Section	Test Item	Limit		
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power		

TEST PROCEDURE

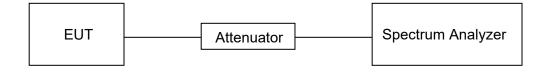
Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:


5030	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements.

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST SETUP

TEST ENVIRONMENT

Temperature	27.2 °C	Relative Humidity	63.2 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

RESULTS

Please refer to appendix G & H.

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz				
Frequency Range	Field Strength Limit	Field Stren	ngth Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m	
(Peak	
30 - 88	100	40)	
88 - 216	150	43	.5	
216 - 960	200	40	3	
Above 960	500	54	1	
Above 1000	500	Peak	Average	
	500	74	54	

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz		
Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

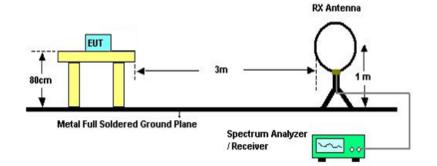
ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz		
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2		
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5		
2.1735 - 2.1905	158.7 - 158.9	10.6 - 12.7		
3.020 - 3.028	162.0125 - 167.17	13.25 - 13.4		
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5		
4.17725 - 4.17775	240 - 285	15.35 - 16.2		
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4		
5.677 - 5.683	399.9 - 410	22.01 - 23.12		
6.215 - 6.218	608 - 614	23.8 - 24.0		
6.26775 - 6.26825	960 - 1427	31.2 - 31.8		
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5		
8.291 - 8.294	1645.5 - 1648.5	Above 38.6		
8.362 - 8.366	1660 - 1710			
8.37625 - 8.38675	1718.8 - 1722.2			
8.41425 - 8.41475	2200 - 2300			
12.29 - 12.293	2310 - 2390			
12.51975 - 12.52025	2483.5 - 2500			
12.57675 - 12.57725	2655 - 2900			
13.36 - 13.41	3280 - 3287			
16.42 - 16.423	3332 - 3339			
18.69475 - 18.69525	3345.8 - 3358			
16.80425 - 16.80475	3500 - 4400			
25.5 - 25.87	4500 - 5150			
37.5 - 38.25	5350 - 5460			
73 - 74.6	7250 - 7750			
74.8 - 75.2	8025 - 8500			
108 – 138				

Note 1: Certain frequency bands listed in table / and in bands above 38.6 GH2 are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5. 4 6
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			


Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. FORM No.: 10-SL-F0086

TEST SETUP AND PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

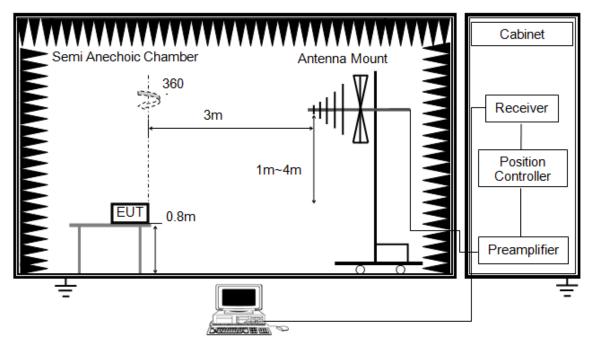
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 ohm; For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

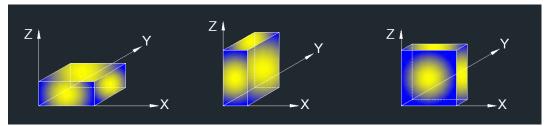
The setting of the spectrum analyser

RBW	1 MHz
IV BW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

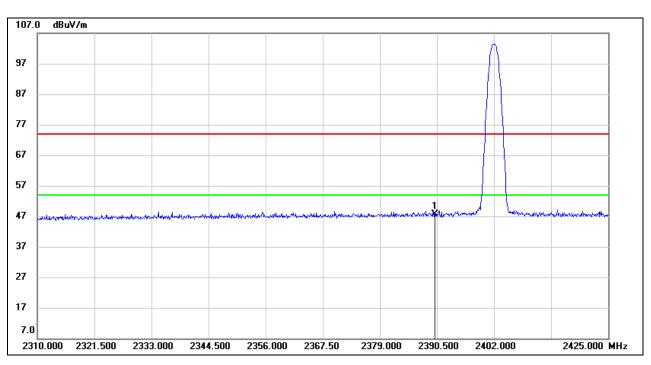
6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST ENVIRONMENT


Temperature	mperature 25.2 °C R		48 %
Atmosphere Pressure	101 kPa	Test Voltage	DC 3.3 V

RESULTS

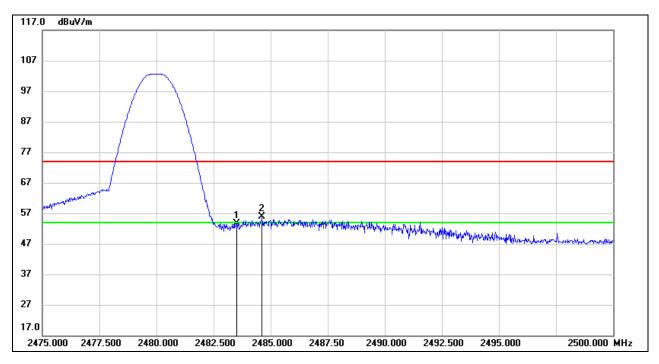
8.1. RESTRICTED BANDEDGE

8.1.1. GFSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	14.24	33.35	47.59	74.00	-26.41	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

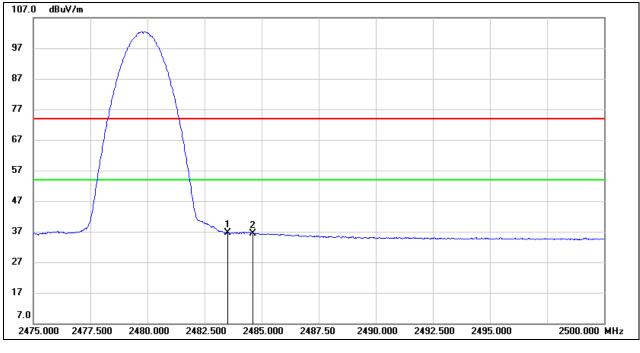
3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	19.80	33.71	53.51	74.00	-20.49	peak
2	2484.625	22.29	33.71	56.00	74.00	-18.00	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

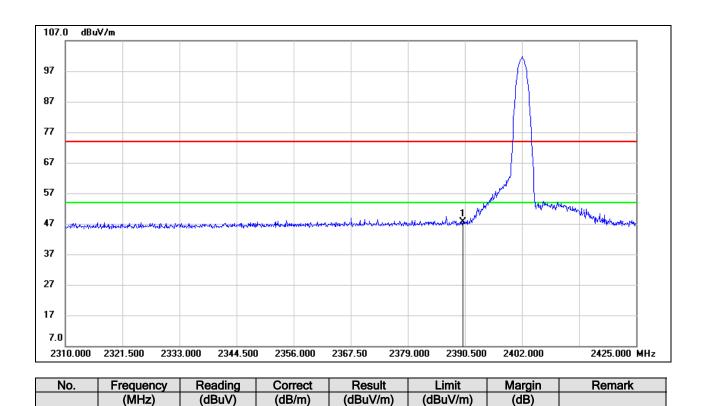
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	2.87	33.71	36.58	54.00	-17.42	AVG
2	2484.625	2.60	33.71	36.31	54.00	-17.69	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.


4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: All the polarities (Vertical & Horizontal) had been tested, only the worst data was recorded in the report.

8.1.2. 8DPSK MODE

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

Note: 1. Measurement = Reading Level + Correct Factor.

14.23

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

47.58

74.00

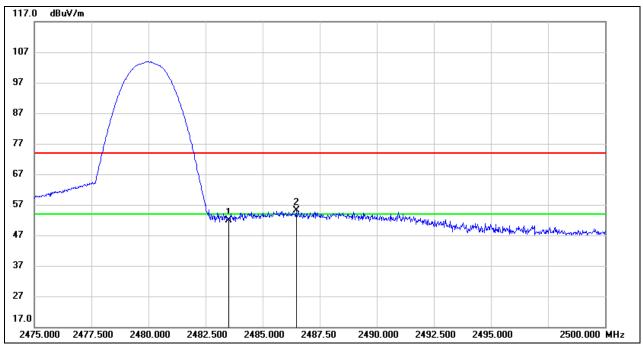
-26.42

peak

3. Peak: Peak detector.

2390.000

1


4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

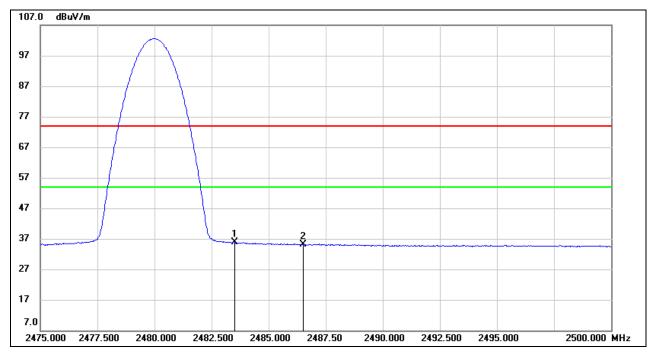
33.35

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

<u>PEAK</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	18.24	33.71	51.95	74.00	-22.05	peak
2	2486.475	21.43	33.72	55.15	74.00	-18.85	peak

Note: 1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

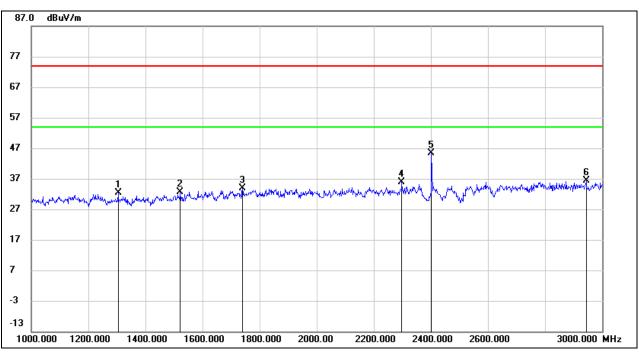
<u>AVG</u>

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	2.06	33.71	35.77	54.00	-18.23	AVG
2	2486.475	1.32	33.72	35.04	54.00	-18.96	AVG

Note: 1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

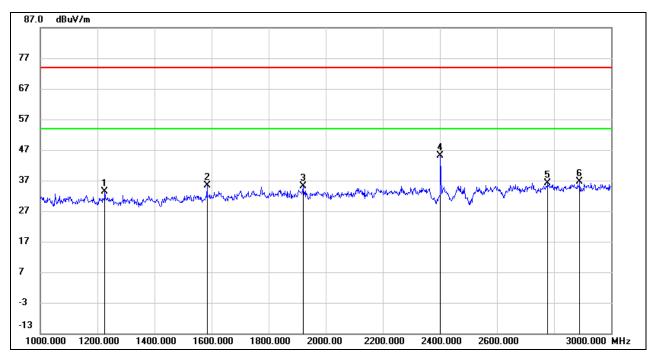

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: All the polarities (Vertical & Horizontal) had been tested, only the worst data was recorded in the report.

8.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)

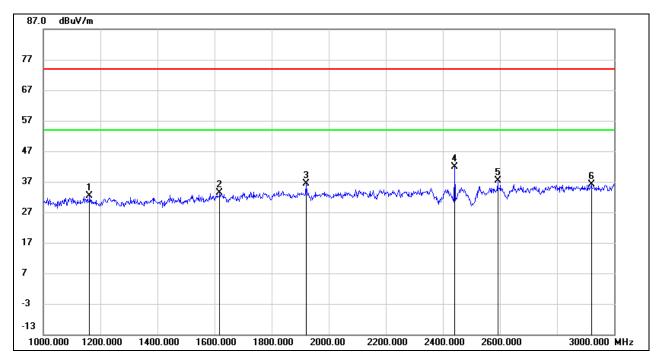
8.2.1. 8DPSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1304.000	45.28	-12.84	32.44	74.00	-41.56	peak
2	1522.000	44.63	-12.09	32.54	74.00	-41.46	peak
3	1740.000	44.28	-10.51	33.77	74.00	-40.23	peak
4	2298.000	44.48	-8.72	35.76	74.00	-38.24	peak
5	2402.000	53.71	-8.39	45.32	/	/	Fundamental
6	2944.000	42.18	-5.85	36.33	74.00	-37.67	peak

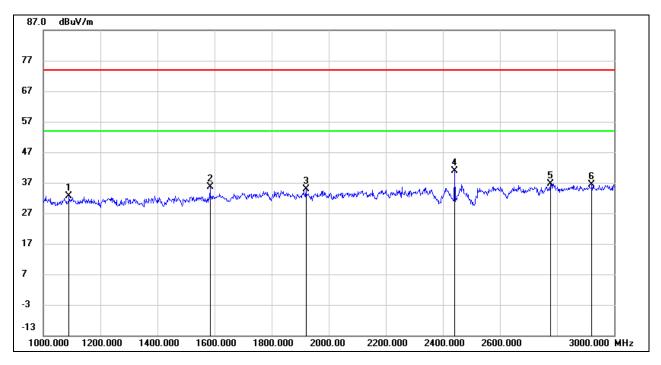
Note: 1. Peak Result = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1226.000	46.29	-12.95	33.34	74.00	-40.66	peak
2	1584.000	47.00	-11.66	35.34	74.00	-38.66	peak
3	1920.000	45.17	-10.13	35.04	74.00	-38.96	peak
4	2402.000	53.50	-8.39	45.11	/	/	Fundamental
5	2778.000	42.85	-6.69	36.16	74.00	-37.84	peak
6	2890.000	42.72	-6.13	36.59	74.00	-37.41	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

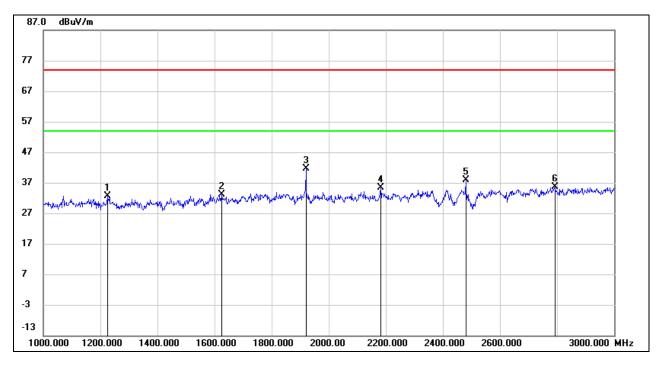
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1162.000	45.55	-13.18	32.37	74.00	-41.63	peak
2	1618.000	44.77	-11.42	33.35	74.00	-40.65	peak
3	1920.000	46.47	-10.13	36.34	74.00	-37.66	peak
4	2441.000	50.26	-8.32	41.94	/	/	Fundamental
5	2592.000	45.18	-7.89	37.29	74.00	-36.71	peak
6	2920.000	42.18	-5.98	36.20	74.00	-37.80	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

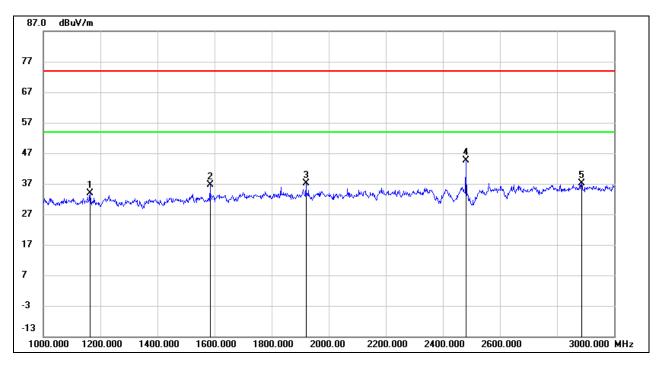
HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1090.000	46.12	-13.54	32.58	74.00	-41.42	peak
2	1584.000	47.34	-11.66	35.68	74.00	-38.32	peak
3	1920.000	45.03	-10.13	34.90	74.00	-39.10	peak
4	2441.000	49.11	-8.32	40.79	/	/	Fundamental
5	2776.000	43.39	-6.72	36.67	74.00	-37.33	peak
6	2922.000	42.46	-5.96	36.50	74.00	-37.50	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1224.000	45.51	-12.96	32.55	74.00	-41.45	peak
2	1626.000	44.55	-11.36	33.19	74.00	-40.81	peak
3	1920.000	51.72	-10.13	41.59	74.00	-32.41	peak
4	2182.000	44.58	-9.15	35.43	74.00	-38.57	peak
5	2480.000	46.11	-8.26	37.85	/	/	Fundamental
6	2792.000	42.34	-6.61	35.73	74.00	-38.27	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

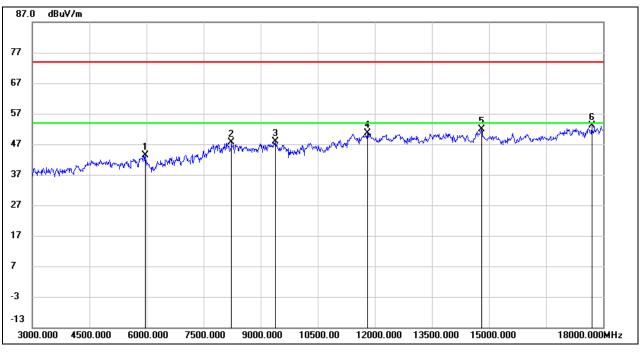
- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1164.000	47.08	-13.16	33.92	74.00	-40.08	peak
2	1584.000	48.26	-11.66	36.60	74.00	-37.40	peak
3	1920.000	47.30	-10.13	37.17	74.00	-36.83	peak
4	2480.000	52.92	-8.26	44.66	/	/	Fundamental
5	2886.000	43.23	-6.14	37.09	74.00	-36.91	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


- 3. Peak: Peak detector.
- 4. Filter losses were only considered in then spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 5. Proper operation of the transmitter prior to adding the filter to the measurement chain.

Note: All the modes and channels had been tested, but only the worst data was recorded in the report.

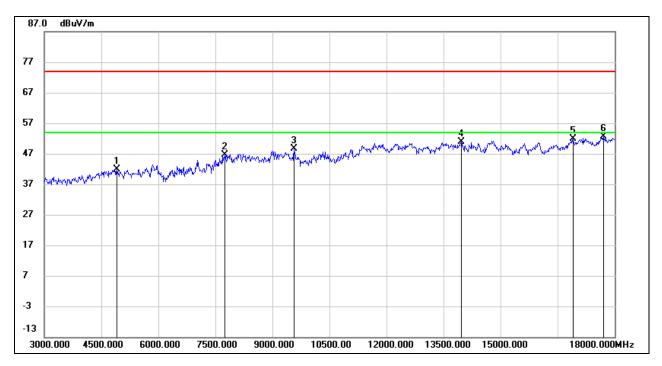
8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)

8.3.1. GFSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5970.000	39.16	4.15	43.31	74.00	-30.69	peak
2	8235.000	37.94	9.76	47.70	74.00	-26.30	peak
3	9390.000	36.94	10.92	47.86	74.00	-26.14	peak
4	11805.000	35.28	15.26	50.54	74.00	-23.46	peak
5	14805.000	33.82	18.00	51.82	74.00	-22.18	peak
6	17700.000	29.59	23.47	53.06	74.00	-20.94	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

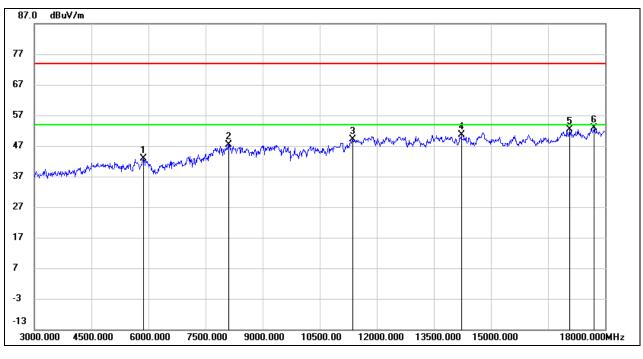
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4905.000	40.43	1.33	41.76	74.00	-32.24	peak
2	7755.000	37.70	8.94	46.64	74.00	-27.36	peak
3	9570.000	37.77	10.88	48.65	74.00	-25.35	peak
4	13965.000	33.16	17.62	50.78	74.00	-23.22	peak
5	16905.000	30.30	21.55	51.85	74.00	-22.15	peak
6	17700.000	29.14	23.47	52.61	74.00	-21.39	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

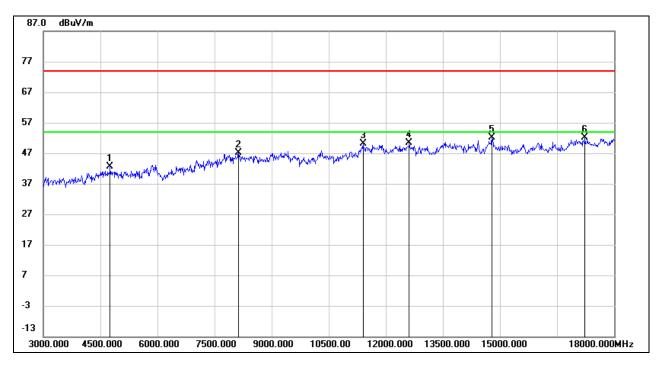
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5865.000	38.68	4.16	42.84	74.00	-31.16	peak
2	8115.000	37.32	10.13	47.45	74.00	-26.55	peak
3	11370.000	34.75	14.49	49.24	74.00	-24.76	peak
4	14220.000	32.79	17.86	50.65	74.00	-23.35	peak
5	17070.000	30.66	21.71	52.37	74.00	-21.63	peak
6	17715.000	29.30	23.56	52.86	74.00	-21.14	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

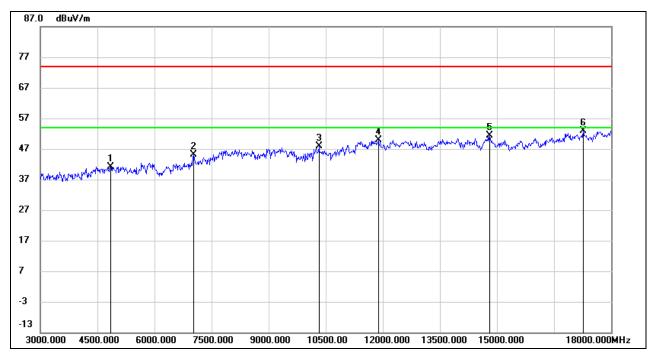
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4755.000	41.62	0.89	42.51	74.00	-31.49	peak
2	8130.000	37.02	10.06	47.08	74.00	-26.92	peak
3	11400.000	35.42	14.76	50.18	74.00	-23.82	peak
4	12615.000	34.73	15.75	50.48	74.00	-23.52	peak
5	14790.000	34.13	18.01	52.14	74.00	-21.86	peak
6	17235.000	29.88	22.21	52.09	74.00	-21.91	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

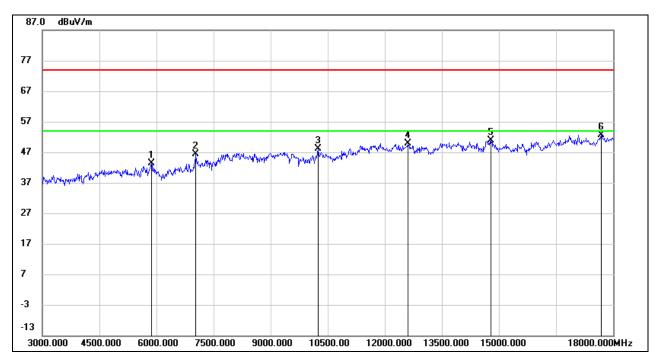
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4845.000	39.82	1.35	41.17	74.00	-32.83	peak
2	7035.000	37.48	7.62	45.10	74.00	-28.90	peak
3	10320.000	35.90	11.89	47.79	74.00	-26.21	peak
4	11880.000	34.36	15.46	49.82	74.00	-24.18	peak
5	14805.000	33.45	18.00	51.45	74.00	-22.55	peak
6	17265.000	30.55	22.39	52.94	74.00	-21.06	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

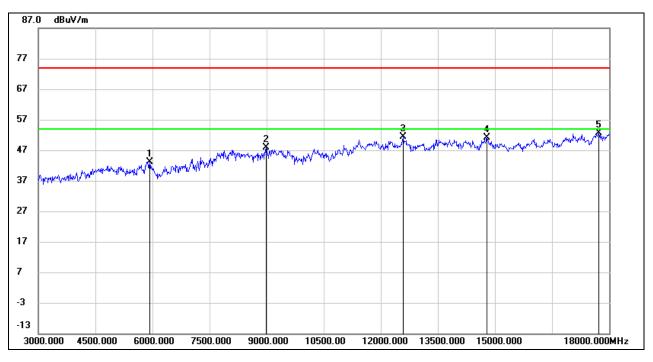
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5865.000	39.18	4.16	43.34	74.00	-30.66	peak
2	7035.000	38.66	7.62	46.28	74.00	-27.72	peak
3	10245.000	36.54	11.63	48.17	74.00	-25.83	peak
4	12615.000	34.20	15.75	49.95	74.00	-24.05	peak
5	14790.000	32.97	18.01	50.98	74.00	-23.02	peak
6	17685.000	29.31	23.36	52.67	74.00	-21.33	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

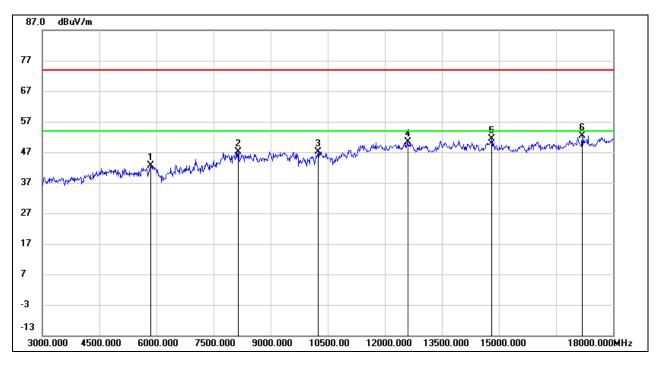
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.3.2. 8DPSK MODE

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5925.000	38.82	4.38	43.20	74.00	-30.80	peak
2	8985.000	37.00	10.99	47.99	74.00	-26.01	peak
3	12585.000	35.58	15.77	51.35	74.00	-22.65	peak
4	14790.000	33.15	18.01	51.16	74.00	-22.84	peak
5	17730.000	28.88	23.64	52.52	74.00	-21.48	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

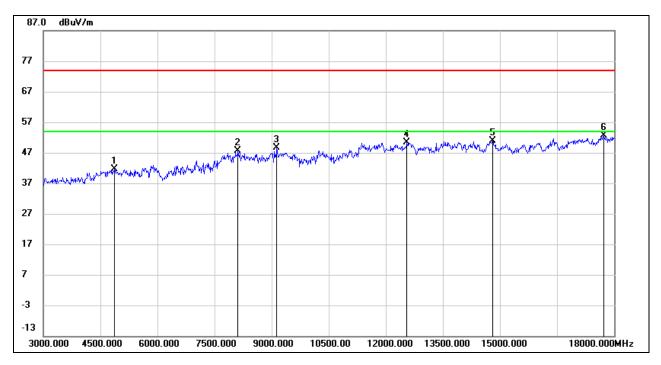
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	38.63	4.00	42.63	74.00	-31.37	peak
2	8145.000	37.09	10.01	47.10	74.00	-26.90	peak
3	10245.000	35.58	11.63	47.21	74.00	-26.79	peak
4	12600.000	34.72	15.78	50.50	74.00	-23.50	peak
5	14805.000	33.47	18.00	51.47	74.00	-22.53	peak
6	17190.000	30.37	21.98	52.35	74.00	-21.65	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

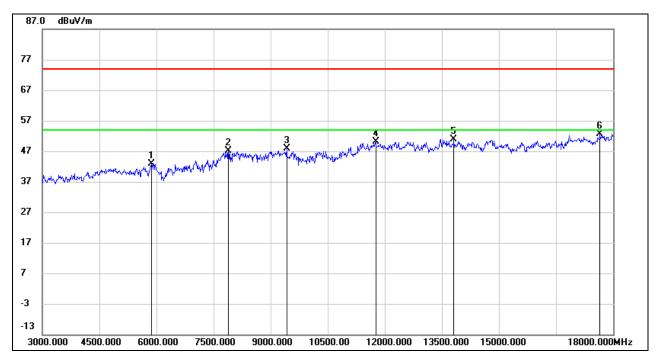
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4860.000	40.41	1.33	41.74	74.00	-32.26	peak
2	8115.000	37.43	10.13	47.56	74.00	-26.44	peak
3	9135.000	38.44	10.07	48.51	74.00	-25.49	peak
4	12555.000	34.65	15.73	50.38	74.00	-23.62	peak
5	14805.000	32.87	18.00	50.87	74.00	-23.13	peak
6	17730.000	28.99	23.64	52.63	74.00	-21.37	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

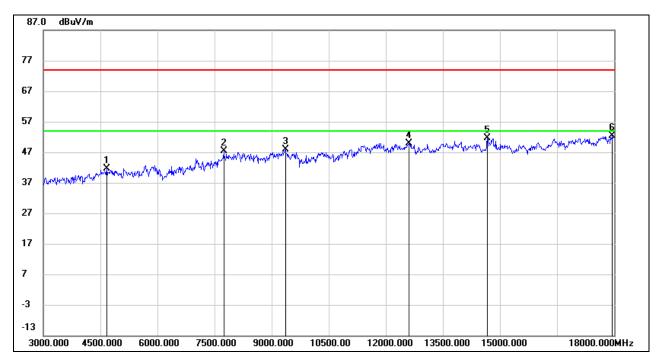
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5865.000	38.71	4.16	42.87	74.00	-31.13	peak
2	7890.000	38.24	8.91	47.15	74.00	-26.85	peak
3	9420.000	36.99	10.88	47.87	74.00	-26.13	peak
4	11760.000	34.80	15.29	50.09	74.00	-23.91	peak
5	13815.000	33.28	17.59	50.87	74.00	-23.13	peak
6	17655.000	29.58	23.14	52.72	74.00	-21.28	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

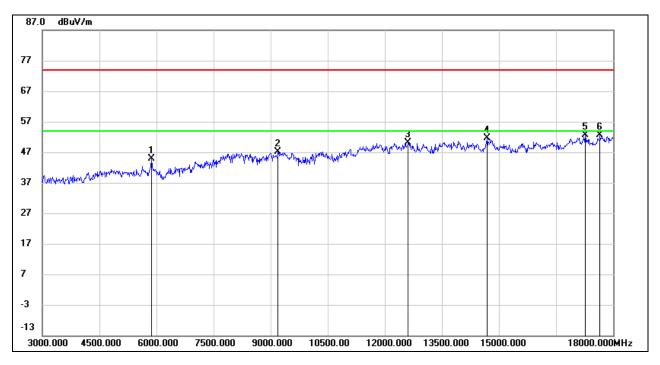
3. Peak: Peak detector.

4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4665.000	41.46	0.25	41.71	74.00	-32.29	peak
2	7740.000	38.47	8.81	47.28	74.00	-26.72	peak
3	9360.000	37.09	10.75	47.84	74.00	-26.16	peak
4	12615.000	34.22	15.75	49.97	74.00	-24.03	peak
5	14670.000	33.97	17.59	51.56	74.00	-22.44	peak
6	17955.000	28.21	24.10	52.31	74.00	-21.69	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

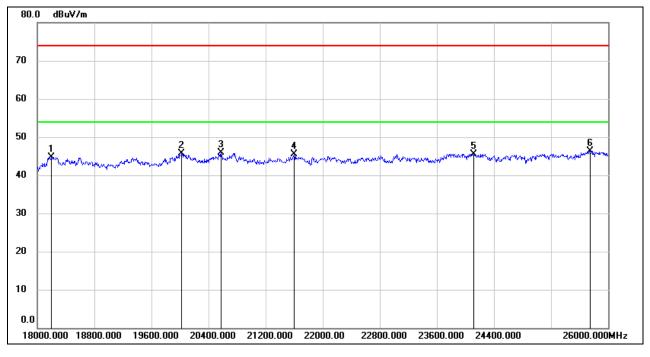
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5865.000	40.70	4.16	44.86	74.00	-29.14	peak
2	9195.000	37.20	9.92	47.12	74.00	-26.88	peak
3	12615.000	34.50	15.75	50.25	74.00	-23.75	peak
4	14685.000	33.95	17.64	51.59	74.00	-22.41	peak
5	17265.000	30.14	22.39	52.53	74.00	-21.47	peak
6	17655.000	29.48	23.14	52.62	74.00	-21.38	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Peak: Peak detector.

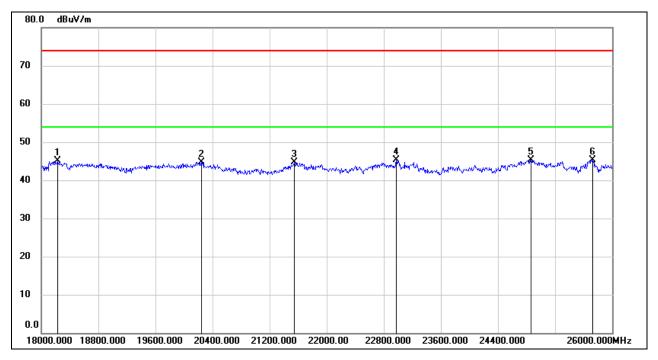
4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

8.4.1.8DPSK MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18200.000	50.29	-5.52	44.77	74.00	-29.23	peak
2	20024.000	51.25	-5.47	45.78	74.00	-28.22	peak
3	20576.000	51.09	-5.28	45.81	74.00	-28.19	peak
4	21600.000	50.02	-4.54	45.48	74.00	-28.52	peak
5	24120.000	48.37	-2.79	45.58	74.00	-28.42	peak
6	25744.000	47.00	-0.64	46.36	74.00	-27.64	peak

Note: 1. Peak Result = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. The preamplifier only effect to the above 18GHz signal and no filter added to the measurement chain.

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

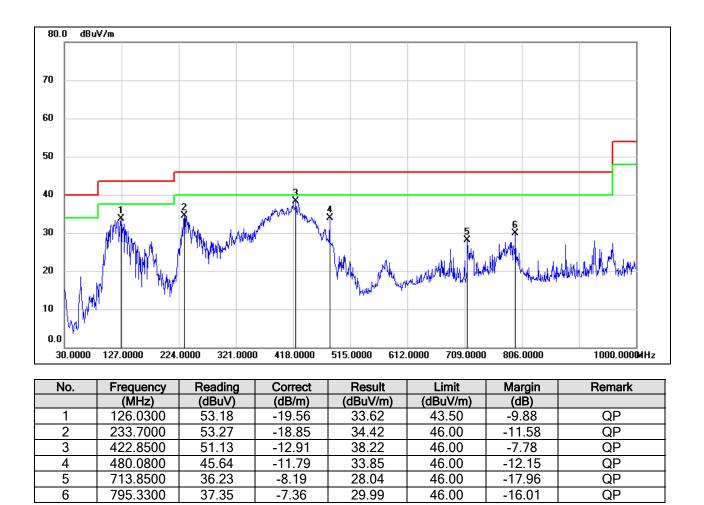
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18224.000	50.58	-5.53	45.05	74.00	-28.95	peak
2	20240.000	50.32	-5.61	44.71	74.00	-29.29	peak
3	21544.000	49.26	-4.63	44.63	74.00	-29.37	peak
4	22976.000	48.76	-3.46	45.30	74.00	-28.70	peak
5	24864.000	47.53	-2.23	45.30	74.00	-28.70	peak
6	25728.000	46.11	-0.72	45.39	74.00	-28.61	peak

Note: 1. Peak Result = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

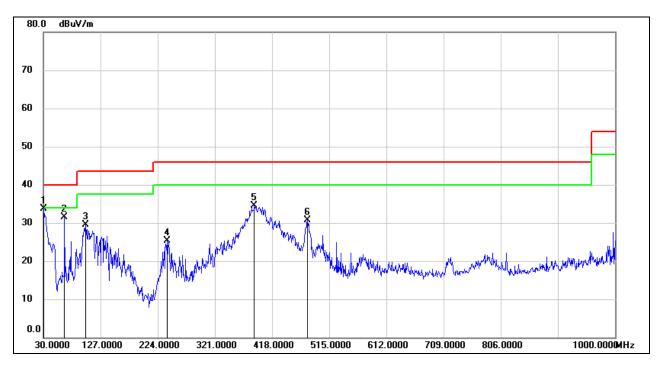
4. The preamplifier only effect to the above 18GHz signal and no filter added to the measurement chain.


Note: All the modes have been tested, only the worst data was recorded in the report.

8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)

8.5.1.8DPSK MODE

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

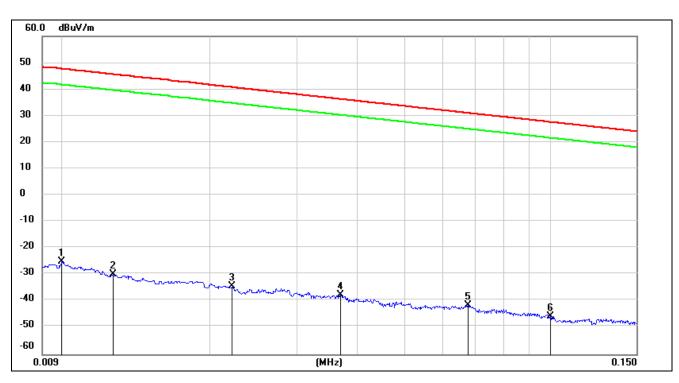
SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	52.67	-19.04	33.63	40.00	-6.37	QP
2	65.8900	51.98	-20.55	31.43	40.00	-8.57	QP
3	101.7800	50.55	-21.00	29.55	43.50	-13.95	QP
4	239.5200	44.53	-19.16	25.37	46.00	-20.63	QP
5	387.9300	48.06	-13.53	34.53	46.00	-11.47	QP
6	478.1400	42.56	-11.83	30.73	46.00	-15.27	QP

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto


Note: All the modes have been tested, only the worst data was recorded in the report.

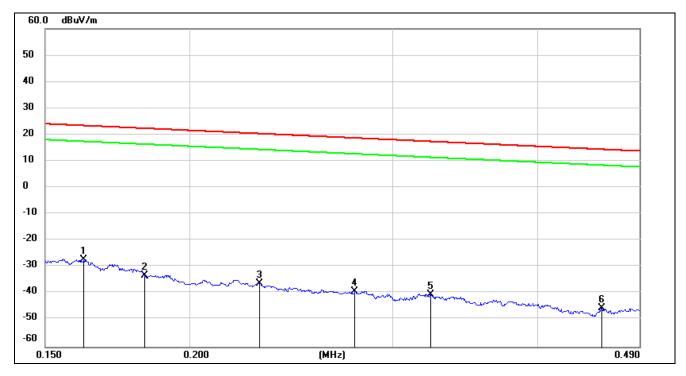
8.6. SPURIOUS EMISSIONS BELOW 30 MHz

8.6.1. 8DPSK MODE

(MID CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

<u>9 kHz ~ 150 kHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	76.22	-101.40	-25.18	47.6	-76.68	-3.90	-72.78	peak
2	0.0126	71.43	-101.38	-29.95	45.59	-81.45	-5.91	-75.54	peak
3	0.0221	67.13	-101.35	-34.22	40.71	-85.72	-10.79	-74.93	peak
4	0.0369	63.69	-101.42	-37.73	36.26	-89.23	-15.24	-73.99	peak
5	0.0675	60.14	-101.56	-41.42	31.02	-92.92	-20.48	-72.44	peak
6	0.1000	56.17	-101.80	-45.63	27.6	-97.13	-23.90	-73.23	peak

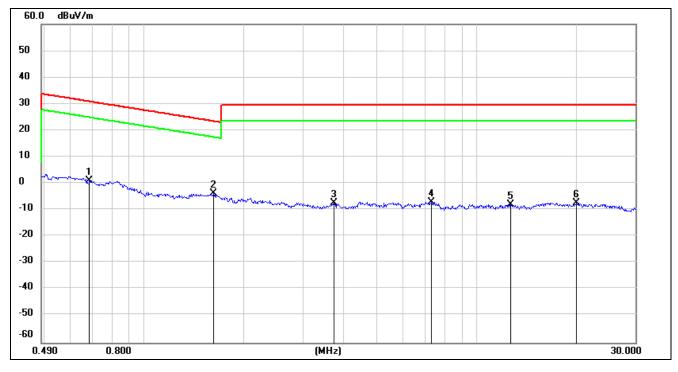

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>150 kHz ~ 490 kHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1621	74.42	-101.65	-27.23	23.41	-78.73	-28.09	-50.64	peak
2	0.1827	68.67	-101.69	-33.02	22.37	-84.52	-29.13	-55.39	peak
3	0.2298	65.55	-101.77	-36.22	20.37	-87.72	-31.13	-56.59	peak
4	0.2782	62.79	-101.83	-39.04	18.71	-90.54	-32.79	-57.75	peak
5	0.3234	61.48	-101.88	-40.4	17.41	-91.90	-34.09	-57.81	peak
6	0.4550	56.64	-102.02	-45.38	14.44	-96.88	-37.06	-59.82	peak


Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

<u>490 kHz ~ 30 MHz</u>

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.6834	63.21	-62.11	1.1	30.91	-50.40	-20.59	-29.81	peak
2	1.6149	58.12	-62.00	-3.88	23.44	-55.38	-28.06	-27.32	peak
3	3.7100	54.20	-61.41	-7.21	29.54	-58.71	-21.96	-36.75	peak
4	7.3361	54.08	-61.17	-7.09	29.54	-58.59	-21.96	-36.63	peak
5	12.6775	52.96	-60.92	-7.96	29.54	-59.46	-21.96	-37.50	peak
6	19.9954	53.44	-60.83	-7.39	29.54	-58.89	-21.96	-36.93	peak

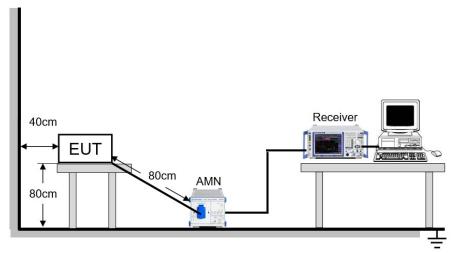
Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5).

2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.

3. All 3 polarizations(Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes have been tested, only the worst data was recorded in the report.

9. AC POWER LINE CONDUCTED EMISSIONS


LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

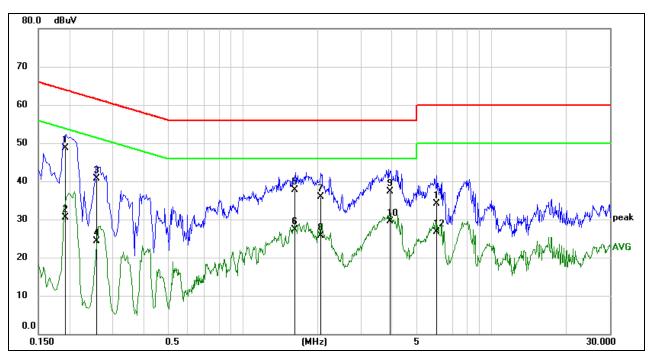
TEST SETUP AND PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST ENVIRONMENT


Temperature	25.9°C	Relative Humidity	67.7 %
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

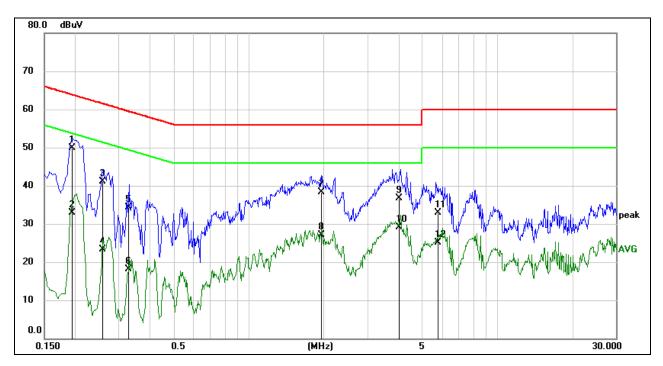
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

9.1. 8DPSK MODE

LINE L RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1921	39.18	9.59	48.77	63.95	-15.18	QP
2	0.1921	20.82	9.59	30.41	53.95	-23.54	AVG
3	0.2584	31.15	9.59	40.74	61.48	-20.74	QP
4	0.2584	14.73	9.59	24.32	51.48	-27.16	AVG
5	1.6172	28.16	9.62	37.78	56.00	-18.22	QP
6	1.6172	17.64	9.62	27.26	46.00	-18.74	AVG
7	2.0571	26.32	9.63	35.95	56.00	-20.05	QP
8	2.0571	16.00	9.63	25.63	46.00	-20.37	AVG
9	3.8941	27.71	9.60	37.31	56.00	-18.69	QP
10	3.8941	19.90	9.60	29.50	46.00	-16.50	AVG
11	6.0080	24.44	9.64	34.08	60.00	-25.92	QP
12	6.0080	17.01	9.64	26.65	50.00	-23.35	AVG

Note: 1. Result = Reading + Correct Factor.


2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

LINE N RESULTS (MID CHANNEL, WORST-CASE CONFIGURATION)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1948	40.31	9.59	49.90	63.83	-13.93	QP
2	0.1948	23.33	9.59	32.92	53.83	-20.91	AVG
3	0.2587	31.44	9.59	41.03	61.47	-20.44	QP
4	0.2587	13.78	9.59	23.37	51.47	-28.10	AVG
5	0.3267	24.66	9.59	34.25	59.53	-25.28	QP
6	0.3267	8.51	9.59	18.10	49.53	-31.43	AVG
7	1.9597	28.60	9.63	38.23	56.00	-17.77	QP
8	1.9597	17.49	9.63	27.12	46.00	-18.88	AVG
9	4.0386	27.11	9.60	36.71	56.00	-19.29	QP
10	4.0386	19.46	9.60	29.06	46.00	-16.94	AVG
11	5.7334	23.19	9.63	32.82	60.00	-27.18	QP
12	5.7334	15.49	9.63	25.12	50.00	-24.88	AVG

Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

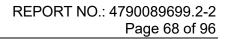
4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RESULTS

Complies

11. Appendix

11.1. Appendix A: 20dB Emission Bandwidth 11.1.1. Test Result

Test Mode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Verdict
	Ant1	2402	0.804	2401.607	2402.411	PASS
GFSK DH5		2441	0.804	2440.607	2441.411	PASS
		2480	0.804	2479.607	2480.411	PASS
DQPSK 3DH5	Ant1	2402	1.251	2401.373	2402.624	PASS
		2441	1.251	2440.373	2441.624	PASS
30113		2480	1.242	2479.379	2480.621	PASS

11.1.2. Test Graphs

REPORT NO.: 4790089699.2-2 Page 70 of 96

11.2. Appendix B: Occupied Channel Bandwidth 11.2.1. Test Result

Test Mode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
	Ant1	2402	0.76133	2401.628	2402.390	PASS
GFSK DH5		2441	0.76476	2440.626	2441.390	PASS
		2480	0.76843	2479.623	2480.391	PASS
8PSK 3DH5	Ant1	2402	1.1677	2401.421	2402.589	PASS
		2441	1.1581	2440.426	2441.584	PASS
		2480	1.1685	2479.421	2480.589	PASS

11.2.2. Test Graphs

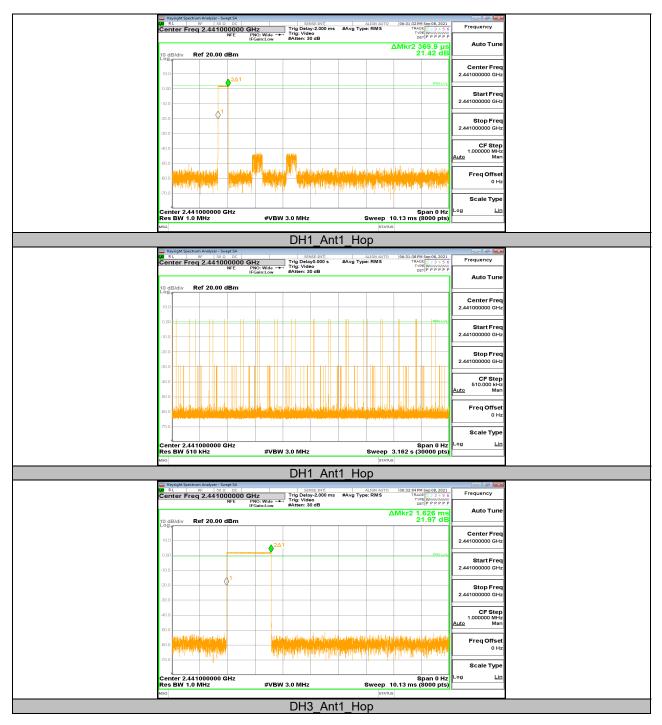
11.3. Appendix C: Maximum Peak Conducted Output Power 11.3.1. Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	7.35	<=30	PASS
GFSK DH5	Ant1	2441	7.19	<=30	PASS
		2480	7.25	<=30	PASS
	Ant1	2402	10.01	<=20.97	PASS
DQPSK 3DH5		2441	10.07	<=20.97	PASS
		2480	9.88	<=20.97	PASS

11.4. Appendix D: Carrier Frequency Separation 11.4.1. Test Result

Test Mode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
GFSK DH5	Ant1	Нор	1.012	>=0.804	PASS
8DPSK DH5	Ant1	Нор	1.024	>=0.834	PASS

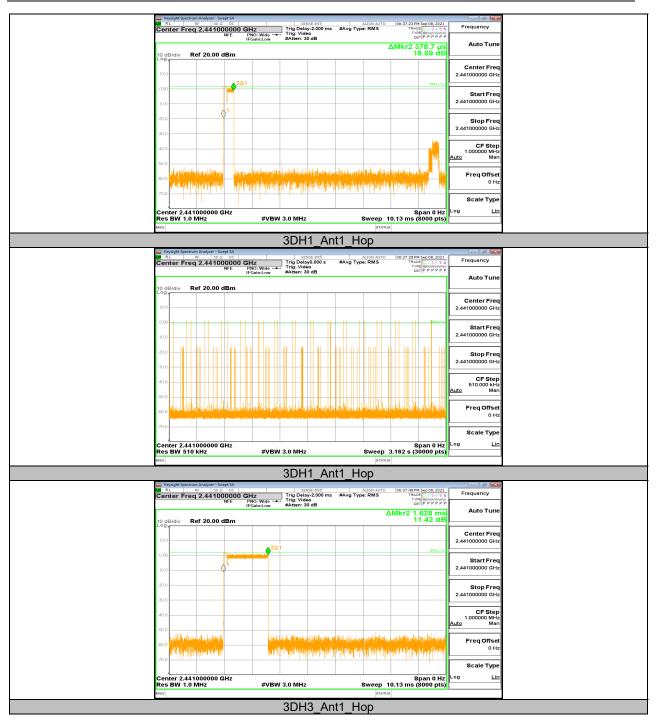
11.4.2. Test Graphs


11.5. Appendix E: Time of Occupancy 11.5.1. Test Result

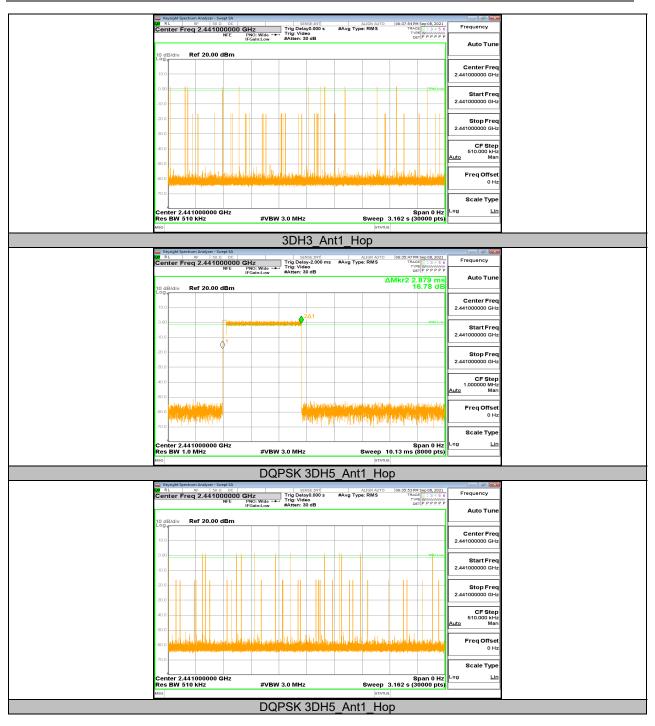
	FHSS Mode									
Test Mode Antenna	Antonno	Channel	Burst Width	Popult[o]	L imit[a]	Verdict				
	Antenna	Channel	[ms]	Result[s]	Limit[s]	verdict				
GFSK DH1	Ant1	Нор	0.37	0.118	<=0.4	PASS				
GFSK DH3	Ant1	Нор	1.63	0.261	<=0.4	PASS				
GFSK DH5	Ant1	Нор	2.87	0.306	<=0.4	PASS				
DQPSK DH1	Ant1	Нор	0.38	0.122	<=0.4	PASS				
DQPSK DH3	Ant1	Нор	1.63	0.261	<=0.4	PASS				
DQPSK 3DH5	Ant1	Нор	2.88	0.307	<=0.4	PASS				

	AFHSS Mode									
Test Mode Antenna	Channel	Burst Width	Popult[o]	Limit[o]	Verdict					
Test Mode	Antenna	Channel	[ms]	Result[s]	Limit[s]	verdict				
GFSK DH1	Ant1	Нор	0.37	0.059	<=0.4	PASS				
GFSK DH3	Ant1	Нор	1.63	0.130	<=0.4	PASS				
GFSK DH5	Ant1	Нор	2.87	0.153	<=0.4	PASS				
DQPSK DH1	Ant1	Нор	0.38	0.061	<=0.4	PASS				
DQPSK DH3	Ant1	Нор	1.63	0.130	<=0.4	PASS				
DQPSK 3DH5	Ant1	Нор	2.88	0.154	<=0.4	PASS				

11.5.2. Test Graphs



REPORT NO.: 4790089699.2-2 Page 79 of 96



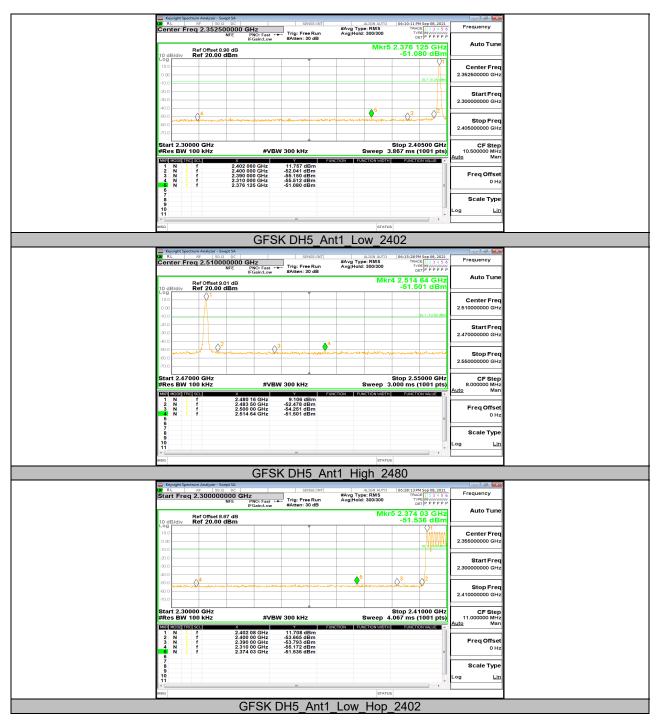
REPORT NO.: 4790089699.2-2 Page 80 of 96

REPORT NO.: 4790089699.2-2 Page 81 of 96

11.6. Appendix F: Number of Hopping Channels 11.6.1. Test Result

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
GFSK DH5	Ant1	Нор	79	>=15	PASS
DQPSK 3DH5	Ant1	Нор	79	>=15	PASS

11.6.2. Test Graphs



11.7. Appendix G: Band Edge Measurements 11.7.1. Test Result

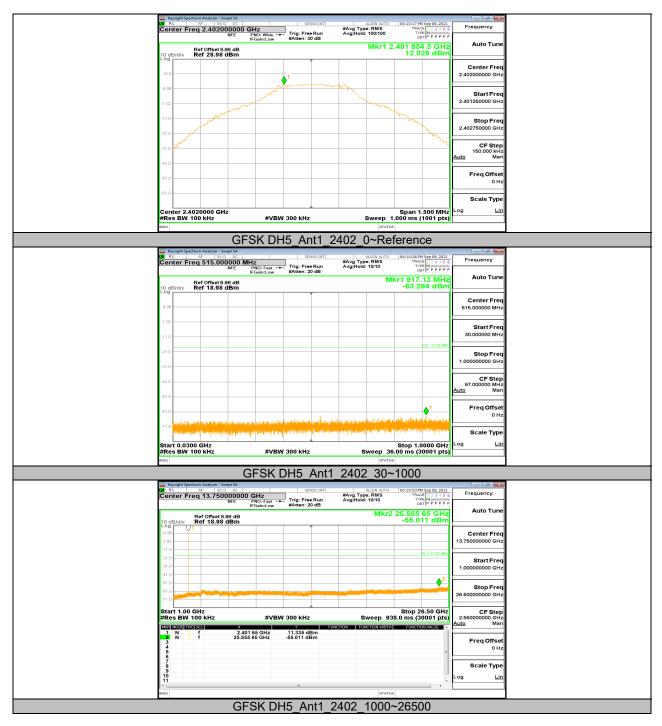
Test Mode	Antenna	Ch Name	Channel	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	11.76	-51.08	<=-8.24	PASS
GFSK DH5	Ant1	High	2480	9.11	-51.5	<=-10.89	PASS
GFSK DHS	Anti	Low	Hop_2402	11.71	-51.54	<=-8.29	PASS
		High	Hop_2480	8.69	-51.13	<=-11.31	PASS
		Low	2402	11.13	-51.26	<=-8.87	PASS
DQPSK	Ant1	High	2480	8.10	-51.21	<=-11.9	PASS
3DH5	AILI	Low	Hop_2402	10.12	-50.48	<=-9.88	PASS
		High	Hop_2480	5.96	-50.63	<=-14.04	PASS

11.7.2. Test Graphs

REPORT NO.: 4790089699.2-2 Page 86 of 96

REPORT NO.: 4790089699.2-2 Page 87 of 96

Keysight Spectrum Analyzer - Swept SA	SENSE:INT	ALIGN AUTO 06:33:10 PM Sep 08, 20		
00 RL RF 50 Ω DC Start Freq 2.30000000 NFE	BHZ PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 30 dB	#Avg Type: RMS Avg Hold: 300/300 DET P P P P	Frequency	
Ref Offset 8.87 di 10 dB/diy Ref 20.00 dBn	В	Mkr5 2.370 40 GH -50.479 dBr	z Auto Tune	
10 dB/dlv Ref 20.00 dBn		<u></u> \1	Center Freq	
0.00		Million and a	2.355000000 GHz	
-10.0			Start Freq	
-30.0			2.30000000 GHz	
-50.0 -50.0	and a second and the design of the second and the second	anon and a standard and a stand	Stop Freq	
-20.0			2.41000000 GHz	
Start 2.30000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.41000 GH Sweep 4.067 ms (1001 pt	s) 11.000000 MHz	
MAR MODE TRC SCL 1 N 1 f		CTION FUNCTION WIDTH FUNCTION VALUE	Auto Man	
3 N 1 f	2.390 00 GHz -54.283 dBm 2.310 00 GHz -53.941 dBm		Freq Offset	
6 7	2.370 40 GHz -50.479 dBm		E	
8 9 10			Scale Type	
11 • •	ITT	STATUS	× <u> </u>	
	DQPSK 3DH5_Ant	1_LOW_HOP_2402		
Keysight Spectrum Analyzer - Swept SA	SENSE:INT	ALIGN AUTO 06:36:47 PM Sep 08, 20: #Avg Type: RMS TRACE 1 2 3 4		
Start Freq 2.47000000 NFE	PNO: Fast +++ IFGain:Low #Atten: 30 dB	ALIGN AUTO 06:36:47 PM Sep 08, 20 #Avg Type: RMS TRACE 1 2 3 4 Avg Hold: 300/300 TYPE MWWW DET P P P P		
Ref Offset 9.01 db 10 dB/div Ref 20.00 dBn	B	Mkr4 2.541 52 GH -50.631 dBr		
10.0			Center Freq	
0.00 West-marking was		DL1 -14.04 db	2.51000000 GHz	
-20.0			Start Freq	
-40.0		4	2.470000000 GHz	
-50.0 -50.0 -50.0 -50.0	and the second	and the second	** Stop Freq 2.550000000 GHz	
-70.0				
Start 2.47000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.55000 GH Sweep 3.000 ms (1001 pt	Z CF Step 8.000000 MHz Auto Man	
	X Y EUN 2.470 08 GHz 5.963 dBm 2.483 50 GHz -53.389 dBm	CTION FUNCTION WIDTH FUNCTION VALUE	ĵ	
3 N 1 f 4 N 1 f	2.483 50 GHz -53.389 dBm 2.500 00 GHz -54.609 dBm 2.541 52 GHz -50.631 dBm		Freq Offset 0 Hz	
5 6 7			Scale Time	
8 9 10			Scale Type	
11 <	ITT	STATUS	× <u> </u>	
	QPSK 3DH5 Ant1			



11.8. Appendix H: Conducted Spurious Emission 11.8.1. Test Result

Test Mode	Antenna	Channel	Freq Range [MHz]	Result [dBm]	Limit [dBm]	Verdict
			Reference	12.03		PASS
		2402	30~1000	-63.29	<=-7.97	PASS
			1000~26500	-55.01	<=-7.97	PASS
			Reference	10.31		PASS
GFSK DH5	Ant1	2441	30~1000	-63.74	<=-9.69	PASS
			1000~26500	-55.2	<=-9.69	PASS
		2480	Reference	8.83		PASS
			30~1000	-64.57	<=-11.17	PASS
			1000~26500	-55.58	<=-11.17	PASS
		2402	Reference	11.56		PASS
			30~1000	-64.33	<=-8.44	PASS
			1000~26500	-55.41	<=-8.44	PASS
DQPSK			Reference	10.35		PASS
3DH5	Ant1	2441	30~1000	-63.51	<=-9.65	PASS
3005			1000~26500	-55.01	<=-9.65	PASS
		2480	Reference	8.57		PASS
			30~1000	-64.57	<=-11.43	PASS
			1000~26500	-53.68	<=-11.43	PASS

11.8.2. Test Graphs

REPORT NO.: 4790089699.2-2 Page 92 of 96

Keysight Spectrum Analyzer - Swept SA M RL RF 50 Ω DC SENSE:INT	ALIGN AUTO 06:17:59 PM Sep 08, 2021		
Center Freq 2.402000000 GHz	#Avg Type: RMS Avg Hold: 100/100 DET P P P P P	Frequency	
NFE PNO:Wide Trig: Free Run IFGain:Low #Atten: 30 dB	Derprinter		
Ref Offset 8.98 dB	Mkr1 2.401 854 5 GHz 11.564 dBm	Auto Tune	
10 dB/div Ref 28.98 dBm			
19.0		Center Freq 2.402000000 GHz	
		2.40200000 GHz	
8.98 a month for many many	Mun man	StartFreq	
-1.02 - Manual Contraction of the Market of the Contraction of the Con	" normality	2.401250000 GHz	
-11.0		Stop Freq	
-21.0		2.402750000 GHz	
		CF Step	
-31.0		150.000 kHz	
-41.0		<u>Auto</u> Man	
		Freq Offset	
-61.0		0 Hz	
-61.0			
		Scale Type	
Center 2.4020000 GHz #Res BW 100 kHz #VBW 300 kHz	Span 1.500 MHz Sweep 1.000 ms (1001 pts)	Log <u>Lin</u>	
#RES BW 100 KHZ #VBW 300 KHZ	status	·	
DQPSK 3DH5 Ant1 2	2402 0~Reference		
Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω DC SENSE:INT	ALIGN AUTO 06:18:07 PM Sep 08, 2021	Frequency	
Center Freq 515.000000 MHz NFE PNO: Fast Trig: Free Run IFGainLow #Atten: 20 dB	ALIGN AUTO 06:18:07 PM Sep 08, 2021 #Avg Type: RMS Avg Hold: 10/10 DET P P P P P P		
	Mkr1 981.15 MHz		
Ref Offset 8.98 dB 10 dB/div Ref 18.98 dBm	-64.334 dBm		
Log		Center Freq	
8.98		515.000000 MHz	
-1.02			
-1.02		Start Freq	
-11.0		30.000000 MHz	
-21.0	OL1 -18.44 dBm		
		Stop Freq 1.000000000 GHz	
-31.0			
-41.0		CF Step	
		97.000000 MHz <u>Auto</u> Man	
-51.0			
-61.0		Freq Offset	
71.0 Minute and the second participation of the second fit with the second s	sa ji pilan dali barana di kula padalaha baha data ata ba	0 Hz	
-71.0 Jacobio Republic Relativitation and March Relation of the Republic Advances of the Advan	in construite many fire that the state is not interesting in the desire the	Scale Type	
Start 0.0300 GHz	Stop 1.0000 GHz		
#Res BW 100 kHz #VBW 300 kHz	Sweep 36.00 ms (30001 pts)		
MSG	STATUS		
DQPSK 3DH5 Ant1	2402 30~1000		
www.commonweak.commons.com.commons.com.commons.com.commons.com.com.com.com.com.com.com.com.com.com			
Center Freq 13 75000000 GHz	ALIGN AUTO 06:18:34 PM Sep 08, 2021 #Avg Type: RMS TRACE 1 2 3 4 5 6 Avg Hold: 10/10 TYPE M WWWW DET P P P P P P	Frequency	
NFE PNO: Fast	AvgiHold: 10/10 TYPE MWWWW DET P P P P P P		
Ref Offset 8.98 dB	Mkr2 26.458 35 GHz	Auto Tune	
10 dB/div Ref 18.98 dBm	-55.408 dBm		
8.98		Center Freq	
-1.02		13.750000000 GHz	
-21.0	DL1 -18.44 dBm	Start Freq	
-31.0		1.00000000 GHz	
-41.0	2		
-51.0 -61.0		Stop Freq	
-71.0		26.50000000 GHz	
Start 1.00 GHz	Stop 26.50 GHz	CF Step	
#Res BW 100 kHz #VBW 300 kHz	Sweep 938.0 ms (30001 pts)	2.550000000 GHz Auto Man	
MXE MODE TRE SEL X Y FUNCT 1 N 1 f 2.401 65 GHz 7.297 dBm	ION FUNCTION WIDTH FUNCTION VALUE		
1 N 1 f 2.401 65 GHz 7.297 dBm 2 N 1 f 26.458 35 GHz -55.408 dBm 3		FreqOffset	
4 5	=	0 Hz	
1 N 1 f 2.401 65 GHz 7.297 dBm N 1 f 26.458 35 GHz -56.408 dBm 6 6 6 7 7 8		Seale Time	
8 9 10 11		Scale Type	
	•	Log <u>Lin</u>	
MSG m	STATUS	·	
2DUE Anti 0400			
3DH5_Ant1_2402	_1000~20500		

REPORT NO.: 4790089699.2-2 Page 93 of 96

Keysig	ght Spectrum Analyzer - Swept SA RF 50 Ω DC SENSE:INT	ALIGN AUTO 06:20:02 PM Sep 08, 2021		
	er Freg 2.441000000 GHz	ALIGN AUTO 106:20:02 PM Sep 08, 2021 #Avg Type: RMS TRACE 1 2 3 4 5 6 Avg Hold: 100/100 TYPE M Www.WW DET P P P P P P	Frequency	
	NFE PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	DEITHIN	Auto Tune	
10.101	Ref Offset 9.01 dB	Mkr1 2.441 177 0 GHz 10.351 dBm	Auto Tune	
	div Ref 29.01 dBm			
19.0			Center Freq 2.441000000 GHz	
10.0		▲ ¹	2.44100000 GH2	
9.01	a manus paper and by the second secon	mmmmmm	Start Freq	
-0.99	Multimeter a contraction of the	r b. m. M. M. M.	2.440250000 GHz	
		- m-		
-11.0			Stop Freq	
-21.0			2.441750000 GHz	
P			CF Step	
-31.0			150.000 kHz	
-41.0			Auto Man	
			Freq Offset	
-61.0			0 Hz	
-61.0				
			Scale Type	
Cente	er 2.4410000 GHz BW 100 kHz #VBW 300 kHz	Span 1.500 MHz Sweep 1.000 ms (1001 pts)	Log <u>Lin</u>	
#Res I	BW 100 kHz #VBW 300 kHz	Sweep 1.000 ms (1001 pts)	LI	
MBG				
	DQPSK 3DH5_Ant1	_2441_0~Reference		
	ght Spectrum Analyzer - Swept SA RF 50 Ω DC SENSE:INT	ALIGN AUTO 06:20:11 PM Sep 08, 2021		
Cente	er Freq 515.000000 MHz NFE PNO: Fast ++ Trig: Free Run #Atten: 20 dB	ALIGN AUTO 06:20:11 PM Sep 08, 2021 #Avg Type: RMS TRACE 1 2 3 4 5 6 Avg Hold: 10/10 Type Mwwww DET P P P P P P	Frequency	
		Mkr1 740.20 MHz	Auto Tune	
10 dB/d	Ref Offset 9.01 dB div Ref 19.01 dBm	-63.509 dBm		
			Center Freq	
9.01			515.000000 MHz	
-0.99 —			Start Freq	
-11.0			30.000000 MHz	
		0L1 -19.65 dBm		
-21.0			Stop Freq	
-31.0			1.00000000 GHz	
-41.0			CF Step	
-41.0			97.000000 MHz <u>Auto</u> Man	
-51.0				
-61.0		A 1	Freq Offset	
-01.0	en en de la de la companya de la com	n ha ya kilanan ya ka na na haran kana kika kila kina ya sa kika	0 Hz	
-71.0	na produktor obanik kurost kato da provinski produktor produktor statu produktor statu produktor produktor prod Rođen produktor obanik kurost jednost jednost produktor produktor statu produktor statu produktor produktor prod	new production of the second study of a 12 million is a second of the later plate in second states in the	Scale Type	
			Scale Type	
Start (#Res	0.0300 GHz BW 100 kHz #VBW 300 kHz	Stop 1.0000 GHz Sweep 36.00 ms (30001 pts)	Log <u>Lin</u>	
MSG	**BH 000 MIL	status	I	
	DQPSK 3DH5 Ar	nt1 2441 30~1000		
Ten Variet	ght Spectrum Analyzer - Swept SA	1000		
CX RL	RF 50 Ω DC SENSE:INT	ALIGN AUTO 06:20:37 PM Sep 08, 2021 #Avg Type: RMS TRACE	Frequency	
Cente	PNO: Fast	ALIGN AUTO 06:20:37 PM Sep 08, 2021 #Avg Type: RMS TRACE 1 2 3 4 5 6 Avg Hold: 10/10 TYPE MWWWW DET P P P P P P		
	Ref Offset 9.01 dB	Mkr2 26,491 50 GHz	Auto Tune	
10 dB/ Log	div Ref 19.01 dB	-55.009 dBm		
9.01			Center Freq	
-0.99			13.750000000 GHz	
-11.0		DL1 -19.65 dBm		
-21.0			Start Freq 1.00000000 GHz	
-41.0				
-51.0		2	Stop Freq	
-61.0			26.50000000 GHz	
-71.0				
Start #Res	1.00 GHz BW 100 kHz #VBW 300 kHz	Stop 26.50 GHz Sweep 938.0 ms (30001 pts)	CF Step 2.55000000 GHz	
MKR MC	DELTER SCI Y	FUNCTION FUNCTION WIDTH FUNCTION VALUE	Auto Man	
1 N				
3 4			Freq Offset 0 Hz	
5 6 7		=		
7 8 9			Scale Type	
9 10 11		1	Log <u>Lin</u>	
11	77	*		
MSG		STATUS		
	DQPSK 3DH5 Ant1	2441 1000~26500		

REPORT NO.: 4790089699.2-2 Page 94 of 96

Keysight Spectrum Analyzer - Swept SA	ALIGN AUTO 06:25:57 PM Sep 08, 2021		
Center Freg 2,48000000 GHz	ALIGN AUTO 06:25:57 PM Sep 08, 2021 #Avg Type: RMS TRACE 1 2 3 4 5 6 Avg Hold: 100/100 Type M WWWW	Frequency	
NFE PN0: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB	#Avg Type: RMS Avg Hold: 100/100		
Ref Offset 9.01 dB	Mkr1 2.480 165 0 GHz	Auto Tune	
10 dB/div Ref 29.01 dBm	8.569 dBm		
		Center Freq	
19.0		2.48000000 GHz	
9.01	♦ ¹		
A 10000000 M 1 0 4 4	Mummer	Start Freq	
-0.99 - Martin Martin William Willi	and the second	2.479250000 GHz	
	- The second sec		
-11.0	h	Stop Freq	
-21.0	N	2.480750000 GHz	
		CF Step	
-31.0		150.000 kHz	
-41.0		<u>Auto</u> Man	
		Freq Offset	
-51.0		0 Hz	
-61.0			
		Scale Type	
Center 2.4800000 GHz	Span 1 500 MHz	Log <u>Lin</u>	
Center 2.4800000 GHz #Res BW 100 kHz #VBW 300 kHz	Span 1.500 MHz Sweep 1.000 ms (1001 pts)		
MSG	STATUS		
DQPSK 3DH5 Ant1	2480 0~Reference		
Kevsight Spectrum Analyzer - Swept SA			
M RL RF 50 Ω DC SENSE:INT	ALIGN AUTO 06:26:06 PM Sep 08, 2021	Frequency	
Center Freq 515.000000 MHz NFE PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB	ALIGN AUTO 06:26:06 PM Sep 08, 2021 #Avg Type: RMS TRACE 1 2 3 4 5 6 Avg Hold: 10/10 Tryce Mwwww DET P P P P P P		
		Auto Tune	
Ref Offset 9.01 dB 10 dB/div Ref 19.01 dBm	Mkr1 962.27 MHz -64.574 dBm		
Log			
9.01		Center Freq 515.000000 MHz	
		010.000000 11112	
-0.99		Start Freq	
-11.0		30.000000 MHz	
-11.0			
-21.0	DL1 -21.43 dBm	Stop Freq	
		1.000000000 GHz	
-31.0			
-41.0		CF Step	
		97.000000 MHz Auto Man	
-51.0			
-61.0	_1	Freq Offset	
and the second se	e a glime and a da daile da her an de ada di sed her adalette (da la da da	0 Hz	
-71.0		Occile Torra	
Alternative desired in the other part of the product of the second s	a status series a series a series a series a series series de la series de la series de la series de la series	Scale Type	
Start 0.0300 GHz	Stop 1.0000 GHz	Log <u>Lin</u>	
#Res BW 100 kHz #VBW 300 kHz	Sweep 36.00 ms (30001 pts) status		
DQPSK 3DH5_Ant	1_2480_30~1000		
	ALIGN ALITO 06-26-22 BM Cap 00, 2021	- 3 -	
Center Freg 13,75000000 GHz	ALIGN AUTO 06:26:33 PM Sep 08, 2021 #Avg Type: RMS TRACE 1 2 3 4 5 6 Avg Hold: 10/10 Type DET P P P P P P	Frequency	
NFE PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB		Auto Tomo	
Ref Offset 9.01 dB	Mkr2 26.331 70 GHz	Auto Tune	
10 dB/div Ref 19.01 dBm	-53.676 dBm		
9.01		Center Freq	
-0.99		13.750000000 GHz	
-11.0	DL1 -21.43 dBn		
-21.0		Start Freq	
-41.0		1.00000000 GHz	
-51.0	+ + * *	Stor From	
-61.0		Stop Freq 26.50000000 GHz	
-71.0			
Start 1.00 GHz	Stop 26.50 GHz	CF Step	
#Res BW 100 kHz #VBW 300 kHz	Sweep 938.0 ms (30001 pts)	2.550000000 GHz Auto Man	
	NCTION FUNCTION WIDTH FUNCTION VALUE		
1 N 1 f 2.479 85 GHz 9.109 dBm 2 N 1 f 26.331 70 GHz -53.676 dBm 3		Freq Offset	
4 5		0 Hz	
6 7			
8		Scale Type	
10		Log <u>Lin</u>	
* (m.	· · · · · · · · · · · · · · · · · · ·		
 MSG	STATUS		
DQPSK 3DH5_Ant1_	2480 1000~26500		

11.9. Appendix I: Duty Cycle 11.9.1. Test Result

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
GFSK DH5	2.87	3.75	0.7653	76.53	1.16	0.35	0.5
DQPSK 3DH5	2.88	3.75	0.7680	76.80	1.15	0.35	0.5

Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

11.9.2. Test Graphs

END OF REPORT