

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 Issue 3

TEST REPORT

For

WIFI+BT Module

MODEL NUMBER: DCT14R2501

REPORT NUMBER: 4791158664-1-RF-2

ISSUE DATE: February 22, 2024

FCC ID:2AC23-DCT14 IC:12290A-DCT14

Prepared for

Hui Zhou Gaoshengda Technology Co.,LTD No.2, Jin-da Road, Huinan High-tech Industrial Park, Huizhou, Guangdong, China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	February 22, 2024	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC 15.203 RSS-GEN Clause 6.8	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC 15.247 (b) (1) RSS-247 Clause 5.1 (b)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a) RSS-Gen Clause 6.7	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC 15.247 (a) (1) RSS-247 Clause 5.1 (b)	Pass
Number of Hopping Frequency	ANSI C63.10-2013 Clause 7.8.3	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	15.247 (a) (1) III RSS-247 Clause 5.1 (d)	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC 15.247 (d) RSS-247 Clause 5.5	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C

ISED RSS-247 Issue 3> when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTEST	TATION OF TEST RESULTS	.6
2.	TEST M	ETHODOLOGY	.7
3.	FACILIT	IES AND ACCREDITATION	.7
4.	CALIBR	ATION AND UNCERTAINTY	. 8
4	.1.	MEASURING INSTRUMENT CALIBRATION	.8
4	.2.	MEASUREMENT UNCERTAINTY	. 8
5.	EQUIPN	IENT UNDER TEST	.9
5	5.1.	DESCRIPTION OF EUT	.9
5	.2.	CHANNEL LIST	.9
5	.3.	MAXIMUM POWER	.9
5	.4.	TEST CHANNEL CONFIGURATION	10
5	.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5	.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
5	.7.	SUPPORT UNITS FOR SYSTEM TEST	12
6.	MEASU	RING EQUIPMENT AND SOFTWARE USED	13
7.	ANTEN	NA PORT TEST RESULTS	16
7	.1.	CONDUCTED OUTPUT POWER	16
7	.2.	20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	17
7	.3.	CARRIER HOPPING CHANNEL SEPARATION	19
7	.4.	NUMBER OF HOPPING FREQUENCY	21
7	.5.	TIME OF OCCUPANCY (DWELL TIME)	23
7	.6.	CONDUCTED BANDEDGE AND SPURIOUS EMISSION	25
7	.7.	DUTY CYCLE	27
8.	RADIAT	ED TEST RESULTS	28
8	2.1.	RESTRICTED BANDEDGE	36
8	.2.	SPURIOUS EMISSIONS(1 GHZ~3 GHZ)	40
8	.3.	SPURIOUS EMISSIONS(3 GHZ~18 GHZ)	46
8	.4.	SPURIOUS EMISSIONS(9 KHZ~30 MHZ)	58
8	2.5.	SPURIOUS EMISSIONS(18 GHZ~26 GHZ)	61
8	8.6.	SPURIOUS EMISSIONS(30 MHZ~1 GHZ)	63
9.	ANTEN	NA REQUIREMENT	65
10.		AC POWER LINE CONDUCTED EMISSION	66
11.		TEST DATA	69

<i>11.1.</i> 11.1.1. 11.1.2.	APPENDIX A: 20DB EMISSION BANDWIDTH Test Result Test Graphs	. 69
<i>11.2.</i> 11.2.1. 11.2.2.	APPENDIX B: OCCUPIED CHANNEL BANDWIDTH Test Result Test Graphs	.72
<i>11.3.</i> 11.3.1.	APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER Test Result	
<i>11.4.</i> 11.4.1. 11.4.2.	APPENDIX D: CARRIER FREQUENCY SEPARATION Test Result Test Graphs	. 76
<i>11.5</i> . 11.5.1. 11.5.2.	APPENDIX E: TIME OF OCCUPANCY Test Result Test Graphs	. 78
<i>11.6.</i> 11.6.1. 11.6.2.	APPENDIX F: NUMBER OF HOPPING CHANNELS Test Result Test Graphs	. 81
<i>11.7.</i> 11.7.1. 11.7.2.	APPENDIX G: BAND EDGE MEASUREMENTS Test Result Test Graphs	. 83
<i>11.8.</i> 11.8.1. 11.8.2.	APPENDIX H: CONDUCTED SPURIOUS EMISSION Test Result Test Graphs	. 87
<i>11.9.</i> 11.9.1. 11.9.2.	APPENDIX I: DUTY CYCLE Test Result Test Graphs	. 94

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Hui Zhou Gaoshengda Technology Co.,LTD
Address:	No.2, Jin-da Road, Huinan High-tech Industrial Park, Huizhou, Guangdong, China

Manufacturer Information

Company Name:	Hui Zhou Gaoshengda Technology Co.,LTD
Address:	No.2, Jin-da Road, Huinan High-tech Industrial Park, Huizhou,
	Guangdong, China

EUT Information	
EUT Name:	WIFI+BT Module
Model:	DCT14R2501
Brand:	GSD
Sample Received Date:	January 11, 2024
Sample Status:	Normal
Sample ID:	6825178
Date of Tested:	January 22, 2024 to February 22, 2024

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 FCC PART 15 SUBPART C	Pass
ISED RSS-247 Issue 3	rass

Prepared By:

Tammy Huang

Fanny Huang Engineer Project Associate Checked By:

Donny Bucury

Denny Huang Senior Project Engineer

Approved By:

Stephentino

Stephen Guo Operations Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C ISED RSS-247 Issue 3, KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, ANSI C63.10-2013 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

ı.
ı.
ct
ı.
•
t
ı.
n.

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62 dB	
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB	
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB	
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)	
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)	
Duty Cycle	±0.028%	
20dB Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%	
Carrier Frequency Separation	±1.9%	
Maximum Conducted Output Power	±0.743 dB	
Number of Hopping Channel	±1.9%	
Time of Occupancy	±0.028%	
Conducted Band-edge Compliance	±1.328 dB	
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)	
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	WIFI+BT Module
Model	DCT14R2501

Frequency Range:	2402 MHz to 2480 MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK, II/4DQPSK, 8DPSK
Normal Test Voltage:	3.3 Vdc

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)	
GFSK	2402 ~ 2480	0-78[79]	8.56	
8DPSK	2402 ~ 2480	0-78[79]	10.75	

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK-DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK-3DH5	CH 00(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
GFSK-DH5	Hopping	
8DPSK-3DH5	Hopping	

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)		
	DH1	27		
GFSK	DH3	183		
	DH5	339		
	2-DH1	54		
∏/4-DQPSK	2-DH3	367		
	2-DH5	679		
	3-DH1	83		
8DPSK	3-DH3	552		
	3-DH5	1021		

5.5. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Se	oftware	WCN_Combo_Tool					
Modulation Type	Transmit Antenna	Test Software setting value					
	Number	CH 00	CH 39	CH 78			
GFSK	1	Default Default		Default			
8DPSK	1	Default	Default	Default			

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)		
1	2402-2480	PCB Antenna	-1.18		

Test Mode	Transmit and Receive Mode	Description					
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.					
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.					
Note: 1.BT&WLAN 2.4G, BT & WLAN 5G, WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client)							

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

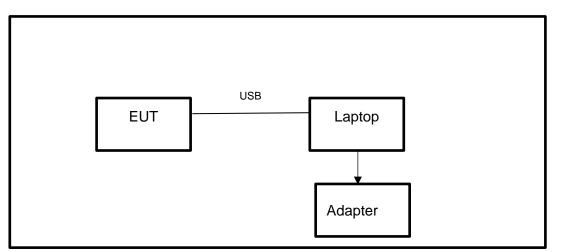
5.7. SUPPORT UNITS FOR SYSTEM TEST

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	E42-80	R303U5AG
2	AC Adaptor	Lenovo	MACS- 1201001202	Input: 100-240 V~50/60 Hz, 0.35 A Output: DC 12V1A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

Note: Adapter only use for AC Power Line Conducted Emission testing.

6. MEASURING EQUIPMENT AND SOFTWARE USED

R&S TS 8997 Test System										
Equipment		Manu	factu	rer	Model I	No.	Serial No.	Last C	Cal.	Due. Date
Power sensor, Power Meter R&S			&S	S OSP120		20	100921	Mar.31,	2023	Mar.30,2024
Vector Signal Generation	tor	R	&S	,	SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024
Signal Generator		R	&S		SMB10	0A	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer		R	&S		FSV4	0	101118	Oct.12,	2023	Oct.11, 2024
		<u> </u>			Softwa	re		1		
Description			Ма	anufa	acturer		Nam	е		Version
For R&S TS 8997 Test	Syste	em	Rohd	le &	Schwar	Z	EMC	32		10.60.10
			Tons	send	d RF Te	st S	ystem			
Equipment	Man	ufactu	rer I	Mod	del No. Seri		erial No.	erial No. Last Ca		Due. Date
Wideband Radio Communication Tester		R&S		CM	W500	500 155523		Oct.12, 2023		Oct.11, 2024
Wireless Connectivity Tester		R&S		CM	W270	1201.0002N75- 102		Sep.25,	2023	Sep.24, 2024
PXA Signal Analyzer	Ke	eysight	t	N9(030A	MY	′55410512	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	t	N5 ⁻	182B	MY	′56200284	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	t	N5 ⁻	172B	MY	′56200301	Oct.12,	2023	Oct.11, 2024
DC power supply	Ke	eysight	t	E36	642A	MY	′55159130	Oct.12,	2023	Oct.11, 2024
Temperature & Humidity Chamber	SAI	NMOO	D S	SG-80-CC-2			2088	Oct.12,	2023	Oct.11, 2024
Attenuator	A	glient 84		84	95B	28	14a12853	Oct.12,	2023	Oct.11, 2024
RF Control Unit	То	onscend JS		JS0	806-2	23E	380620666	April 18,	2023	April 17, 2024
	Software									
Description Manufacturer				rer			Name			Version
Tonsend SRD Test Syst	tem	Ton	send		JS1′	120-3	3 RF Test S	ystem		V3.2.22

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Conducted Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Oct.13, 2023	Oct.12, 2024
Two-Line V- Network	R&S	ENV216	101983	Oct.13, 2023	Oct.12, 2024
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.13, 2023	Oct.12, 2024
	Software				
Description Manufacturer Name Version					Version
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1

Radiated Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.12, 2023	Oct.11, 2024
		So	ftware		
[Description		Manufacturer	Name	Version
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Other Instrument					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.21, 2023	Oct.20, 2024
Barometer	Yiyi	Baro	N/A	Oct.19, 2023	Oct.18, 2024
Attenuator	Agilent	8495B	2814a12853	Oct.12, 2023	Oct.11, 2024

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (b) (1) ISED RSS-247 Clause 5.4 (b)	Peak Conducted Output Power	Hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel: 1 watt or 30 dBm; Hopping channel carrier frequencies that are separated by 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel: 125 mW or 21 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	55.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

TEST DATE / ENGINEER

Test Date January 17, 2024 Test By Jo	Johnson Liu
---------------------------------------	-------------

TEST RESULTS

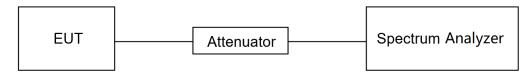
Please refer to section "Test Data" - Appendix C

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1) RSS-247 Clause 5.1 (a)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5	
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	None; for reporting purposes only.	2400-2483.5	

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	55.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

TEST DATE / ENGINEER

Test Date January	17, 2024 Test I	3y Johnson Liu
-------------------	-----------------	----------------

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST RESULTS

Please refer to section "Test Data" - Appendix A&B

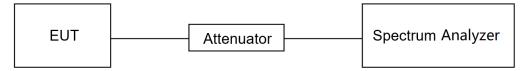
7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1) ISED RSS-247 Clause 5.1 (b)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
RBW	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	55.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST DATE / ENGINEER

Test Date January 17, 2024	Test By	Johnson Liu
----------------------------	---------	-------------

TEST RESULTS

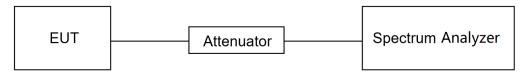
Please refer to section "Test Data" - Appendix D

7.4. NUMBER OF HOPPING FREQUENCY

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit			
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Number of Hopping Frequency	at least 15 hopping channels	

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	55.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

TEST DATE / ENGINEER

Test Date January 17, 2024	Test By	Johnson Liu
----------------------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix F

7.5. TIME OF OCCUPANCY (DWELL TIME)

LIMITS

		6 (15.247), Subpart C S-247 ISSUE 3
Section	Test Item	Limit
CFR 47 15.247 (a) (1) III ISED RSS-247 Clause 5.1 (d)	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.

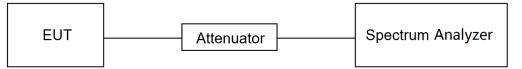
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.


For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel): DH1/3DH1 Dwell Time: Burst Width * (800/2) * 8 / (channel number)

DH3/3DH3 Dwell Time: Burst Width * (800/2) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (800/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7℃	Relative Humidity	55.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

TEST DATE / ENGINEER

Test Date January 17, 2024 Test By Johnson Liu			
	Test Date	Test By	Johnson Liu

TEST RESULTS

Please refer to section "Test Data" - Appendix E

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247), Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

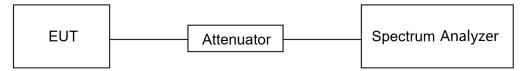
TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyzer and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.


Change the settings for emission level measurement:

130a0	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	55.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

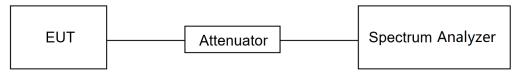
TEST DATE / ENGINEER

Test Date January 17, 2024 Test By Johnson Liu
--

TEST RESULTS

Please refer to section "Test Data" - Appendix G&H

7.7. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.7 ℃	Relative Humidity	55.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.3 V

TEST DATE / ENGINEER

Test Date January 17, 2024	Test By	Johnson Liu
----------------------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix I

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strer (dBuV/m Quasi-) at 3 m
30 - 88	100	40)
88 - 216	150	43	.5
216 - 960	200	46	6
Above 960	500	54	
Above 1000	500	Peak	Average
	300	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz		
Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	158.7 - 158.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 18.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1648.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.87	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 - 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

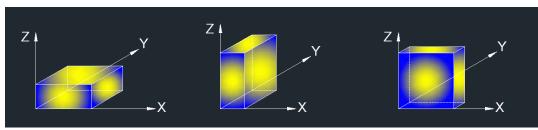
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
NBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.7. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

For Restricted Bandedge:

Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes have been tested, but only the worst data was recorded in the report.

5. dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5

For Radiate Spurious Emission (30 MHz ~ 1 GHz): Note:

1. Result Level = Read Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed

to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (3 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

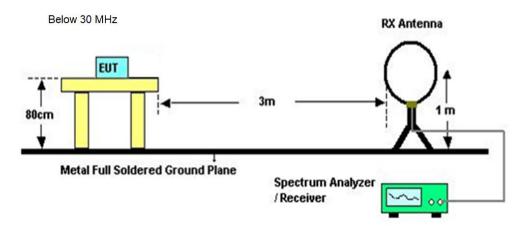
5. For the transmitting duration, please refer to clause 7.7.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

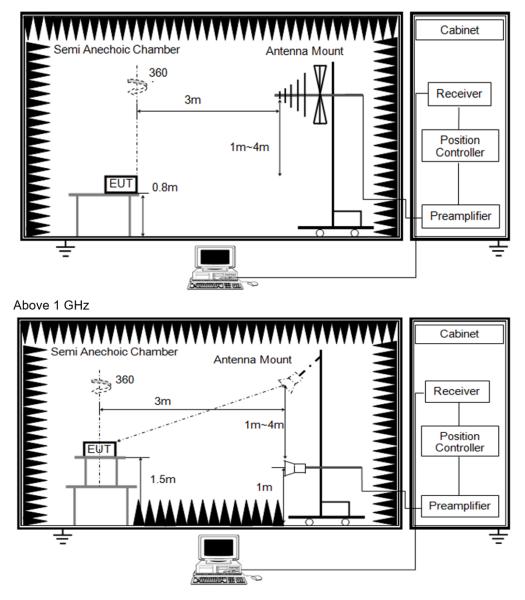
8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz): Note:


1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.


4. All modes have been tested, but only the worst data was recorded in the report.

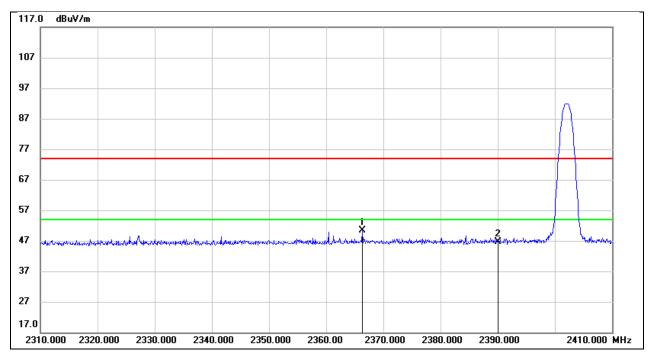
TEST SETUP

Below 1 GHz and above 30 MHz

TEST ENVIRONMENT

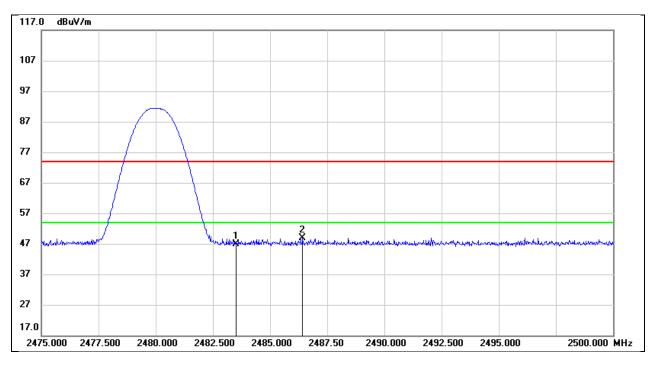
Temperature	24.8 ℃	Relative Humidity	63%
Atmosphere Pressure	101kPa	Test Voltage	

TEST DATE / ENGINEER

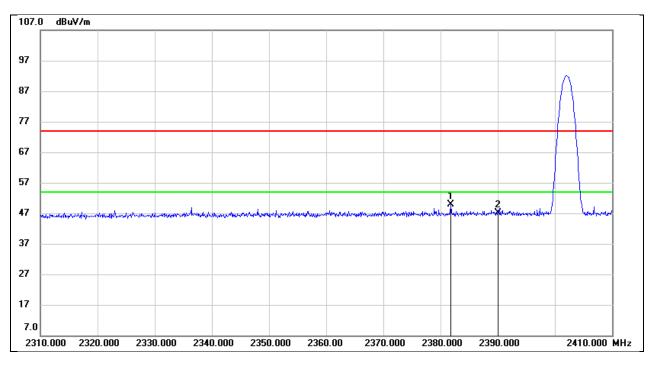

Test DateJanuary 30, 2024Test ByRex Huang	
---	--

TEST RESULTS

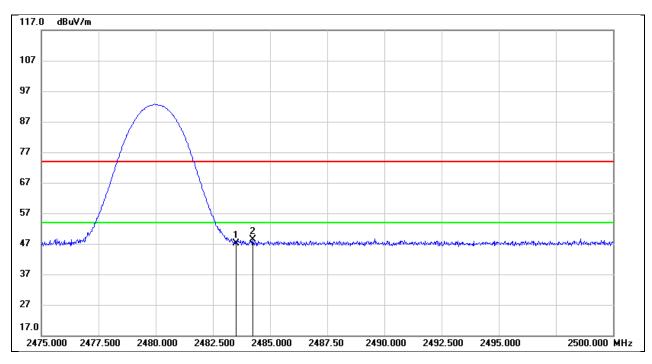
8.1. RESTRICTED BANDEDGE


Test Mode:	GFSK PK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2366.300	18.26	32.09	50.35	74.00	-23.65	peak
2	2390.000	14.52	32.16	46.68	74.00	-27.32	peak


Test Mode:	GFSK PK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.46	32.44	46.90	74.00	-27.10	peak
2	2486.425	16.44	32.44	48.88	74.00	-25.12	peak


Test Mode:	8DPSK PK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

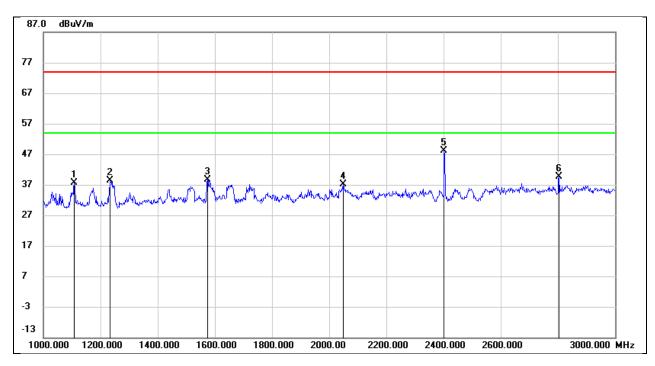
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2381.800	17.74	32.13	49.87	74.00	-24.13	peak
2	2390.000	14.88	32.16	47.04	74.00	-26.96	peak

Test Mode:	8DPSK PK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 3.3 V

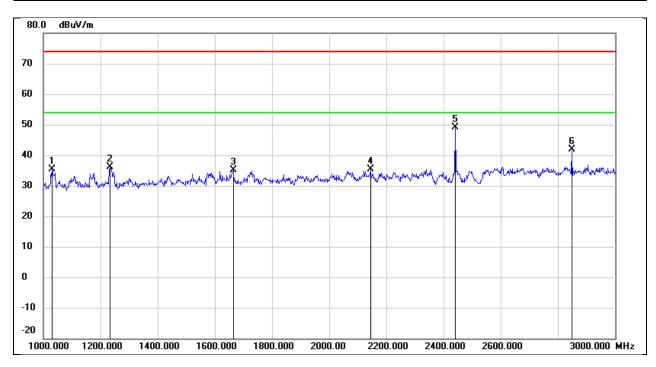


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	14.74	32.44	47.18	74.00	-26.82	peak
2	2484.250	15.98	32.44	48.42	74.00	-25.58	peak

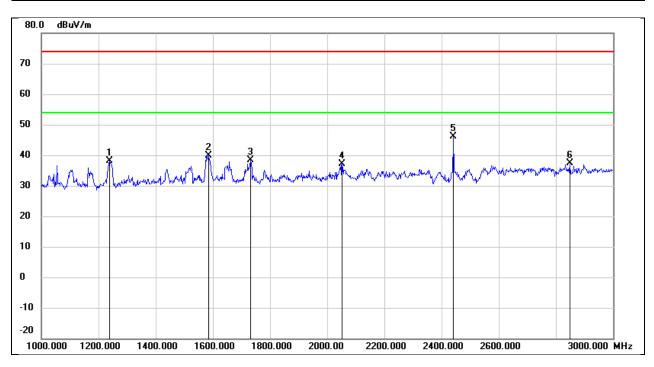
8.2. SPURIOUS EMISSIONS(1 GHZ~3 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

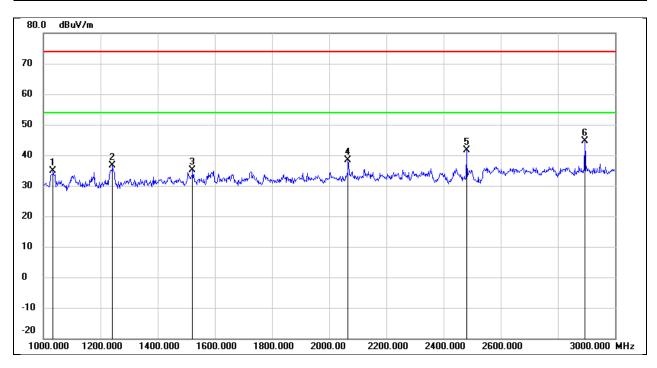
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1036.000	50.26	-14.87	35.39	74.00	-38.61	peak
2	1240.000	49.82	-13.91	35.91	74.00	-38.09	peak
3	1508.000	48.63	-12.68	35.95	74.00	-38.05	peak
4	1894.000	45.91	-11.41	34.50	74.00	-39.50	peak
5	2402.000	56.01	-8.99	47.02	1	/	fundamental
6	2804.000	44.15	-7.57	36.58	74.00	-37.42	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

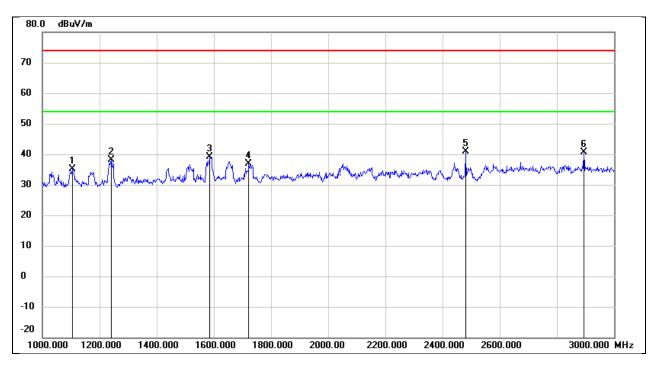
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1108.000	52.21	-14.53	37.68	74.00	-36.32	peak
2	1234.000	52.41	-13.94	38.47	74.00	-35.53	peak
3	1574.000	51.05	-12.46	38.59	74.00	-35.41	peak
4	2050.000	48.04	-10.80	37.24	74.00	-36.76	peak
5	2402.000	57.05	-8.99	48.06	/	/	fundamental
6	2804.000	47.21	-7.57	39.64	74.00	-34.36	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1030.000	50.28	-14.89	35.39	74.00	-38.61	peak
2	1234.000	49.98	-13.94	36.04	74.00	-37.96	peak
3	1664.000	47.42	-12.17	35.25	74.00	-38.75	peak
4	2144.000	45.60	-10.33	35.27	74.00	-38.73	peak
5	2441.000	57.81	-8.79	49.02	/	/	fundamental
6	2848.000	49.27	-7.44	41.83	74.00	-32.17	peak

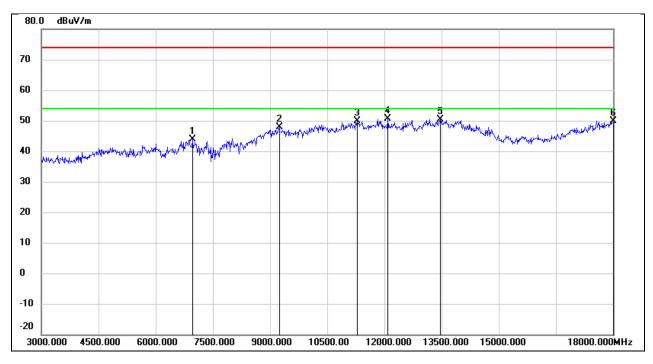

Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1238.000	52.15	-13.92	38.23	74.00	-35.77	peak
2	1584.000	52.31	-12.43	39.88	74.00	-34.12	peak
3	1732.000	50.21	-11.94	38.27	74.00	-35.73	peak
4	2052.000	48.03	-10.78	37.25	74.00	-36.75	peak
5	2441.000	54.92	-8.79	46.13	/	/	fundamental
6	2848.000	44.80	-7.44	37.36	74.00	-36.64	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

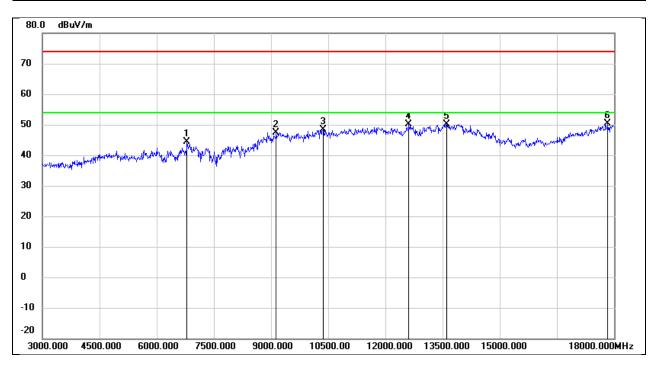
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1034.000	49.70	-14.87	34.83	74.00	-39.17	peak
2	1242.000	50.46	-13.91	36.55	74.00	-37.45	peak
3	1522.000	47.76	-12.64	35.12	74.00	-38.88	peak
4	2066.000	49.10	-10.72	38.38	74.00	-35.62	peak
5	2480.000	50.12	-8.59	41.53	1	/	fundamental
6	2894.000	51.86	-7.30	44.56	74.00	-29.44	peak

Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 3.3 V

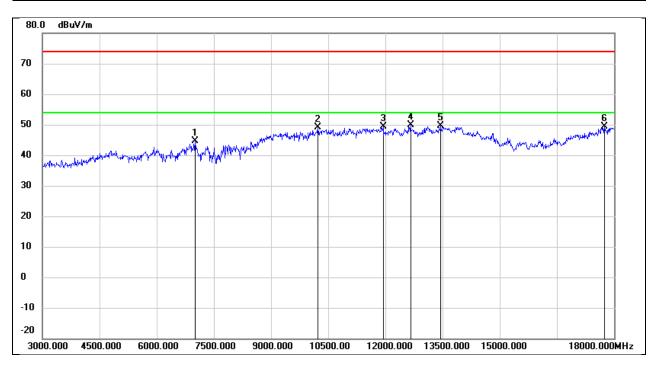


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1104.000	49.65	-14.55	35.10	74.00	-38.90	peak
2	1242.000	52.04	-13.91	38.13	74.00	-35.87	peak
3	1586.000	51.48	-12.42	39.06	74.00	-34.94	peak
4	1722.000	48.75	-11.98	36.77	74.00	-37.23	peak
5	2480.000	49.40	-8.59	40.81	/	/	fundamental
6	2894.000	47.89	-7.30	40.59	74.00	-33.41	peak

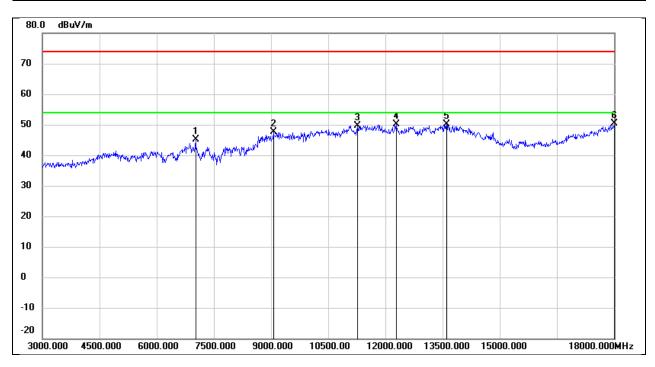
8.3. SPURIOUS EMISSIONS(3 GHZ~18 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

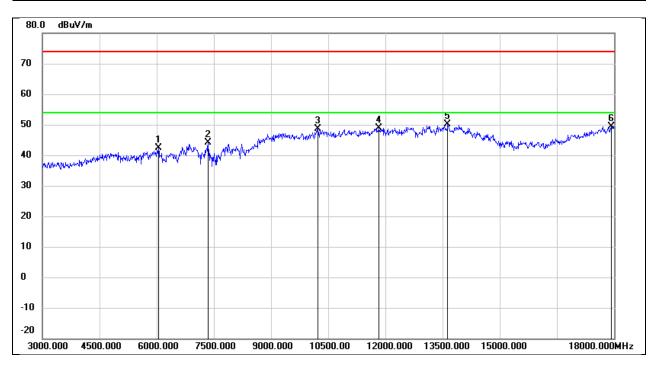
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6960.000	37.29	6.50	43.79	74.00	-30.21	peak
2	9240.000	37.42	10.58	48.00	74.00	-26.00	peak
3	11295.000	34.07	15.85	49.92	74.00	-24.08	peak
4	12090.000	32.83	17.90	50.73	74.00	-23.27	peak
5	13470.000	29.68	20.77	50.45	74.00	-23.55	peak
6	18000.000	24.14	25.69	49.83	74.00	-24.17	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

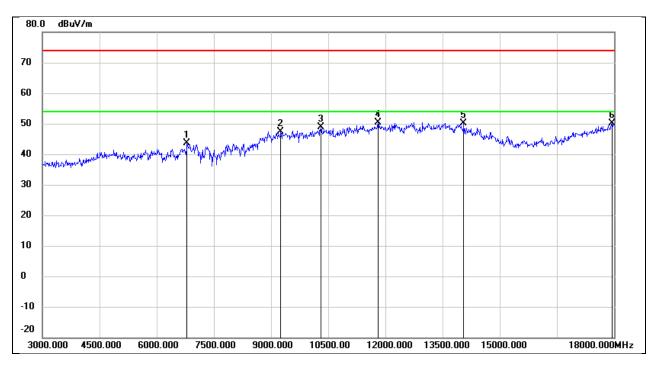
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6795.000	38.73	5.68	44.41	74.00	-29.59	peak
2	9135.000	36.89	10.55	47.44	74.00	-26.56	peak
3	10365.000	35.76	12.72	48.48	74.00	-25.52	peak
4	12615.000	32.25	17.86	50.11	74.00	-23.89	peak
5	13605.000	28.99	21.12	50.11	74.00	-23.89	peak
6	17835.000	25.69	24.72	50.41	74.00	-23.59	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

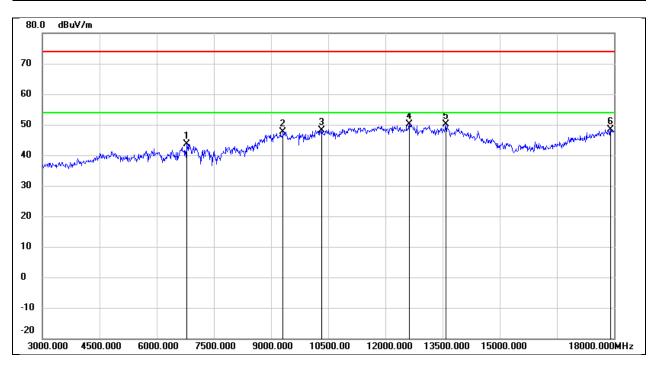
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7005.000	37.87	6.69	44.56	74.00	-29.44	peak
2	10230.000	36.71	12.46	49.17	74.00	-24.83	peak
3	11940.000	31.55	17.80	49.35	74.00	-24.65	peak
4	12660.000	31.91	17.95	49.86	74.00	-24.14	peak
5	13455.000	28.85	20.71	49.56	74.00	-24.44	peak
6	17745.000	25.16	24.18	49.34	74.00	-24.66	peak


Test Mode:	GFSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 3.3 V

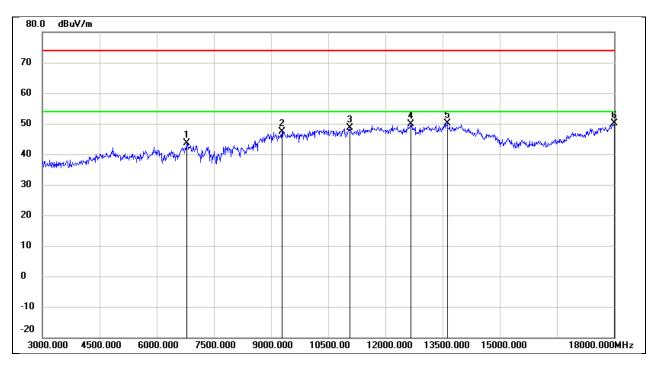
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7020.000	38.43	6.67	45.10	74.00	-28.90	peak
2	9060.000	37.11	10.51	47.62	74.00	-26.38	peak
3	11265.000	33.94	15.74	49.68	74.00	-24.32	peak
4	12285.000	32.48	17.75	50.23	74.00	-23.77	peak
5	13605.000	28.92	21.12	50.04	74.00	-23.96	peak
6	18000.000	24.73	25.69	50.42	74.00	-23.58	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

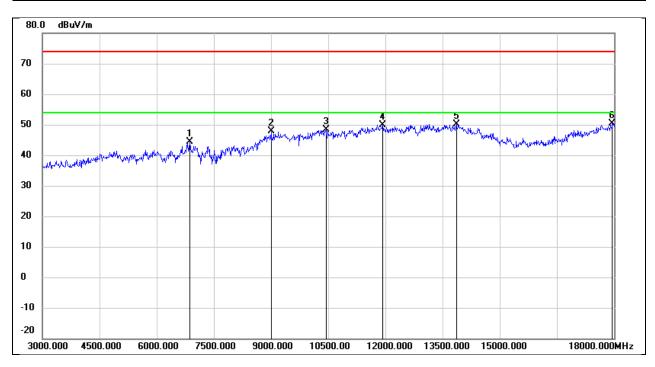
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6045.000	39.85	2.43	42.28	74.00	-31.72	peak
2	7350.000	37.60	6.44	44.04	74.00	-29.96	peak
3	10230.000	36.12	12.46	48.58	74.00	-25.42	peak
4	11835.000	31.43	17.51	48.94	74.00	-25.06	peak
5	13635.000	28.83	21.19	50.02	74.00	-23.98	peak
6	17925.000	24.24	25.25	49.49	74.00	-24.51	peak


Test Mode:	GFSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 3.3 V

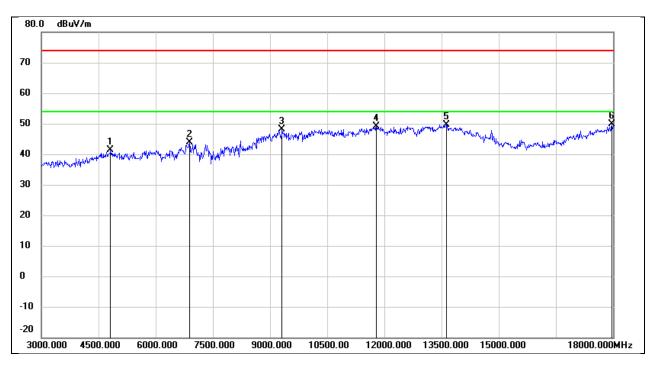
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6795.000	38.06	5.68	43.74	74.00	-30.26	peak
2	9255.000	36.87	10.59	47.46	74.00	-26.54	peak
3	10305.000	36.28	12.61	48.89	74.00	-25.11	peak
4	11805.000	32.85	17.43	50.28	74.00	-23.72	peak
5	14055.000	28.29	21.73	50.02	74.00	-23.98	peak
6	17940.000	24.77	25.34	50.11	74.00	-23.89	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

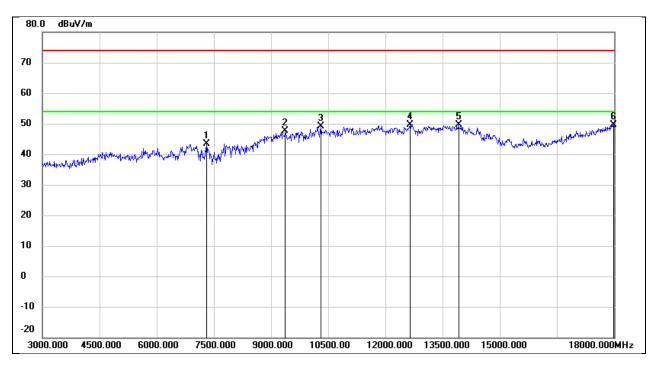
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6795.000	38.04	5.68	43.72	74.00	-30.28	peak
2	9315.000	36.92	10.61	47.53	74.00	-26.47	peak
3	10335.000	35.43	12.67	48.10	74.00	-25.90	peak
4	12630.000	32.32	17.89	50.21	74.00	-23.79	peak
5	13590.000	29.01	21.09	50.10	74.00	-23.90	peak
6	17910.000	23.18	25.16	48.34	74.00	-25.66	peak


Test Mode:	8DPSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V

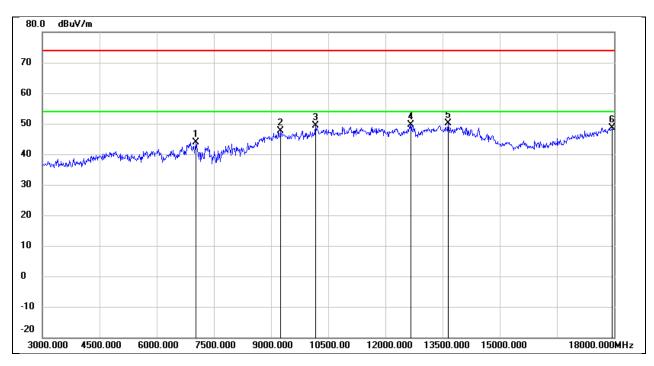
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6795.000	38.07	5.68	43.75	74.00	-30.25	peak
2	9285.000	36.86	10.61	47.47	74.00	-26.53	peak
3	11070.000	33.51	15.03	48.54	74.00	-25.46	peak
4	12660.000	31.87	17.95	49.82	74.00	-24.18	peak
5	13620.000	29.05	21.15	50.20	74.00	-23.80	peak
6	18000.000	24.37	25.69	50.06	74.00	-23.94	peak


Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	6870.000	38.26	6.05	44.31	74.00	-29.69	peak
2	9000.000	37.47	10.48	47.95	74.00	-26.05	peak
3	10440.000	35.58	12.87	48.45	74.00	-25.55	peak
4	11925.000	32.07	17.75	49.82	74.00	-24.18	peak
5	13860.000	28.51	21.67	50.18	74.00	-23.82	peak
6	17955.000	24.98	25.42	50.40	74.00	-23.60	peak

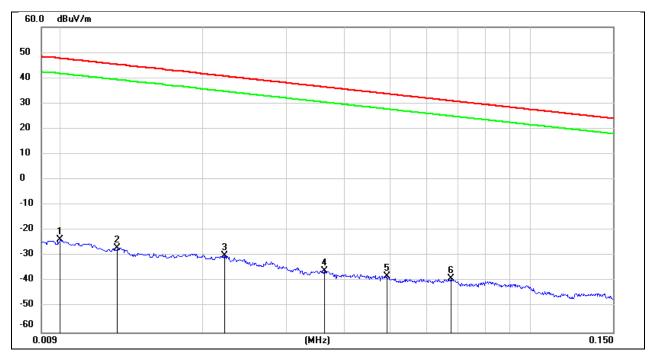

Test Mode:	8DPSK	Frequency(MHz):	2441
Polarity:	Vertical	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4815.000	41.75	-0.26	41.49	74.00	-32.51	peak
2	6885.000	37.88	6.12	44.00	74.00	-30.00	peak
3	9315.000	37.44	10.61	48.05	74.00	-25.95	peak
4	11790.000	31.75	17.38	49.13	74.00	-24.87	peak
5	13620.000	28.59	21.15	49.74	74.00	-24.26	peak
6	17970.000	24.45	25.51	49.96	74.00	-24.04	peak


Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7305.000	37.03	6.47	43.50	74.00	-30.50	peak
2	9375.000	36.93	10.64	47.57	74.00	-26.43	peak
3	10305.000	36.58	12.61	49.19	74.00	-24.81	peak
4	12645.000	31.68	17.92	49.60	74.00	-24.40	peak
5	13920.000	27.76	21.79	49.55	74.00	-24.45	peak
6	17985.000	24.15	25.60	49.75	74.00	-24.25	peak

Test Mode:	8DPSK	Frequency(MHz):	2480
Polarity:	Vertical	Test Voltage:	DC 3.3 V

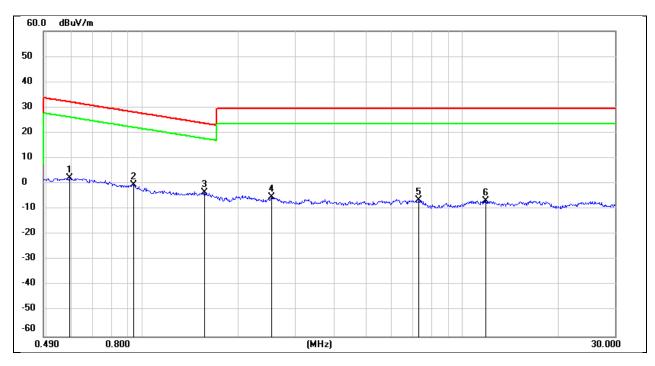


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	7035.000	37.18	6.67	43.85	74.00	-30.15	peak
2	9255.000	36.99	10.59	47.58	74.00	-26.42	peak
3	10170.000	36.96	12.34	49.30	74.00	-24.70	peak
4	12675.000	31.72	17.99	49.71	74.00	-24.29	peak
5	13650.000	29.01	21.21	50.22	74.00	-23.78	peak
6	17955.000	23.27	25.42	48.69	74.00	-25.31	peak

8.4. SPURIOUS EMISSIONS(9 KHZ~30 MHZ)

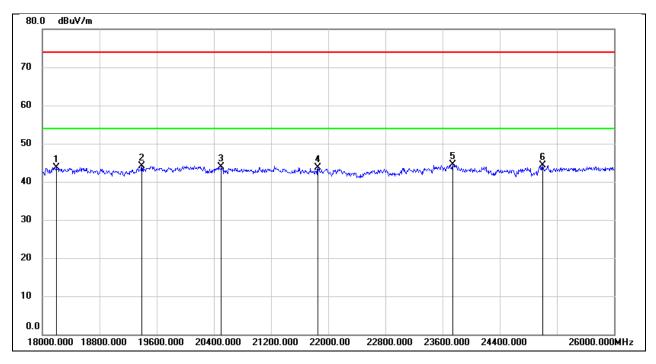

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0100	77.72	-101.40	-23.68	47.60	-75.18	-3.90	-71.28	peak
2	0.0131	74.47	-101.38	-26.91	45.25	-78.41	-6.25	-72.16	peak
3	0.0222	71.36	-101.35	-29.99	40.67	-81.49	-10.83	-70.66	peak
4	0.0362	65.51	-101.42	-35.91	36.43	-87.41	-15.07	-72.34	peak
5	0.0492	63.55	-101.47	-37.92	33.76	-89.42	-17.74	-71.68	peak
6	0.0675	62.64	-101.56	-38.92	31.02	-90.42	-20.48	-69.94	peak


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1554	79.27	-101.65	-22.38	23.77	-73.88	-27.73	-46.15	peak
2	0.1794	76.27	-101.68	-25.41	22.53	-76.91	-28.97	-47.94	peak
3	0.2053	72.29	-101.73	-29.44	21.35	-80.94	-30.15	-50.79	peak
4	0.2442	68.53	-101.79	-33.26	19.85	-84.76	-31.65	-53.11	peak
5	0.2942	64.32	-101.85	-37.53	18.23	-89.03	-33.27	-55.76	peak
6	0.3240	63.37	-101.88	-38.51	17.39	-90.01	-34.11	-55.90	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V



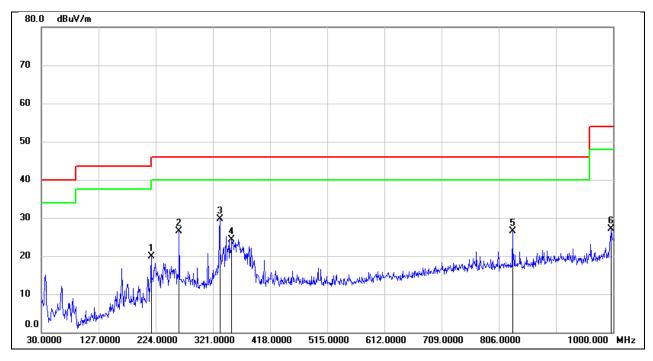
No.	Frequency	Reading	Correct	FCC	FCC Limit	ISED	ISED	Margin	Remark
				Result		Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5917	64.24	-62.08	2.16	32.16	-49.34	-19.34	-30.00	peak
2	0.9385	61.67	-62.23	-0.56	28.15	-52.06	-23.35	-28.71	peak
3	1.5625	58.46	-62.02	-3.56	23.73	-55.06	-27.77	-27.29	peak
4	2.5301	56.32	-61.69	-5.37	29.54	-56.87	-21.96	-34.91	peak
5	7.3361	54.58	-61.17	-6.59	29.54	-58.09	-21.96	-36.13	peak
6	11.8513	54.06	-60.88	-6.82	29.54	-58.32	-21.96	-36.36	peak

8.5. SPURIOUS EMISSIONS(18 GHZ~26 GHZ)

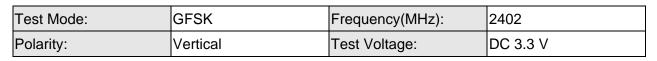

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

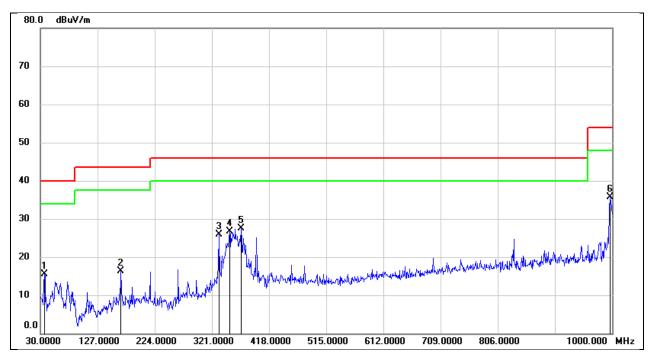
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18200.000	49.29	-5.52	43.77	74.00	-30.23	peak
2	19392.000	49.62	-5.57	44.05	74.00	-29.95	peak
3	20504.000	49.21	-5.35	43.86	74.00	-30.14	peak
4	21856.000	48.02	-4.39	43.63	74.00	-30.37	peak
5	23744.000	47.65	-3.20	44.45	74.00	-29.55	peak
6	25000.000	46.36	-2.10	44.26	74.00	-29.74	peak

Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Vertical	Test Voltage:	DC 3.3 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18960.000	48.51	-5.25	43.26	74.00	-30.74	peak
2	20240.000	49.32	-5.61	43.71	74.00	-30.29	peak
3	21544.000	47.76	-4.63	43.13	74.00	-30.87	peak
4	22816.000	46.43	-3.63	42.80	74.00	-31.20	peak
5	24568.000	46.60	-2.33	44.27	74.00	-29.73	peak
6	25664.000	44.89	-1.01	43.88	74.00	-30.12	peak


8.6. SPURIOUS EMISSIONS(30 MHZ~1 GHZ)


Test Mode:	GFSK	Frequency(MHz):	2402
Polarity:	Horizontal	Test Voltage:	DC 3.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	216.2400	36.50	-16.64	19.86	46.00	-26.14	QP
2	263.7700	43.92	-17.39	26.53	46.00	-19.47	QP
3	332.6400	43.01	-13.30	29.71	46.00	-16.29	QP
4	353.0100	36.85	-12.48	24.37	46.00	-21.63	QP
5	829.2800	32.57	-6.12	26.45	46.00	-19.55	QP
6	997.0900	30.74	-3.70	27.04	54.00	-26.96	QP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	36.7900	34.42	-18.83	15.59	40.00	-24.41	QP
2	166.7700	32.78	-16.55	16.23	43.50	-27.27	QP
3	332.6400	39.15	-13.30	25.85	46.00	-20.15	QP
4	351.0700	39.12	-12.49	26.63	46.00	-19.37	QP
5	370.4700	40.05	-12.50	27.55	46.00	-18.45	QP
6	996.1200	39.34	-3.72	35.62	54.00	-18.38	QP

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC part 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

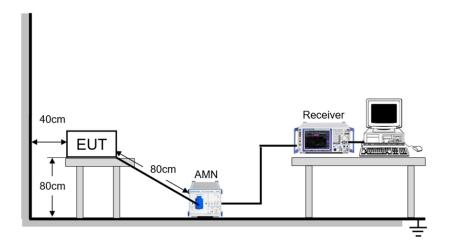
Pass

10. AC POWER LINE CONDUCTED EMISSION

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

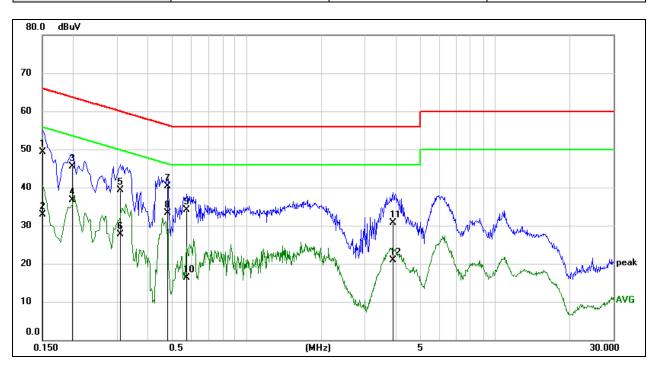
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.9 ℃	Relative Humidity	58.3%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 Hz



TEST DATE / ENGINEER

Test Date	February 6, 2024	Test By	Wite Chen
	· · · · · · · · · · · · · · · · · · ·		

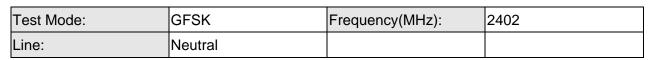
TEST RESULTS

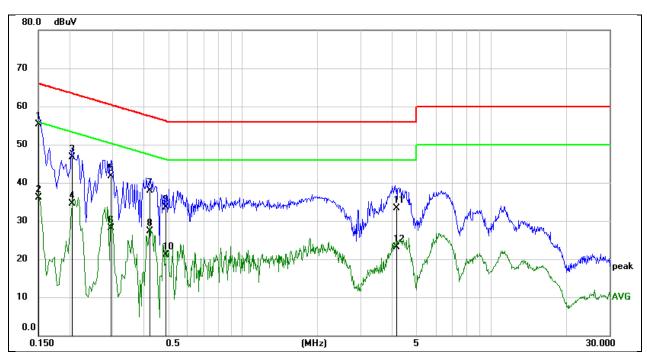
Test Mode:	GFSK	Frequency(MHz):	2402
Line:	Line		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1503	39.86	9.49	49.35	65.98	-16.63	QP
2	0.1503	23.39	9.49	32.88	55.98	-23.10	AVG
3	0.1982	35.88	9.59	45.47	63.69	-18.22	QP
4	0.1982	27.15	9.59	36.74	53.69	-16.95	AVG
5	0.3078	29.69	9.55	39.24	60.03	-20.79	QP
6	0.3078	18.16	9.55	27.71	50.03	-22.32	AVG
7	0.4779	30.85	9.51	40.36	56.38	-16.02	QP
8	0.4779	23.87	9.51	33.38	46.38	-13.00	AVG
9	0.5766	24.52	9.50	34.02	56.00	-21.98	QP
10	0.5766	6.73	9.50	16.23	46.00	-29.77	AVG
11	3.8859	21.20	9.60	30.80	56.00	-25.20	QP
12	3.8859	11.21	9.60	20.81	46.00	-25.19	AVG

Note:

1. Result = Reading + Correct Factor.


2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.


3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

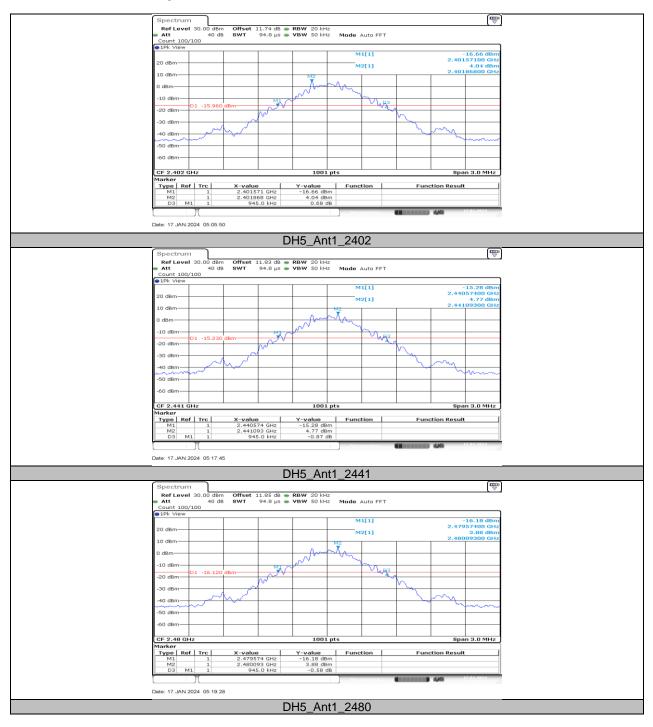
Note: All the modes have been tested, only the worst data was recorded in the report.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1508	45.76	9.49	55.25	65.96	-10.71	QP
2	0.1508	26.61	9.49	36.10	55.96	-19.86	AVG
3	0.2048	37.10	9.59	46.69	63.41	-16.72	QP
4	0.2048	24.98	9.59	34.57	53.41	-18.84	AVG
5	0.2938	32.07	9.56	41.63	60.42	-18.79	QP
6	0.2938	18.58	9.56	28.14	50.42	-22.28	AVG
7	0.4197	28.36	9.53	37.89	57.45	-19.56	QP
8	0.4197	17.80	9.53	27.33	47.45	-20.12	AVG
9	0.4896	23.93	9.50	33.43	56.17	-22.74	QP
10	0.4896	11.70	9.50	21.20	46.17	-24.97	AVG
11	4.1469	23.65	9.60	33.25	56.00	-22.75	QP
12	4.1469	13.41	9.60	23.01	46.00	-22.99	AVG

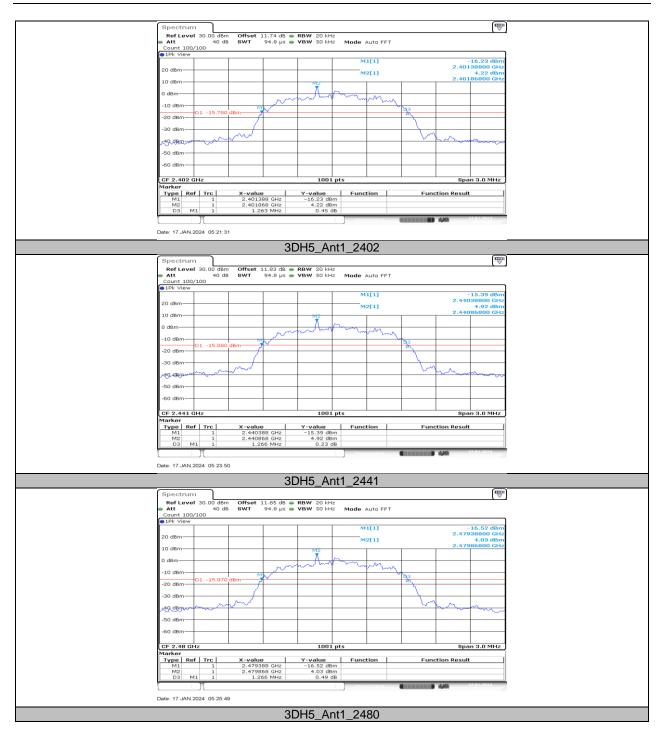
Note:

- 1. Result = Reading + Correct Factor.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

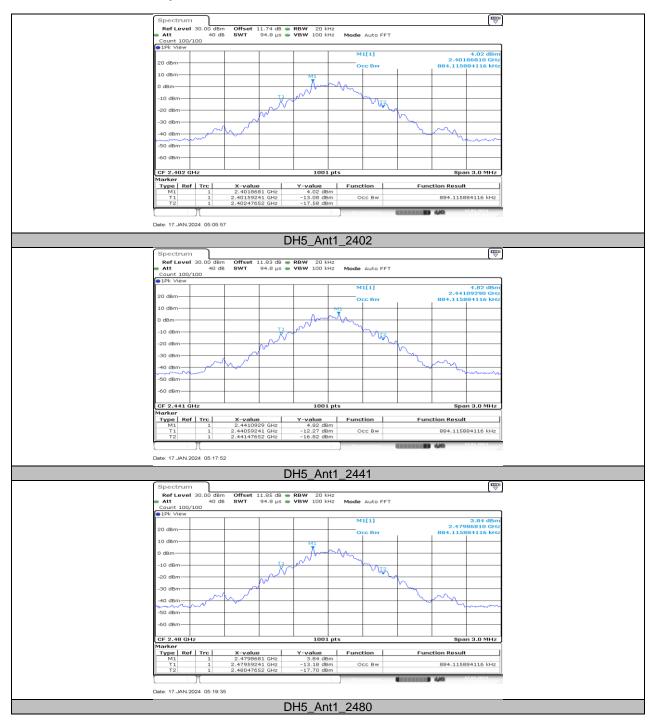
Note: All the modes have been tested, only the worst data was recorded in the report.


11. TEST DATA

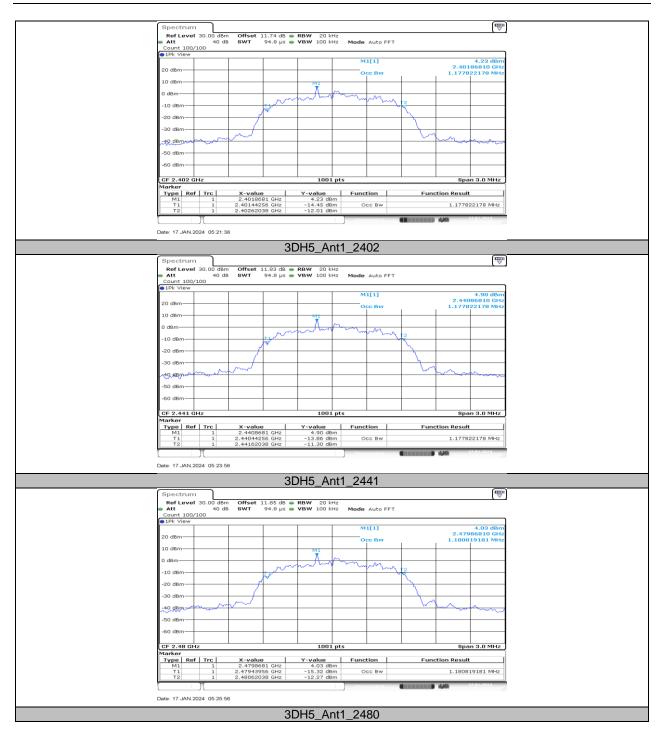
11.1. APPENDIX A: 20DB EMISSION BANDWIDTH 11.1.1. Test Result


Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Verdict
DH5	Ant1	2402	0.95	2401.57	2402.52	PASS
		2441	0.94	2440.57	2441.52	PASS
		2480	0.94	2479.57	2480.52	PASS
3DH5	Ant1	2402	1.26	2401.39	2402.65	PASS
		2441	1.27	2440.39	2441.65	PASS
		2480	1.27	2479.39	2480.65	PASS

11.1.2. Test Graphs



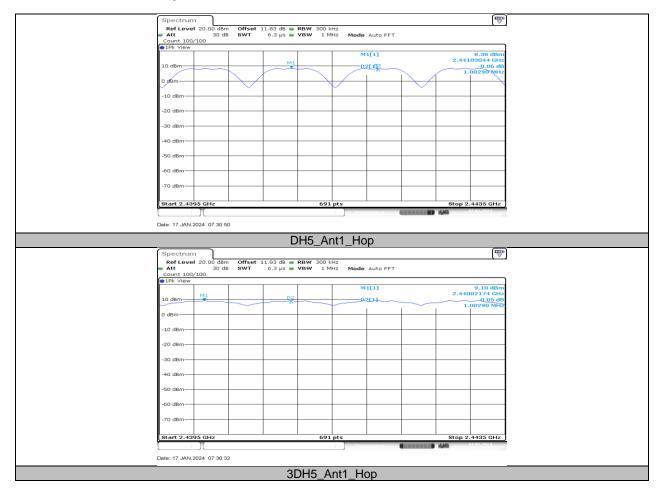
11.2. APPENDIX B: OCCUPIED CHANNEL BANDWIDTH 11.2.1. Test Result


Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
DH5	Ant1	2402	0.884	2401.5924	2402.4765	PASS
		2441	0.884	2440.5924	2441.4765	PASS
		2480	0.884	2479.5924	2480.4765	PASS
3DH5	Ant1	2402	1.178	2401.4426	2402.6204	PASS
		2441	1.178	2440.4426	2441.6204	PASS
		2480	1.181	2479.4396	2480.6204	PASS

11.2.2. Test Graphs

11.3. APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER 11.3.1. Test Result

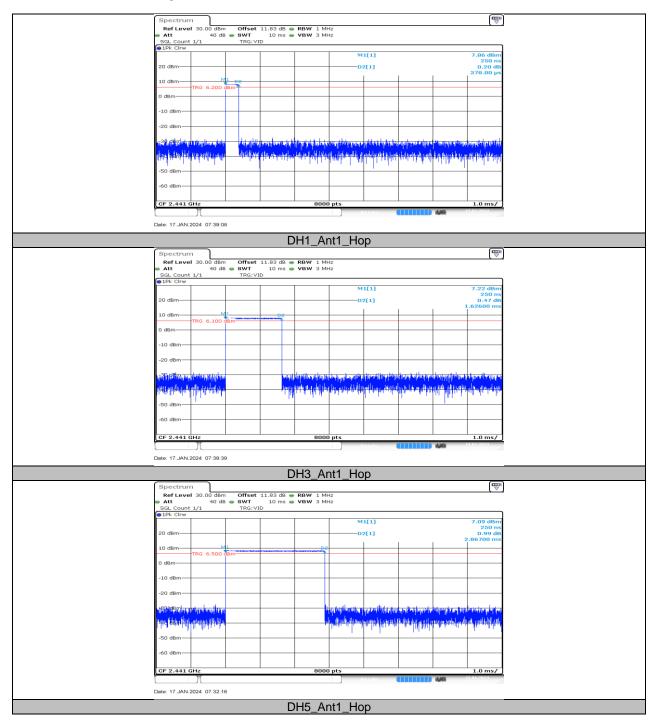
Test Mode	Antenna	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
	DH5 Ant1	2402	7.81	≤30.00	PASS
DH5		2441	8.56	≤30.00	PASS
		2480	7.67	≤30.00	PASS
	3DH5 Ant1	2402	10.13	≤20.97	PASS
3DH5		2441	10.75	≤20.97	PASS
		2480	9.84	≤20.97	PASS



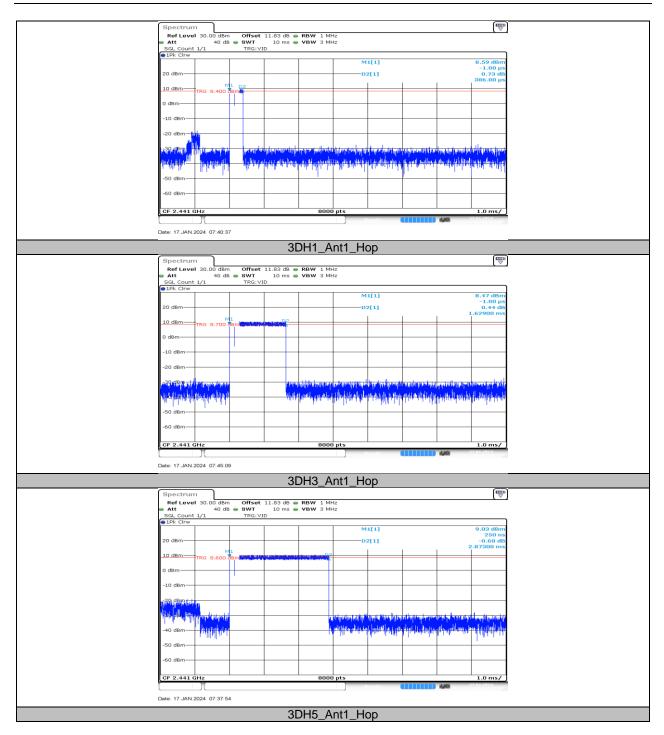
11.4. APPENDIX D: CARRIER FREQUENCY SEPARATION 11.4.1. Test Result

Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.003	≥0.950	PASS
3DH5	Ant1	Нор	1.003	≥0.847	PASS

11.4.2. Test Graphs


11.5. APPENDIX E: TIME OF OCCUPANCY 11.5.1. Test Result

	FHSS Mode								
Test Mode	Antenna	Channel	BurstWidth	Result[s]	Limitel	Verdict			
Test Mode	Antenna	Channel	[ms]	Results	Limit[s]	verdict			
DH1	Ant1	Нор	0.378	0.121	≤0.4	PASS			
DH3	Ant1	Нор	1.626	0.260	≤0.4	PASS			
DH5	Ant1	Нор	2.867	0.306	≤0.4	PASS			
3DH1	Ant1	Нор	0.386	0.124	≤0.4	PASS			
3DH3	Ant1	Нор	1.629	0.261	≤0.4	PASS			
3DH5	Ant1	Нор	2.873	0.306	≤0.4	PASS			


AFHSS Mode								
Test Mode Antenna	Antenna	Antenna Channel	BurstWidth	Result[s]	Limit[s]	Verdict		
			[ms]					
DH1	Ant1	Нор	0.378	0.060	≤0.4	PASS		
DH3	Ant1	Нор	1.626	0.130	≤0.4	PASS		
DH5	Ant1	Нор	2.867	0.153	≤0.4	PASS		
3DH1	Ant1	Нор	0.386	0.062	≤0.4	PASS		
3DH3	Ant1	Нор	1.629	0.130	≤0.4	PASS		
3DH5	Ant1	Нор	2.873	0.153	≤0.4	PASS		

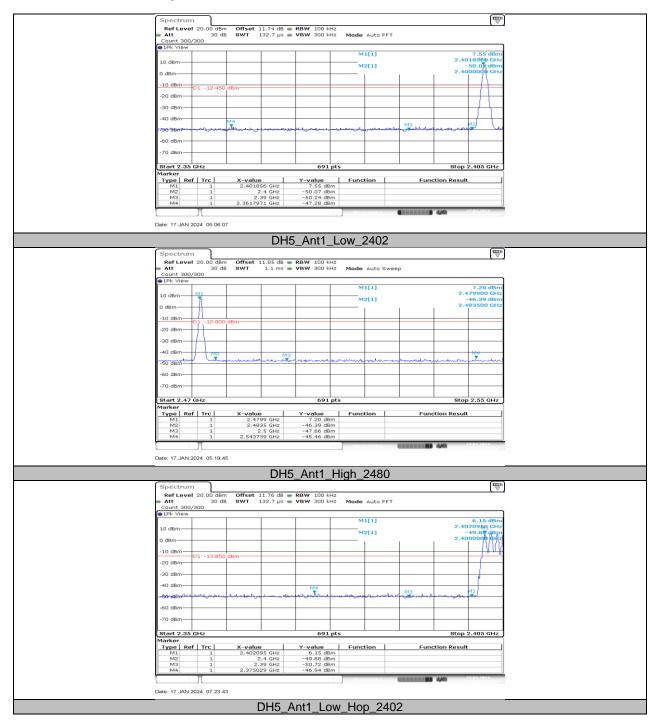
11.5.2. Test Graphs

11.6. APPENDIX F: NUMBER OF HOPPING CHANNELS 11.6.1. Test Result

Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
3DH5	Ant1	Нор	79	≥15	PASS

11.6.2. Test Graphs

Spectrum							
Ref Level 30.00 dBm Offset 11.74 dB 🖷 RBW 100 kHz							
 Att 40 dB Count 1000/1000 	SWT 1 ms 👄 VBW 300 kHz	Mode Auto Sweep					
●1Pk View							
20 dBm							
10 dBm							
A000000000000000000000000000000000000	100806666666666666666666666666666666666	\DRÓBÅDIOAAADAAAAAAAAAAAAAAAA	000000000000000000000000000000000000000				
o dam	<u> </u>	YARABARDARDIYA KURU	UANKAMAN				
-20 dBm	Lottes as all All to sugarde	ogasti fils and and shade	Ison I Roll Annal				
-20 dBm							
-30 dBm							
			L 14				
-40 dBm							
-50 dBm							
-60 dBm							
Start 2.4 GHz	691 pts		Stop 2.4835 GHz				
	051 pt						
Date: 17.JAN.2024 07:27:35							
 Date: 17.0414.2024 07.27.00							
	DH5_Ant	I_Hop					
Spectrum	—						
Ref Level 30.00 dBm	Offset 11.74 dB 👄 RBW 100 kHz	·					
Ref Level 30.00 dBm Att 40 dB Count 1000/1000	Offset 11.74 dB 👄 RBW 100 kHz	Mode Auto Sweep	(₩)				
RefLevel 30.00 dBm Att 40 dB	Offset 11.74 dB 👄 RBW 100 kHz	·					
Ref Level 30.00 dBm Att 40 dB Count 1000/1000 1Pk View	Offset 11.74 dB 👄 RBW 100 kHz	·	(¹⁰⁰)				
Ref Level 30.00 dBm Att 40 dB Count 1000/1000	Offset 11.74 dB 👄 RBW 100 kHz	·					
Ref Level 30.00 dBm Att 40 dB Count 1000/1000 1Pk View 20 dBm 10 dDs	Offset 11.74 dB RBW 100 kHz SWT 1 ms VBW 300 kHz	Mode Auto Sweep					
Ref Level 30.00 dBm Att 40 dB Count 1000/1000 1Pk View 20 dBm 10 dBm	Offset 11.74 dB 👄 RBW 100 kHz	Mode Auto Sweep					
Ref Level 30.00 dBm Att 40 dB Count 1000/1000 1Pk View 20 dBm 10 dDs	Offset 11.74 dB RBW 100 kHz SWT 1 ms VBW 300 kHz	Mode Auto Sweep					
Ref Level 30.00 dBm Att 40 dB Count 1000/1000 1Pk View 20 dBm 10 dBm	Offset 11.74 dB RBW 100 kHz SWT 1 ms VBW 300 kHz	Mode Auto Sweep					
Ref Lavel 30.00 dBm Att Count 1000/1000 PIR View 20 dBm 10 dBm 0 dBm -10 dBm	Offset 11.74 dB RBW 100 kHz SWT 1 ms VBW 300 kHz	Mode Auto Sweep					
Ref Lavel 30.00 dBm Att Count 1000/1000 IPk View 20 dBm 10, dBm -10 dBm -20 dBm	Offset 11.74 dB RBW 100 kHz SWT 1 ms VBW 300 kHz	Mode Auto Sweep					
Ref Lavel 30.00 dBm Att Count 1000/1000 PIR View 20 dBm 10 dBm 0 dBm -10 dBm	Offset 11.74 dB RBW 100 kHz SWT 1 ms VBW 300 kHz	Mode Auto Sweep					
Ref Lavel 30.00 dBm Att Count 1000/1000 IPk View 20 dBm 10, dBm -10 dBm -20 dBm	Offset 11.74 dB RBW 100 kHz SWT 1 ms VBW 300 kHz	Mode Auto Sweep					
Ref Lovel 30.00 dBm Att 40 dB Count 1000/1000 ● 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -40 dBm	Offset 11.74 dB RBW 100 kHz SWT 1 ms VBW 300 kHz	Mode Auto Sweep					
Ref Lovel 30.00 dBm Att 40 dB Count 1000/1000 10 k View 20 dBm 10 dBm 10 dBm - -10 dBm - -20 dBm - 30 dBm -	Offset 11.74 dB RBW 100 kHz SWT 1 ms VBW 300 kHz	Mode Auto Sweep					
Ref Lovel 30.00 dBm Att 40 dB Count 1000/1000 ● 1Pk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -40 dBm	Offset 11.74 dB RBW 100 kHz SWT 1 ms VBW 300 kHz	Mode Auto Sweep					
Rof Lovel 30.00 dBm Att 40 dB Count 1000/1000 ●1Pk View 20 dBm 10 dBm 0 dBm 0 dBm 20 dBm 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	Offset 11.74 dB = RBW 100 kHz SWT 1 ms = VBW 300 kHz						
Rof Lovel 30.00 dBm Att 40 dB Count 1000/1000 IPk View 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Offset 11.74 dB RBW 100 kHz SWT 1 ms VBW 300 kHz	Mode Auto Sweep	Stop 2.4835 GHz				
Ref Lovel 30.00 dBm Att 40 dB Count 1000/1000 ● 1Pk View 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm	Offset 11.74 dB = RBW 100 kHz SWT 1 ms = VBW 300 kHz		Stop 2.4835 GHz				
Rof Lovel 30.00 dBm Att 40 dB Count 1000/1000 ●1Pk View 20 dBm 10 dBm 0 dBm 0 dBm 20 dBm 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	Offset 11.74 dB = RBW 100 kHz SWT 1 ms = VBW 300 kHz	Mode Auto Sweep	Stop 2.4835 GHz				
Ref Lovel 30.00 dBm Att 40 dB Count 1000/1000 ● 1Pk View 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm	Offset 11.74 dB = RBW 100 kHz SWT 1 ms = VBW 300 kHz		Stop 2.4835 GHz				

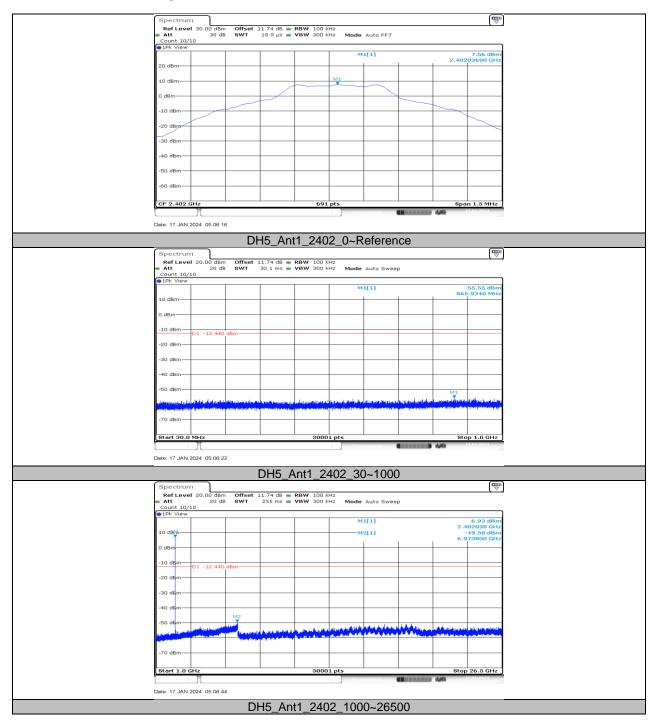


11.7. APPENDIX G: BAND EDGE MEASUREMENTS 11.7.1. Test Result

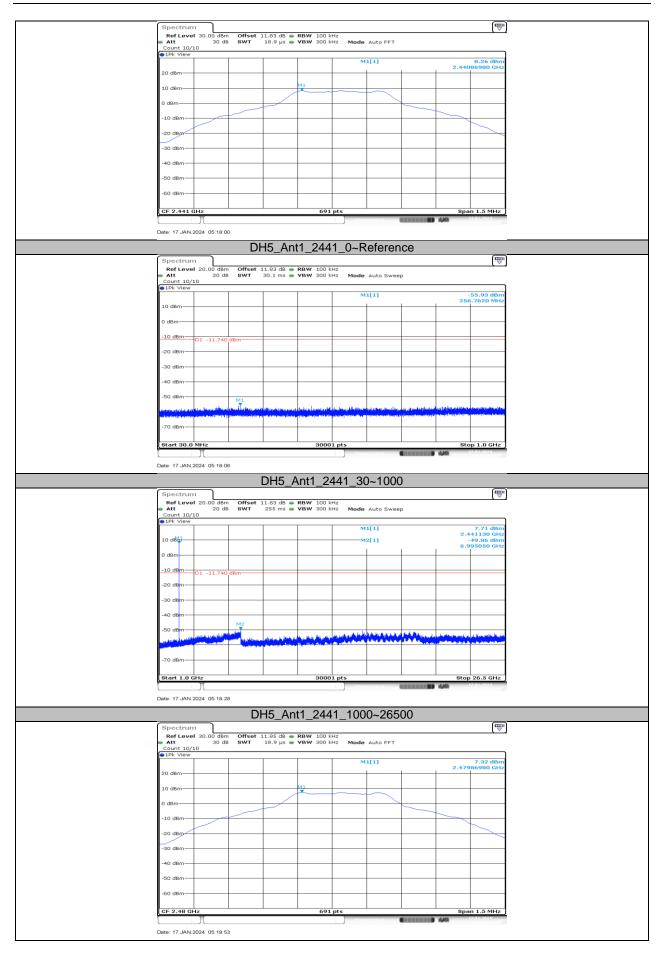
Test Mode	Antenna	ChName	Frequency[MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Low	2402	7.55	-47.28	≤-12.45	PASS
DH5	Ant1	High	2480	7.20	-45.46	≤-12.8	PASS
DIIS	Anti	Low	Hop_2402	6.15	-46.94	≤-13.85	PASS
		High	Hop_2480	7.23	-45.84	≤-12.77	PASS
		Low	2402	7.77	-46.92	≤-12.23	PASS
3DH5		High	2480	7.50	-45.5	≤-12.5	PASS
3DH5 Ant1	Anti	Low	Hop_2402	8.10	-46.83	≤-11.9	PASS
		High	Hop_2480	8.14	-45.36	≤-11.86	PASS

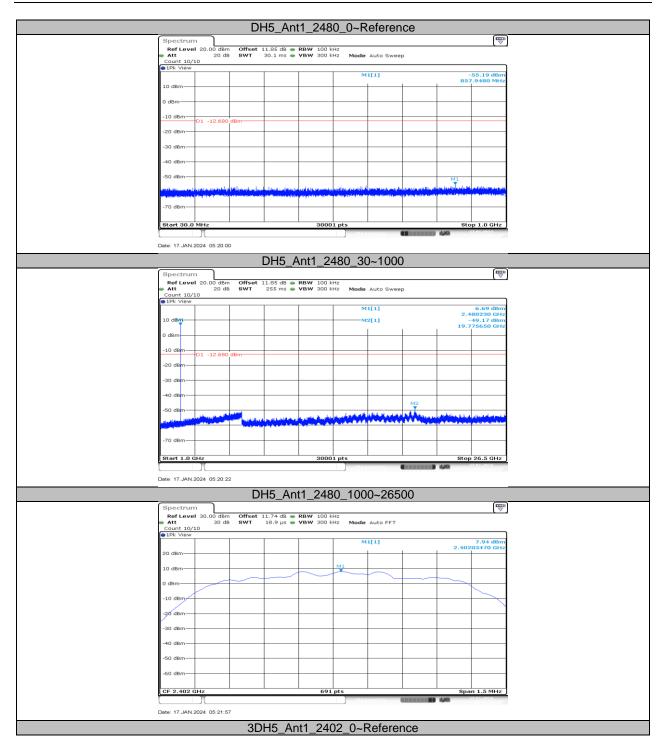
11.7.2. Test Graphs

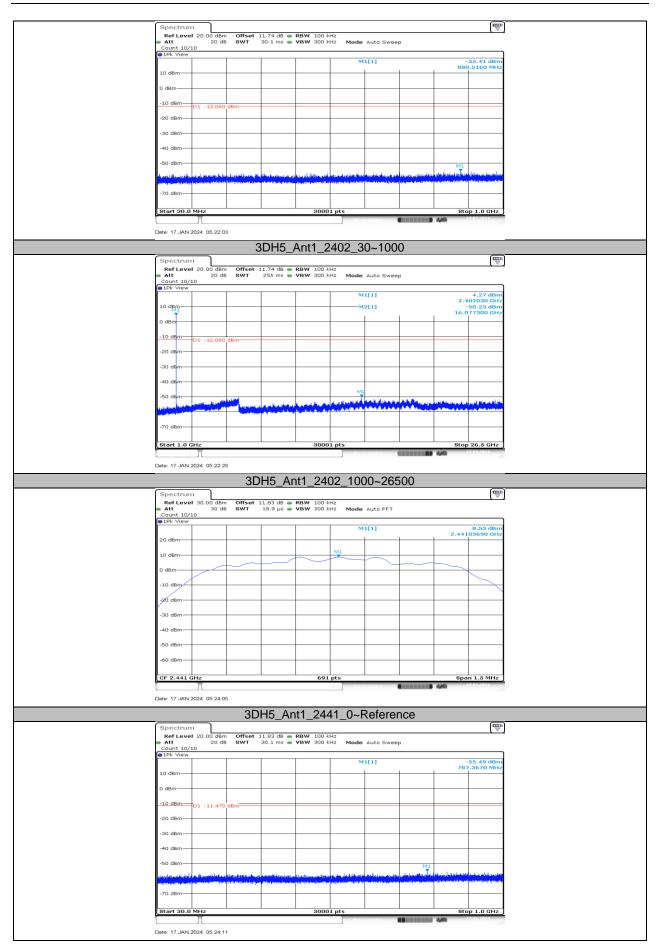
		3DH5_Ant1_	Low_Hop_2	402	
Spectrun				E	
		t 11.84 dB 👄 RBW 10	0 kHz	, v	
 Att 	30 dB SWT	1.1 ms - VBW 30		weep	
Count 300,	/300				_
1Pk View]
			M1[1]	8.14 dBm	
10 dBm			M2[1]	2.470170 GHz -47.76 dBm	
o dem	₩hŋ			2.483500 GHz	
-10 dBm	D1 -11.860 dBm				
-20 dBm					
-20 0011					
-30 dBm					
-40 dBm					
-+0 dBm	M2	M3	T T	un manuel and the second second	
-50 dBm	Cont man concercito	and her man and the second sec	un and the second s		
-60 dBm					
-00 0011					
-70 dBm					-
Start 2.47	GHz	6	91 pts	Stop 2.55 GHz	j
Marker]
Type Re	f Trc X-va	lue Y-value 7017 GHz 8,14		Function Result	
M1 M2		4835 GHz -47.76			
M3	1	2.5 GHz -47.09	dBm		
M4	1 2.51	.2551 GHz -45.36	dBm		
	Transie and the second		Ne a suring	444 17.010.000	
					02
Date: 17.JAN.	2024 07:38:15				
		3DH5_Ant1_	High Hop 2	480	
		<u></u>		100	

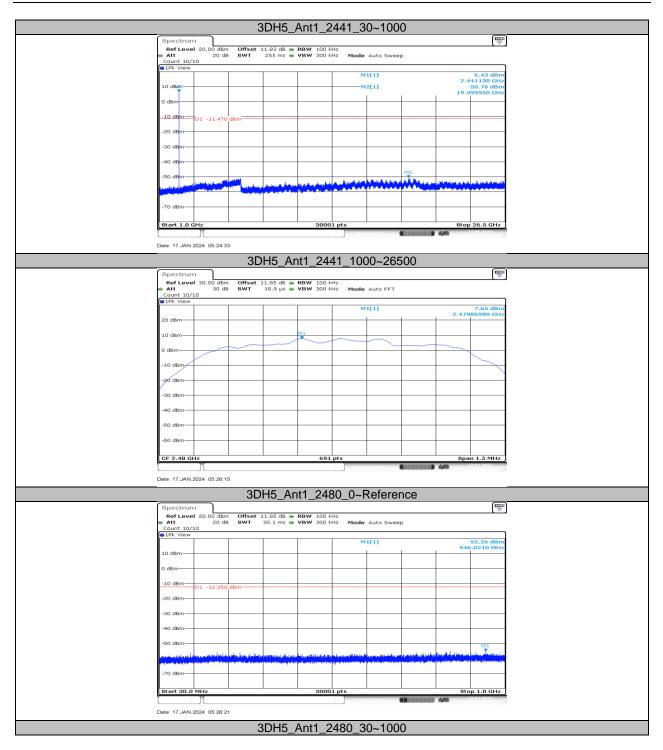


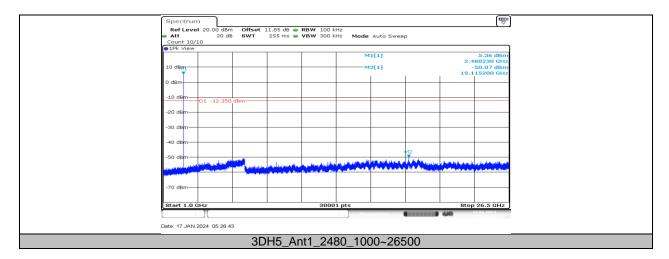
11.8. APPENDIX H: CONDUCTED SPURIOUS EMISSION 11.8.1. Test Result


Test Mode	Antenna	Frequency[MHz]	FreqRange [MHz]	Result [dBm]	Limit [dBm]	Verdict
			Reference	7.56		PASS
		2402	30~1000	-55.55	≤-12.44	PASS
			1000~26500	-49.58	≤-12.44	PASS
			Reference	8.26		PASS
DH5	Ant1	2441	30~1000	-55.93	≤-11.74	PASS
			1000~26500	-49.86	≤-11.74	PASS
		2480	Reference	7.32		PASS
			30~1000	-55.19	≤-12.68	PASS
			1000~26500	-49.17	≤-12.68	PASS
		2402	Reference	7.94		PASS
			30~1000	-55.41	≤-12.06	PASS
			1000~26500	-50.23	≤-12.06	PASS
			Reference	8.53		PASS
3DH5	Ant1	2441	30~1000	-55.49	≤-11.47	PASS
			1000~26500	-50.76	≤-11.47	PASS
			Reference	7.65		PASS
		2480	30~1000	-55.26	≤-12.35	PASS
			1000~26500	-50.07	≤-12.35	PASS


11.8.2. Test Graphs





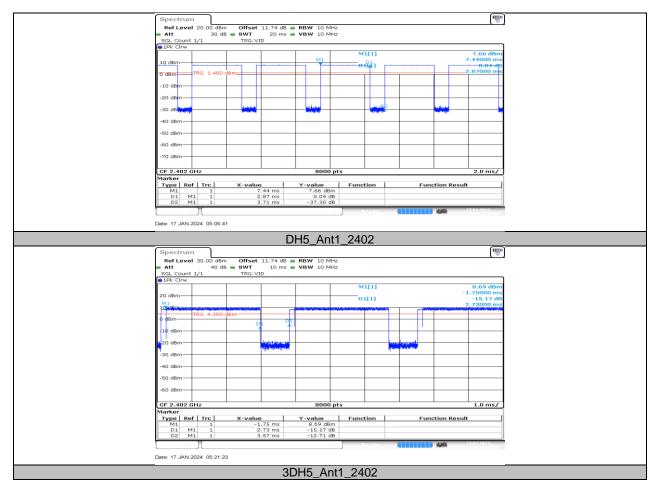


11.9. APPENDIX I: DUTY CYCLE 11.9.1. Test Result

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
DH5	2.87	3.71	0.7736	77.36	1.11	0.35	1
3DH5	2.73	3.57	0.7647	76.47	1.17	0.37	1

Note:

Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

11.9.2. Test Graphs

END OF REPORT