FCC RF EXPOSURE REPORT

FCC ID: 2ABZMAP365

Project No.	: 1502C010B
Equipment	: Wireless Access Point
Model	: AP365
Applicant	: SHENZHEN IP-COM NETWORKS CO.,LTD.
Address	: Room 101, Unit A, First Floor, Tower E3, No. 1001,
	Zhongshanyuan Road, Nanshan District, Shenzhen,
	China. 518052
According:	: FCC Guidelines for Human Exposure IEEE C95.1

BTL INC.

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, China. TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

SIL

MPE CALCULATION METHOD:

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator R = distance to the center of radiation of the antenna

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain(dBi)	Note
1	N/A	N/A Internal Ipex		3.00	2.4G	
2	N/A	N/A	Internal	lpex	3.00	2.4G
3	N/A	N/A	A Internal Ipex		3.00	2.4G
1	N/A	N/A	Internal	lpex	3.00	5G
2	N/A	N/A	Internal	lpex	3.00	5G
3	N/A	N/A	Internal	lpex	3.00	5G

(1) The EUT incorporates a MIMO function. Physically, the EUT provides three completed transmitters and receivers (3T3R). All transmit signals are completely uncorrelated, then, Direction gain = G_{ANT} , that is Directional gain=3 (2) .ANT 1 is the worst case for 1TX

TEST RESULTS

2.4G Only MPE

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm2)	Limit of Power Density (S) (mW/cm2)	Test Result
3	1.9953	29.73	939.7233	0.37320751	1	Complies

5G Only MPE

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm2)	Limit of Power Density (S) (mW/cm2)	Test Result
3	1.9953	28.36	685.4882	0.27223902	1	Complies

So for 2.4G+5G simultaneous transmission MPE:

0.3732/1+0.2722/1=0.6454<1

Note: the calculation distance is 20cm.