RF TEST REPORT

Report No.: RF_SL15013001-MIM-002-Part90_Rev2.0 Supersede Report No.: RF_SL15013001-MIM-002-Part90_Rev1.0

Applicant	Mimosa Networks, Inc.		
Product Name	Point to Point Device		
Model No.	C5 & B5-Lite		
Test Standard	47 CFR Part 90 Subpart Y		
Test Procedure	47 CFR Part 90 Subpart Y 971168D01 Power Meas License Digital	System v02r01	
FCC ID	2ABZJ-100-00010		
Date of test	01/09/2015 to 04/08/2015		
Issue Date	06/12/2015		
Test Result	🖾 Pass 🛛 🗆 Fail		
Equipment complie	ed with the specification	[x]	
Equipment did not	comply with the specification	[]	
N. Malber G. David Zhang			
	Nima Molaei	David Zhang	

Test Engineer

David Zhang Engineer Reviewer

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued By: SIEMIC Laboratories 775 Montague Expressway, Milpitas, 95035 CA

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for comonnity Assessment			
Country/Region	Accreditation Body	Scope	
USA	FCC, A2LA	EMC, RF/Wireless, Telecom	
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom	
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom, Safety	
Hong Kong	OFTA, NIST	RF/Wireless, Telecom	
Australia	NATA, NIST	EMC, RF, Telecom, Safety	
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety	
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom	
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom	
Europe	A2LA, NIST	EMC, RF, Telecom, Safety	
Israel	COM, NIST	EMC, RF, Telecom, Safety	

Accreditations for Conformity Assessment

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	3 of 35

CONTENTS

1 F	REPORT REVISION HISTORY	4
2 E	EXECUTIVE SUMMARY	5
3 (CUSTOMER INFORMATION	5
4 T	TEST SITE INFORMATION	5
5 N	MODIFICATION	5
6 E	EUT INFORMATION	6
6.1	EUT Description	6
6.2	Radio Description	6
6.3	EUT test modes/configuration Description	6
6.4	EUT Photos – External	8
6.5	EUT Photos – Internal	9
6.6	EUT Test Setup Photos	
7 5	SUPPORTING EQUIPMENT/SOFTWARE AND CABLING DESCRIPTION	
7.1	Supporting Equipment	
7.2	Cabling Description	11
7.3	Test Software Description	11
8 T	TEST SUMMARY	
9 N	MEASUREMENT UNCERTAINTY	
10	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	14
10.1	1 Occupied Bandwidth & Emissions Mask	14
10.2	2 Peak Output Power	
10.3	3 Power Spectral Density	
10.4	4 Peak Excursion	24
10.5	5 Radiated Spurious Emissions Below 1GHz	
10.6	6 Radiated Spurious Emissions Above 1GHz	
10.7	7 Frequency Stability	
ANNE	X A. TEST INSTRUMENT	
ANNE	X B. SIEMIC ACCREDITATION	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	4 of 35

Report Revision History 1

Report No.	Report Version	Description	Issue Date
RF_SL15013001-MIM-002-Part90	-	Original	03/24/2015
RF_SL15013001-MIM-002-Part90_Rev1.0	1.0	Correct power measurements	04/08/2015
RF_SL15013001-MIM-002-Part90_Rev2.0	2.0	Correct Power data	06/12/2015

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0	
Page	5 of 35	

2 Executive Summary

The purpose of this test program was to demonstrate compliance of following product

<u>Company:</u>	Mimosa Networks, Inc.
Product:	Point to Point Device
Model:	C5 & B5-Lite

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

3 Customer information

Applicant Name	Mimosa Networks, Inc.	
Applicant Address	300 Orchard City Dr. Suite 100, Campbell, CA 95008, USA	
Manufacturer Name Mimosa Networks, Inc.		
Manufacturer Address	300 Orchard City Dr. Suite 100, Campbell, CA 95008, USA	

4 Test site information

Lab performing tests	SIEMIC Laboratories
Lab Address	775 Montague Expressway, Milpitas, CA 95035
FCC Test Site No.	881796
IC Test Site No.	4842D-2
VCCI Test Site No.	A0133

5 Modification

Index	Item	Description	Note
-	-	-	-

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	6 of 35

EUT Information 6

EUT Description <u>6.1</u>

Product Name	•••	Point to Point Device
Model No.	:	C5 & B5-Lite
Trade Name	•••	Mimosa
Serial No.	•••	N/A
Input Power	•••	48VDC
Power Adapter Manu/Model	•••	PHIHONG /POE16R-560
Power Adapter SN	•••	N/A
Product Hardware version	•••	Rev. C
Product Software version	•••	1.1.1
Radio Hardware version	•••	Rev. C
Radio Software version	•••	1.1.1
Test Software version	•••	1.1.1
Date of EUT received	:	01/05/2015
Equipment Class/ Category	•••	UNI
Clock Frequencies	•••	N/A
Port/Connectors	•••	PoE, Ethernet
Remark	•	The C5 is a client only device and the B5-Lite is a master device for a point to point short distance back haul that is powered with a 48v PoE injector. The C5 & B5-Lite are physically identical. The results which was presented in this report is related to B5-Lite model.

Radio Description 6.2

Spec for Radio -	
Radio Type	Description
Operating Frequency	4950MHz – 4980MHz
Modulation	OFDM, 16-QAM, 64-QAM
Channel Spacing	5MHz
Number of Channels	3
Antenna Gain	20dBi
Antenna Type	Integrated Folded Dipole
Antenna Connector Type	N/A

EUT test modes/configuration Description 6.3

	Test Mode	Note
Test_mode_1	Continuous Transmit	-
Test_mode_2	-	-
Remark:		

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 E in

Q+

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	7 of 35

EUT Power Level Settings

Channel	Frequency	Bandwidth	Power Setting
190	4950	20	23
193	4965	20	23
196	4980	20	23

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	8 of 35

6.4 EUT Photos – External

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	9 of 35

6.5 EUT Photos – Internal

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com; Follow us at:

f 🕒 in 🎦

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	10 of 35

6.6 EUT Test Setup Photos

Note: The spurious emission in different EUT orientation was investigated, including the EUT standing up position and the laying down position. The EUT orientation shown in above setup photo is the worst case position.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

7 Supporting Equipment/Software and cabling Description

7.1 Supporting Equipment

ltem	Supporting Equipment Description	Model	Serial Number	Manufacturer	Note
1	Laptop	T530	-	Lenovo	-
2	PoE Adapter	POE16R-560	-	PHIHONG	-

7.2 Cabling Description

Nome Connection Start		on Start	Connection Stop		Length / shielding Info		Noto
Name	From	I/O Port	То	I/O Port	Length (m)	Shielding	Note
RJ45	EUT	RJ45	POE	RJ45	2	Unshielded	-
RJ45	POE	RJ45	Laptop	RJ45	3	Unshielded	-

7.3 Test Software Description

Test Item	Software	Description
RF Testing	Putty	Set the EUT to transmit continuously in different test modes and channels

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

in

)+

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0				
Page	12 of 35				

Test Summary 8

Test Item		Test standard		Test Method/Procedure	Pass / Fail	
Occupied Bandwidth & Emissions Mask		FCC	§90 Subpart Y	FCC §2.1049 FCC §90.210	⊠ Pass □ N/A	
Peak O	output Power	FCC	§90 Subpart Y	FCC §2.1046 FCC §90.1215(a)	⊠ Pass □ N/A	
Power Spectral Density		FCC	§90 Subpart Y	FCC §2.1046 FCC §90.1215(a)	⊠ Pass □ N/A	
Peak Excursion		FCC	§90 Subpart Y	FCC §90.1215	⊠ Pass □ N/A	
Conducted Spurious Emissions at the Antenna Terminals		FCC	§90 Subpart Y	FCC §2.1051 FCC §90.210	⊠ Pass □ N/A	
Radiated Spurious Emissions		FCC	§90 Subpart Y	FCC §2.1053 FCC §90.210	⊠ Pass □ N/A	
Frequency Stability		FCC	§90 Subpart Y	FCC §2.1055 FCC §90.213	⊠ Pass □ N/A	
 All measurement uncertainties do not take into consideration for all presented test results. Remark The applicant shall ensure frequency stability by showing that an emission is maintained within the band of operation under all normal operating conditions as specified in the user's manual. 						

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0				
Page	13 of 35				

Measurement Uncertainty 9

Emissions					
Test Item	Frequency Range	Description	Uncertainty		
Radiated Spurious Emissions	30MHz – 1GHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/- 4.5dB		
Radiated Spurious Emissions	1GHz – 40GHz	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+4.3dB/- 4.1dB		

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

10 Measurements, Examination and Derived Results

10.1 Occupied Bandwidth & Emissions Mask

Requirement(s):

Spec	Requirement						
	For low power transmitt dBm operating in the 49- emissions must be atten	n 20 e					
	En anno Official (Minim	Minimum Attenuation				
	Frequency Offset fd	Low Power Transmitter	High Power Transmitter	er			
FCC §2.1049	$0 < f_d \le 45$	0	0	5.4			
FCC §90.210	$45 < f_d \le 50$	219 log(fd/45)	568 log(fd/45)				
-	50 < f _d ≤ 55	10 + 242 log(f _d /50)	26 + 145 log(fd/50)				
	55 < f _d ≤ 100	20 + 31 log(fd/55)	32 + 31 log(fd/55)				
	100 < f _d ≤ 150	28 + 68 log(f _d /100)	40 + 57 log(f _d /100)				
	fd > 150	40	50 dB or 55 + 10 log (P) dB,				
		on.					
	f_d is the percentage of the equipment's channel bandwidth.						
Test Setup EUT							
Test Procedure	Test Procedure Test P						
Test Date	Test Date 02/18/2015 Environmental condition Temperature Relative Humidity Atmospheric Pressure						
Remark	Total power is higher than 20dBm so the device was considered as a high power device.						
Result	🖾 Pass 🛛 🗆 Fa	il					

Test Data	⊠ Yes	□ N/A
Test Plot	⊠ Yes	□ N/A

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

in

Q+

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	15 of 35

High Power Setting – 20dBi Antenna Gain Measurement Results

Frequency (MHz)	Channel	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	
4950	Low	27.17	19.603	
4965	Middle	27.43	19.515	
4980	High	27.10	19.646	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

in

)+

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	16 of 35

Occupied Bandwidth Test Plots

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	17 of 35

Emission Mask Test Plots

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

10.2 Peak Output Power

Requirement(s):

Test	report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	•	18 of 35

Spec	Require	ement						Applicable
0,000	Per FCC §90.1215, the transmitting power of stations operating in the 4940-4990 MHz band						Hz band	Applicable
	must no	ot exceed the n	naximum limits i	n this section.				
	The maximum conducted output power should not exceed:							
	(ba	Channel andwidth (MHz)	Low power n out	naximum condu put power (dBm)	cted Hi con	gh power maxiı ducted output ∣ (dBm)	num power	
		1		7		20		
FCC §2.1046		5		14		27		_
FCC §90.1215(a)		10		10.0		30		\bowtie
0 (7		20		20		33		
	If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum conducted output power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to-multipoint operations (both fixed and temporary-fixed rapid deployment) may employ transmitting antennas with directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or spectral density. Corresponding reduction in the maximum conducted output power and peak power spectral density should be the amount in decibels that the directional gain of the antenna exceeds 26 dBi							
Test Setup	Test Setup EUT							
971168D01 Power Meas License Digital System v02r01. Method 5.2.2.3 Maximum spectral density measurement procedure - Set span to at least 1.5 times the OBW - Set RBW = 1-5 % of the OBW, not to exceed 1MHz - Set VBW ≥ 3 MHz - Detector = RMS - Sweep time = auto couple.								
Test Date	04/08/2015 Environmental condition Temperature 23°C Relative Humidity 38% Atmospheric Pressure 1020mb					bar		
Remark Total power is higher than 20dBm so the device was considered as a high power device.								
Result 🛛 Pass 🗆 Fail								
Test Data 🛛 Yes] N/A					
Test Plot 🛛 Yes	(See belo	ow) 🗆] N/A					
Equipment Setting								
Test		RBW	VBW	Snan	Detector	Sween	Trace	Notes

TestRBWVBWSpanDetectorSweepTraceNotesAverage Output Power1MHz≥3MHz1.5 X OBWRMSAutoMax Hold-

σ+

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	19 of 35

Average Output Power measurement results (20dBi Antenna Gain)

	Frequency	Conducted Power (dBm)			Output Power		
Channel	(MHz)	Chain 1	Chain 2	Combined Power or Highest Power	Limit (dBm)	Result	
Low	4950	19.67	18.77	22.25	33	Pass	
Mid	4965	20.03	19.15	22.62	33	Pass	
High	4980	20.55	19.05	22.87	33	Pass	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	20 of 35

Ave Output Power Test Plots

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

10.3 Power Spectral Density

Requirement(s):

Spec Requirement A					
FCC §2.1046 FCC §90.1215	High power devices are also limited to a peak power spectral density of 21 dBm per one MHz. If transmitting antennas of directional gain greater than 9 dBi are used, the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. Low power devices are also limited to a peak power spectral density of 8 dBm per one MHz. Low power devices using channel bandwidths other than those listed above are permitted; however, they are limited to a peak power spectral density of 8 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to-multipoint operations (both fixed and temporary-fixed rapid deployment) may employ transmitting antennas with directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or spectral density. Corresponding reduction in the maximum conducted output power and peak power spectral density should be the amount in decibels that the directional gain of the antenna exceeds 26 dBi				
Test Setup	Spectrum Analyzer EUT				
Test Procedure	 971168D01 Power Meas License Digital System v02r01. Method 5.4.2.3 <u>Maximum spectral density measurement procedure</u> Set span to minimum of 1.5 times the OBW Set RBW = 1 MHz Set VBW ≥ 3 MHz Detector = RMS Sweep time = auto couple. Trace mode = max hold. Use the peak marker function to determine the maximum amplitude level within the RB 	W.			
Test Date	04/08/2015Environmental conditionTemperature23°CRelative Humidity38%Atmospheric Pressure1020mbar				
Remark	Remark Total power is higher than 20dBm so the device was considered as a high power device.				
Result 🛛 Pass 🗆 Fail					
Test Data ⊠ Yes Test Plot ⊠ Yes	□ N/A (See below) □ N/A				
Equipment Setting					

Equipment Setting

Test	RBW	VBW	Span	Detector	Sweep	Trace	Notes
PSD	1MHz	≥3MHz	1.5 OBW	RMS	Auto	Max Hold	-

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	22 of 35

Power Spectral Density measurement results (20dBi Antenna Gain)

	Frequency	Conducted Power (dBm)			PSD	
Channel	(MHz)	Chain 1	Chain 2	Combined Power or Highest Power	Limit (dBm/MHz)	Result
Low	4950	8.32	8.25	11.30	21.00	Pass
Mid	4965	8.78	8.63	11.72	21.00	Pass
High	4980	9.15	8.93	12.05	21.00	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 E in Q+

П

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	23 of 35

Power Spectral Density Test Plots

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	24 of 35

10.4 Peak Excursion

Requirement(s):

Spec	Requirement			Applicable	
FCC §90.1215	The ratio of the peak exc function) to the maximun MHz bandwidth or the er	hold y 1 ⊠			
Test Setup	Spectrum Ana	lyzer	EUT		
Test Procedure	The EUT was set to transmit continuously; The following setting were set on the spectrum analyzer: <u>Trace 1:</u> - RBW = 1MHz - VBW = 3 x RBW - Span = 40MHz - Detector = Peak - Trace = Maxhold <u>Trace 2:</u> - RBW = 1MHz - VBW = 3 x RBW - Span = 40MHz - Detector = Average (RMS) - Trace = 100 Trace average				
Test Date	02/18/2015	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	21°C 38% 1020mbar	
Remark	-				
Result	🛛 Pass 🛛 🗆 Fa	il			

Test Data 🖂 Yes

□ N/A

Test Plot \boxtimes Yes (See below) \square N/A

Peak Excursion Measurement Results (20dBi Antenna Gain)

Channel	Frequency (MHz)	Peak Excursion (dBm)	Limit (dBm)	Result
Low	4950	8.610	13.00	Pass
Mid	4965	9.170	13.00	Pass
High	4980	8.941	13.00	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

in

-

)+

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	25 of 35

Peak Excursion Test Plots

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

10.5 Radiated Spurious Emissions Below 1GHz

Requirement(s):

Spec		Requirement			Applicable
		For low power transmitte dBm operating in the 49 emissions must be atter	ers (20 dBm or less) and hig 40-4990 MHz frequency ban wated below the output powe	h power transmitters (greater than 20 d, the power spectral density of the er of the transmitter as follows:	
			Minim	um Attenuation	
		Frequency Offset fd	Low Power Transmitter	High Power Transmitter	
ECC 82	1052	0 < f _d ≤ 45	0	0	
FCC §2.	1055	$45 < f_d \le 50$	219 log(f _d /45)	568 log(fd/45)	\boxtimes
100 300	5.210	$50 < f_d \le 55$	10 + 242 log(f _d /50)	26 + 145 log(fd/50)	
		55 < f _d ≤ 100	20 + 31 log(f _d /55)	32 + 31 log(f _d /55)	
		100 < f _d ≤ 150	28 + 68 log(f _d /100)	$40 + 57 \log(f_d/100)$	
		f _d > 150	40	50 dB or 55 + 10 log (P) dB,	
				whichever is the lesser attenuation.	
		fd is the percentage of th	e equipment's channel band	width	
Test Se	etup	EU Suj	T& 10m poport Units 80cm Ground Test Re	Ant. Tower Variable	
Test Proc	edure	Substitution method. 1. The EUT was so 2. The test was ca Maximization of adjusting the an a. Verti b. The b. The c. Fina 3. Remove the trar each frequency as the center of 4. Feed the substi means of a non generator tuneor reading at the s recorded maxim 5. Steps 4 were repertered The EUT was scanned to Steps 4 were repertered	witched on and allowed to warm u rried out at the selected frequenc the emissions, was carried out by tenna height in the following man cal or horizontal polarisation (whi) was chosen. EUT was then rotated to the direc ly, the antenna height was adjust involved). The center of the subs the transmitter. tution antenna at the transmitter radiating cable. With the antenn I to a particular spurious frequen pectrum analyzer. Adjust the lev num reading for this set of conditi cated for the next frequency point up to 1GHz. Both horizontal a	up to its normal operating condition. y points obtained from the EUT characterisatio y rotating the EUT, changing the antenna polar ner: chever gave the higher emission level over a fu- ction that gave the maximum emission. ted to the height that gave the maximum emiss stitution antenna (the antenna should be half-w titution antenna should be approximately at the end with a signal generator connected to the as at both ends horizontally polarized, and wi icy, raise and lower the test antenna to obtain rel of the signal generator output until the prev- tions is obtained. , until all selected frequency points were meas and vertical polarities were investigated.	n. ization, and Ill rotation of the ion. avelength for same location antenna by th the signal a maximum <i>r</i> iously ured. The results
Remark The EUT was scanned up to 1GHz. Both horizontal and version only the worst case. Total power is higher than 20dE device. High Power Device Limit: Power limit = PdBm – [.55+ 10 log (Pw)] → 10log(1000 x F			20dBm so the device was considered as 200 x Pw) - 55 - 10log(Pw) \rightarrow 30-55 = -25	a high power	
Resu	ılt	🖾 Pass 🗆 Fa	ail		
Test Data	⊠ Yes	□ N/.	Ą		
Test Plot	□ Yes (Se	ee below) 🛛 🖂 N/A	N .		
775	5 Montague	e Expressway, Milpitas, C	A 95035, USA • Phone: (+1)	408 526 1188 • Facsimile (+1) 408 526	1088

Radiated Emission Test Results (Below 1GHz)

Test specification	Radiated Spurious Emissions				
	Temp (°C): 22				
Environmental Conditions:	Humidity (%)	41			
	Atmospheric (mbar): 1021				
Mains Power:	120VAC/60Hz		Result	PASS	
Tested by:	Teody				
Test Date:	02/26/2015				
Remarks:	All chains transmitting sin	nultaneously, 20dBi antenna gain			

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
995.84	-63.38	10.78	7.86	-66.30	Average Max	V	222.00	163.00	-25.00	-41.30	Pass
408.02	-52.51	14.12	6.91	-59.72	Average Max	Н	182.00	94.00	-25.00	-34.72	Pass
320.02	-55.33	14.69	6.60	-63.42	Average Max	V	100.00	9.00	-25.00	-38.42	Pass
312.00	-54.72	14.75	6.58	-62.89	Average Max	V	115.00	24.00	-25.00	-37.89	Pass
360.00	-55.45	14.42	6.63	-63.24	Average Max	V	103.00	8.00	-25.00	-38.24	Pass
352.02	-57.03	14.47	6.63	-64.87	Average Max	V	101.00	8.00	-25.00	-39.87	Pass

- Both horizontal and vertical polarizations were verified.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

+

10.6 Radiated Spurious Emissions Above 1GHz

Requirement(s):

Spec	Requirement			Applicable	
	For low power transmitte dBm operating in the 49 emissions must be atten	ers (20 dBm or less) and hig 40-4990 MHz frequency ban uated below the output powe	h power transmitters (greater than 2 d, the power spectral density of the er of the transmitter as follows:	20	
	Minimum Attonuction				
	Frequency Offset fd	Low Power Transmitter	High Power Transmitter		
	0 < fd≤ 45	0	0		
FCC §2.1053	$45 < f_d \le 50$	219 log(fd/45)	568 log(f _d /45)		
FCC 990.210	50 < f _d ≤ 55	10 + 242 log(fd/50)	26 + 145 log(fd/50)		
	55 < f _d ≤ 100	20 + 31 log(f _d /55)	32 + 31 log(f _d /55)		
	100 < f _d ≤ 150	28 + 68 log(f _d /100)	40 + 57 log(f _d /100)		
	f _d > 150	40	50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuatio	<u>n.</u>	
	fais the percentage of th	e equipment's channel band	width		
		e equipment o channel bana	Ant Tower		
Test Setup	E U1 Supj	Turn Table	Ant. Tooler l-4m Variable		
		± †	Plane		
		Ground			
		Test Ke			
	Substitution method:				
	1. The EUT was sw 2. The test was cal Maximization of adjusting the and a. Vertin EUT	vitched on and allowed to warm or ried out at the selected frequence the emissions, was carried out b tenna height in the following man cal or horizontal polarisation (whi was chosen	up to its normal operating condition. y points obtained from the EUT charactery y rotating the EUT, changing the antenni ner: chever gave the higher emission level or	risation. a polarization, and ver a full rotation of the	
Test Procedure	b. The c. Final 3. Remove the trar each frequency	EUT was then rotated to the direct ly, the antenna height was adjust ismitter and replace it with a sub- involved). The center of the sub- the transmitter	ction that gave the maximum emission. ted to the height that gave the maximum stitution antenna (the antenna should be titution antenna should be approximately	emission. half-wavelength for / at the same location	
	4. Feed the substitution means of a non generator tuned reading at the since the substitution of a non generator tuned free the since th	the transmitter. Aution antenna at the transmitter radiating cable. With the antenn to a particular spurious frequer pectrum analyzer. Adjust the leve the meating for this set of conditional the the next frequency point	end with a signal generator connected as at both ends horizontally polarized, icy, raise and lower the test antenna to rel of the signal generator output until th tions is obtained. t, until all selected frequency points were	to the antenna by and with the signal obtain a maximum ne previously e measured.	
			Temperature	21°C	
Test Date	02/18/2015	Environmental con	dition Relative Humidity Atmospheric Pressure	38% 1020mbar	
Remark	The EUT was scanned up the worst case. Total powe High Power Device Limit: Power limit = PdBm – [55-	to 40GHz. Both horizontal and v r is higher than 20dBm so the d 10 log (PW)] → 10log(1000 x	rertical polarities were investigated. The evice was considered as a higher powe PW) - 55 - 10log(PW) → 30-55 = -25d	eresults show only er device. Bm	
Result	🛛 Pass 🛛 🗆 Fa	il			
Test Data⊠ YesTest Plot□ Yes (□ (See below)	N/A N/A			
775 Montagu	e Expressway, Milpitas, C	A 95035, USA • Phone: (+1)	408 526 1188 • Facsimile (+1) 408	3 526 1088	

Radiated Emission Test Results (1GHz-40GHz) – 20dBi Antenna

Chains 1 and 2 transmitting simultaneously at 4950MHz with 20dBi antenna

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
17796.75	-49.41	27.00	10.11	-66.30	Average Max	Н	243.00	283.00	-25.00	-29.11	Pass
4033.00	-35.49	34.14	9.91	-59.72	Average Max	V	154.00	37.00	-25.00	-36.88	Pass
9617.45	-47.86	27.72	12.16	-63.42	Average Max	V	228.00	297.00	-25.00	-32.46	Pass
Remark	Emissions were scanned up to 40GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit. Both horizontal and vertical polarizations were verified.										

Chains 1 and 2 transmitting simultaneously at 4965MHz with 20dBi antenna

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
4065.03	-42.17	34.11	9.98	-66.30	Average Max	V	166.00	111.00	-25.00	-37.31	Pass
9927.76	-42.74	28.66	11.68	-59.72	Average Max	Н	177.00	114.00	-25.00	-32.94	Pass
14592.45	-47.51	26.74	10.83	-63.42	Average Max	Н	226.00	319.00	-25.00	-30.80	Pass
Remark	Emissions were scanned up to 40GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit. Both horizontal and vertical polarizations were verified.										

Chains 1 and 2 transmitting simultaneously at 4980MHz with 20dBi antenna

Frequency MHz	SG Level dBm	Cable Loss dB	Antenna Gain dBd	Substituted Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
9789.95	-50.05	28.25	12.00	-66.30	Average Max	Н	0.00	0.00	-25.00	-32.43	Pass
14695.01	-43.94	26.55	10.77	-59.72	Average Max	V	243.00	191.00	-25.00	-31.58	Pass
3929.86	-38.90	34.21	9.69	-63.42	Average Max	Н	100.00	291.00	-25.00	-37.35	Pass
Remark	Emissions were scanned up to 40GHz; no emissions were detected above the noise floor which was at least 20dB below the specification limit. Both horizontal and vertical polarizations were verified										

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	30 of 35

10.7 Frequency Stability

Requirement(s):

Spec	Requirement	Applicable
FCC §2.1055 FCC §90.213	The test shall be performed at normal and extreme test conditions. From -30°C to +50°C and vary the primary supply voltage from 85% to 115% of the nominal value.	\boxtimes
Test Setup	AC Mains Temperature/Humidity Chamber EUT Laptop Laptop	
Test Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition The EUT output was connected to a spectrum analyser and the frequency stability Measurements were taken after a thermal balance was obtained. Normal and extreme test conditions were measured 	n. was measured.
Test Date	02/18/2015 Environmental condition Relative Humidity Atmospheric Pressure	21ºC 38% 1020mbar
Remark	-	
Result	🛛 Pass 🔹 🗆 Fail	
Test Data ⊠ Yes	□ N/A	

Test Plot □ Yes (See below) ⊠ N/A

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

in

)+

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	31 of 35

Test Results

Temperature Vs Frequency Stability: Low Channel

Temperature (°C)	Center Frequency (MHz)	Measured Frequency (MHz)	Deviation (ppm)
50	4950.00	4949.967	-6.764
40	4950.00	4949.954	-9.369
30	4950.00	4949.972	-5.667
20	4950.00	4949.985	-3.126
10	4950.00	4949.982	-3.667
0	4950.00	4950.008	1.587
-10	4950.00	4950.008	1.653
-20	4950.00	4949.951	-9.812
-30	4950.00	4949.937	-12.757

Voltage Vs Frequency Stability: Low Channel

Voltage (AC)	Center Frequency (MHz)	Measured Frequency (MHz)	Deviation (ppm)
138	4950.00	4950.013	2.582
120	4950.00	4950.001	0.287
102	4950.00	4950.005	1.066

Temperature Vs Frequency Stability: Middle Channel

Temperature (°C)	Center Frequency (MHz)	Measured Frequency (MHz)	Deviation (ppm)
50	4965.00	4964.963	-7.417
40	4965.00	4964.943	-11.414
30	4965.00	4964.986	-2.838
20	4965.00	4964.982	-3.600
10	4965.00	4964.979	-4.260
0	4965.00	4965.005	1.106
-10	4965.00	4965.004	0.863
-20	4965.00	4964.962	-7.651
-30	4965.00	4964.943	-11.520

Voltage Vs Frequency Stability: Middle Channel

Voltage (AC)	Center Frequency (MHz)	Measured Frequency (MHz)	Deviation (ppm)
138	4965.00	4965.011	2.154
120	4965.00	4965.004	0.753
102	4965.00	4965.004	0.831

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

in

t

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	32 of 35

Temperature Vs Frequency Stability: High Channel

Temperature (°C)	Center Frequency (MHz)	Measured Frequency (MHz)	Deviation (ppm)
50	4980.00	4979.964	-7.204
40	4980.00	4979.952	-9.588
30	4980.00	4979.953	-9.447
20	4980.00	4979.972	-5.544
10	4980.00	4979.974	-5.257
0	4980.00	4979.994	-1.136
-10	4980.00	4980.001	0.273
-20	4980.00	4979.949	-10.285
-30	4980.00	4979.926	-14.900

Voltage Vs Frequency Stability: High Channel

Voltage (AC)	Center Frequency (MHz)	Measured Frequency (MHz)	Deviation (ppm)
138	4980.00	4980.022	4.482
120	4980.00	4980.008	1.578
102	4980.00	4980.010	2.002

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

t

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Conducted Emissions						
EMI Test Receiver (9 kHz – 30 MHz)	ESHS10	830223/0009	04/08/2014	1 Year	04/08/2015	
Spectrum Analyzer	FSIQ7	825555/013	05/31/2014	1 Year	05/31/2015	
V-LISN (150 kHz – 30 MHz)	NNLK 8129	8129-190	08/11/2014	1 Year	08/11/2015	
LISN (9 kHz – 30 MHz)	MN2050B	1018	07/31/2014	1 Year	07/31/2015	
Hygro Hermograph	ST-50	HE01-000092	05/25/2014	1 Year	05/25/2015	
Radiated Emissions					1	
EMI Test Receiver	ESIB 40	100179	05/24/2014	1 Year	05/24/2015	•
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	08/12/2014	1 Year	08/12/2015	
Horn Antenna (1-18GHz)	3115	10SL0059	08/11/2014	1 Year	08/11/2015	
Horn Antenna (18-40 GHz)	AH-840	101013	08/11/2014	1 Year	08/11/2015	
Pre-Amplifier	LPA-6-30	11140711	02/19/2015	1 Year	02/19/2016	•
Microwave Preamplifier (18-40 GHz)	PA-840	181251	02/19/2015	1 Year	02/19/2016	•
3 Meters SAC	3M	N/A	08/29/2014	1 Year	08/29/2015	
10 Meters SAC	10M	N/A	09/05/2014	1 Year	09/05/2015	•
Hygro Hermograph	ST-50	HE01-000092	05/25/2014	1 Year	05/25/2015	•
RF Conducted Measurement						
Spectrum Analyzer	N9010A	MY50210206	08/13/2014	1 Year	08/13/2015	\checkmark
EMI Test Receiver	ESIB 40	100179	05/24/2014	1 Year	05/24/2015	•

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	RF_SL15013001-MIM-002-Part90_Rev2.0
Page	34 of 35

Annex B. SIEMIC Accreditation

Accreditations	Document	Scope / Remark
ISO 17025 (A2LA)	A	Please see the documents for the detailed scope
ISO Guide 65 (A2LA)	Ā	Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation	A	FCC Declaration of Conformity Accreditation
FCC Site Registration	Ā	3 meter site
FCC Site Registration	k	10 meter site
IC Site Registration	k	3 meter site
IC Site Registration	k	10 meter site
EU NB	B	Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
	R	Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	교교	Phase I, Phase II
Vietnam MIC CAB Accreditation	A	Please see the document for the detailed scope
Hong Kong OFCA	R	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
	A	(Phase I) Conformity Assessment Body for Radio and Telecom
	R	Radio: Scope A – All Radio Standard Specification in Category I
Industry Canada CAB	R	Telecom: CS-03 Part I, II, V, VI, VII, VIII

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088 Visit us at: www.siemic.com: Follow us at:

. E

Japan Recognized Certification Body Designation	BB	 Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
		 EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS
Korea CAB Accreditation		Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition	R	LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08
Taiwan BSMI CAB Recognition	A	CNS 13438
Japan VCCI	Þ	R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measurement
		EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4
Australia CAB Recognition	ß	Radio-communications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition	R	AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016,AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088