

TEST REPORT

APPLICANT OnePlus Technology

(Shenzhen) Co., Ltd.

PRODUCT NAME: OnePlus Pad

MODEL NAME : OPD2203

BRAND NAME: ONEPLUS

FCC ID : 2ABZ2-OPD2203

STANDARD(S) : 47 CFR Part 15 Subpart C

RECEIPT DATE : 2023-02-23

TEST DATE : 2023-03-02 to 2023-03-23

ISSUE DATE : 2023-04-19

Edited by:

Peng Mi (Rapporteur)

Approved by:

Shen Junsheng (Subervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

DIRECTORY

1. S	ummary of Test Result····································	-4
1.1.	Testing Applied Standards ······	- 5
	Test Equipment List ······	
1.3.	Measurement Uncertainty ······	-8
1.4.	Testing Laboratory······	.8
2. G	Seneral Description ······	. 9
2.1.	Information of Applicant and Manufacturer ······	. 9
2.2.	Information of EUT······	. 9
2.3.	Channel List of EUT ······	11
2.4.	Test Configuration of EUT······	12
2.5.	Test Conditions ······	12
2.6.	Test Setup Layout Diagram ·······	12
3. T	est Results······	15
3.1.	Antenna Requirement ·······	15
3.2.	Hopping Mechanism ······	15
3.3.	Number of Hopping Frequency	16
3.4.	Duty Cycle of Test Signal ······	17
3.5.	Maximum Peak Conducted Output Power ······	18
3.6.	Maximum Average Conducted Output Power ······	19
3.7.	20 dB Bandwidth ······	20
3.8.	Carried Frequency Separation	21
3.9.	Time of Occupancy (Dwell time) ······	22
	Conducted Spurious Emissions and Band Edge	
	Conducted Emission	
	Restricted Frequency Bands ······	
3.13.	Radiated Emission	26

Change History					
Version	Date	Reason for change			
1.0 2023-04-19		First edition			

1. Summary of Test Result

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	15.247(a) 15.247(h)	Hopping Mechanism	N/A	N/A	PASS	No deviation
3	15.247(a)	Number of Hopping Frequency	Mar. 09, 2023	Su Xiaoxian	PASS	No deviation
4	ANSI C63.10	Duty Cycle	Mar. 03, 2023	Su Xiaoxian	PASS	No deviation
5	15.247(b)	Maximum Peak Conducted Output Power	Mar. 03, 2023	Su Xiaoxian	PASS	No deviation
6	15.247(b)	Maximum Average Conducted Output Power	Mar. 03, 2023	Su Xiaoxian	PASS	No deviation
7	15.247(a)	20dB Bandwidth	Mar. 03, 2023	Su Xiaoxian	PASS	No deviation
8	15.247(a)	Carrier Frequency Separation	Mar. 09, 2023	Su Xiaoxian	PASS	No deviation
9	15.247(a)	Time of Occupancy (Dwell time)	Mar. 09, 2023	Su Xiaoxian	PASS	No deviation
10	15.247(d)	Conducted Spurious Emission	Mar. 09, 2023	Su Xiaoxian	PASS	No deviation
11	15.207	Conducted Emission	Mar. 01, 2023	Wu Zhaoling	PASS	No deviation
12	15.247(d)	Restricted Frequency Bands	Mar. 23, 2023	Gao Jianrou	PASS	No deviation
13	15.209,	Radiated	Mar. 23, 2023	Gao Jianrou	PASS	No deviation

15.2	247(d)	Emission				
------	--------	----------	--	--	--	--

Note 1: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013, KDB558074 D01 v05r02 and DA 00-075.

Note 2: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 3: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.1. Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

• 47 CFR Part 15 Subpart C Radio Frequency Devices

1.2. Test Equipment List

1.2.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
EXA Signal Analzyer	MY5347083 6	N9010A	Agilent	2023.02.27	2024.02.26
RF Cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial Cable	CB02	RF02	Morlab	N/A	N/A
SMA Connector	CN01	RF03	HUBER- SUHNER	N/A	N/A

1.2.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Due Date
Receiver	MY5640009 3	N9038A	KEYSIGHT	2023.02.09	2024.02.08
LISN	8127449	NSLK 8127	Schwarzbeck	2023.02.21	2024.02.20
Pulse Limiter (10dB)	VTSD 9561 F-B #206	VTSD 9561-F	Schwarzbeck	2022.07.06	2023.07.05
RF Coaxial Cable (DC-100MHz)	BNC	MRE04	Qualwave	2022.07.08	2023.07.07

1.2.3 List of Software Used

Description	Manufacturer	Software Version
Test System	MaiWei	2.0.0.0
Morlab EMCR V1.2	Morlab	V1.0
TS+ -[JS32-CE]	Tonscend	V2.5.0.0

Tel: 86-755-36698555

Http://www.morlab.cn

1.2.4 Radiated Test Equipments

Equipment						
Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date	
Receiver	MY54130016	N9038A	Agilent	2022.07.06	2023.07.05	
Test Antenna - Bi-		11000071	7 .9		2025.05.24	
Log	9163-519	VULB 9163	Schwarzbeck	2022.05.25		
Test Antenna -	4540,000	EN47D4540		0000 00 44	0005 00 40	
Loop	1519-022	FMZB1519	Schwarzbeck	2022.02.11	2025.02.10	
Test Antenna –	01774	BBHA 9120D	Schwarzbeck	2022.07.13	2025.07.12	
Horn	01774	BBHA 9120D	Scriwarzbeck	2022.07.13	2023.07.12	
Test Antenna –	BBHA9170	BBHA9170	Schwarzbeck	2022.07.14	2025.07.13	
Horn	#773	BBIIASTI	Ochwarzbeck	2022.07.14	2020.07.10	
Preamplifier	46732	S10M100L38	LUCIX CORP.	2022.07.08	2023.07.07	
(10MHz-6GHz)	10702	02	2001/1001111	2022.07.00	2020.07.07	
Preamplifier	61171/61172	S020180L32	LUCIX CORP.	2022.07.08	2023.07.07	
(2GHz-18GHz)		03				
Preamplifier	DS77209	DCLNA0118-	Decentest	2022.07.23	2023.07.22	
(18GHz-40GHz)		40C-S	2 document			
RF Coaxial Cable	MRE001	DESSO	PE330 Pasternack	2022.07.08	2023.07.07	
(DC-18GHz)	WIREOUT	PE330 P				
RF Coaxial Cable		011110				
(DC-18GHz)	MRE002	CLU18	Pasternack	2022.07.08	2023.07.07	
RF Coaxial Cable	MDEOOS	01.140	Dantawaadi	0000 07 00	2002 07 07	
(DC-18GHz)	MRE003	CLU18	Pasternack	2022.07.08	2023.07.07	
RF Coaxial Cable	22290045	QA360-40-	Qualwave	2022.07.08	2023.07.07	
(DC-40GHz)	22290043	KK-0.5	Qualwave	2022.07.00	2023.07.07	
RF Coaxial Cable	22290046	QA360-40-	Qualwave	2022.07.08	2023.07.07	
(DC-40GHz)	22290040	KKF-2	Qualwave	2022.07.00	2023.01.01	
RF Coaxial Cable	22120181	QA500-18-	Qualwave	2022.07.08	2023.07.07	
(DC-18GHz)	22120101	NN-5	Qualwave	2022.01.00	2020.07.07	
Notch Filter	N/A	WRCG-2400-	Wainwright	2022.07.08	2023.07.07	
	. 3/7 1	2483.5-60SS				
Anechoic	N/A	9m*6m*6m	CRT	2022.05.10	2025.05.09	
Chamber						

1.3. Measurement Uncertainty

Test Items	Uncertainty	Remark
Number of Hopping Frequency	±5%	Confidence levels of 95%
Peak Output Power	±2.22dB	Confidence levels of 95%
Bandwidth	±5%	Confidence levels of 95%
Carrier Frequency Separation	±5%	Confidence levels of 95%
Time of Occupancy (Dwell time)	±5%	Confidence levels of 95%
Conducted Spurious Emission	±2.77dB	Confidence levels of 95%
Restricted Frequency Bands	±5%	Confidence levels of 95%
Radiated Emission	±2.95dB	Confidence levels of 95%
Conducted Emission	±2.44dB	Confidence levels of 95%

1.4. Testing Laboratory

Laboratory Name Shenzhen Morlab Communications Technology Co.,		
	FL.3, Building A, FeiYang Science Park, No.8 LongChang	
Laboratory Address	Road, Block 67, BaoAn District, ShenZhen, GuangDong	
	Province, P. R. China	
Telephone	+86 755 36698555	
Facsimile	+86 755 36698525	
FCC Designation Number	CN1192	
FCC Test Firm	226174	
Registration Number	226174	

2. General Description

2.1. Information of Applicant and Manufacturer

Applicant	OnePlus Technology (Shenzhen) Co., Ltd.				
	18C02, 18C03, 18C04, and 18C05, Shum Yip Terra Building,				
Applicant Address	Binhe Avenue North, Futian District, Shenzhen, Guangdong, P.R.				
	China				
Manufacturer	OnePlus Technology (Shenzhen) Co., Ltd.				
	18C02, 18C03, 18C04, and 18C05, Shum Yip Terra Building,				
Manufacturer Address	Binhe Avenue North, Futian District, Shenzhen, Guangdong, P.R.				
	China				

2.2. Information of EUT

Product Name:	OnePlus Pad			
Sample No.:	1#			
Hardware Version:	98110_1_11			
Software Version:	OPD2203_13.1			
Equipment Type:	Bluetooth classic			
Bluetooth Version:	5.3			
Modulation Type:	FHSS (GFSK(1Mbps), π/4-DQPSK(EDR 2Mbps), 8-DPSK(EDR 3Mbps))			
Operating Frequency Range:	: 2402MHz-2480MHz			
Antenna Type:	Fixed Internal Antenna			
Antenna Gain:	ANT0: 0.72dBi; A	NT3: -0.64dBi		
	Battery			
	Brand Name:	SUPERVOOC		
	Model No.:	BLT007		
Accessory Information	Serial No.:	N/A		
Accessory Information:	Rated Capacity:	Typical: 9510mAh, Rated: 9230mAh		
	Rated Voltage:	3.89V		
	Charge Limit:	4.48V		
	Manufacturer:	SUNWODA Electronic Co., Ltd.		

	AC Adapter		
	Brand Name:	SUPERVOOC	
	Model No.:	VCB8JAUH	
	Serial No.:	N/A	
	Rated Output:	5V=2A or 5V-11V=6.1A Max	
Accessory Information:		5V=2A or 5V-11V=7.3A Max	
	Rated Input:	100-130V, 200-240V~50/60Hz, 2A	
	Manufacturer:	Huizhou Golden Lake Industrial Co.,Ltd.	
	USB Cable		
	Model No.:	DL129	
	Manufacturer:	N/A	

Note 1: We use the dedicated software to control the EUT continuous transmission.

Note 2: The EUT support multiple transmitter output, the correlation of different outputs is shown in below table:

Antenna	Correlated	Uncorrelated	Directional Gain(dBi)
ANT 0	M		3.08
ANT 3			(10log[(10 ^{G0/20} +10 ^{G3/20}) ² /2])

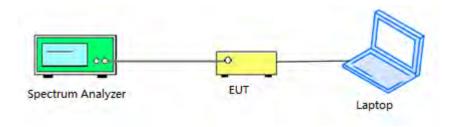
Note 3: The directional gain in this report is calculated according to the formula in KDB 662911 D01. **Note 4:** All tests were performed with both antennas transmitting simultaneously. For the conducted tests, the data of the two antenna ports are measured separately and then calculated and summed to obtain the total power result. For radiated tests are performed under the condition that two antennas transmit simultaneously.

2.3. Channel List of EUT

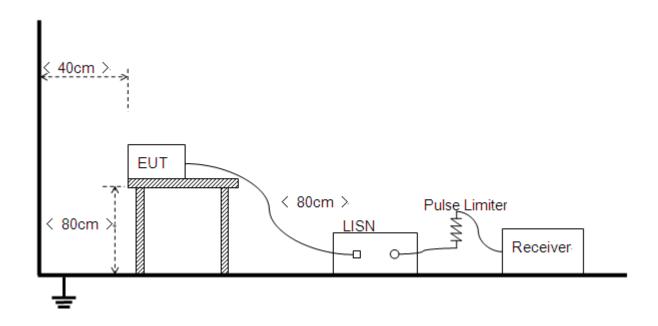
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	_	

Note 1: The black bold channels were selected for test.

2.4. Test Configuration of EUT

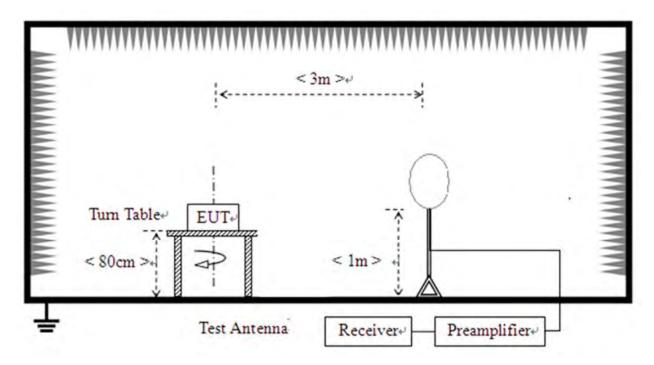

Test mode is used to control the EUT under the maximum power level during test.

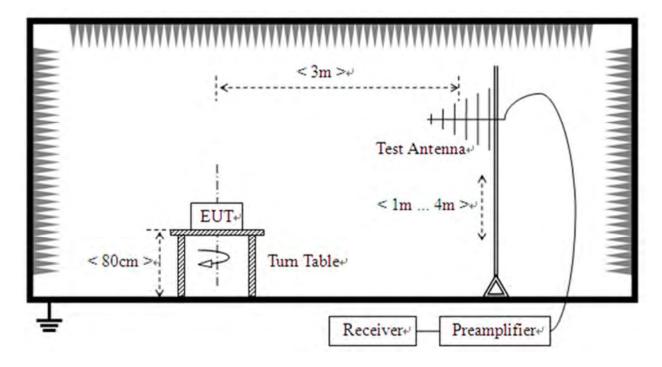
2.5. Test Conditions


Temperature (°C)	15-35
Relative Humidity (%)	30-60
Atmospheric Pressure (kPa)	86-106

2.6. Test Setup Layout Diagram

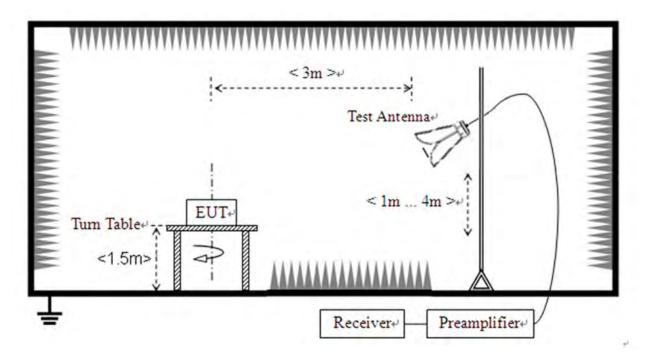
2.6.1.Conducted Measurement


2.6.2.Conducted Emission Measurement



2.6.3. Radiation Measurement

1) For radiated emissions from 9kHz to 30MHz


2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

3. Test Results

3.1. Antenna Requirement

3.1.1.Requirement

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.2.Test Result

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

3.2. Hopping Mechanism

3.2.1.Requirement

According to FCC section 15.247(a)(1), a frequency hopping spread spectrum system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

According to FCC section 15.247(h), the incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3.2.2.Test Result

The hopping mechanism of the EUT is in compliance with the document "Bluetooth core specification v5.1".

Shenzhen Morlab Communications Technology Co., Ltd.

FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

3.3. Number of Hopping Frequency

3.3.1.Requirement

According to FCC section 15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

3.3.2.Test Procedures

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation

RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW
Sweep = auto
Detector function = peak
Trace = max hold
Allow the trace to stabilize

3.3.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.3.4.Test Result

Refer to Annex A.1 in this report.

3.4. Duty Cycle of Test Signal

3.4.1.Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration(T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data are being acquired (i.e.,no transmitter OFF-time is to be considered).

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this sub clause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than ±2%; otherwise, the duty cycle is considered to be non constant.

3.4.2.Test Result

Refer to Annex A.2 in this report.

3.5. Maximum Peak Conducted Output Power

3.5.1.Requirement

According to FCC section 15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

3.5.2.Test Procedures

KDB 558074 Section 8.3.1 was used in order to prove compliance.

3.5.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.5.4.Test Result

Refer to Annex A.3 in this report.

3.6. Maximum Average Conducted Output Power

3.6.1.Requirement

According to FCC section 15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

3.6.2.Test Procedures

KDB 558074 Section 8.3.2 was used in order to prove compliance.

3.6.3. Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.6.4.Test Result

Refer to Annex A.4 in this report.

3.7.20 dB Bandwidth

3.7.1.Requirement

According to FCC section 15.247(a)(1), the 20 dB bandwidth is known as the 99% emission bandwidth, or 20 dB bandwidth (10*log1% = 20 dB) taking the total RF output power.

3.7.1.Test Procedures

Use the following spectrum analyzer settings:

Span = between 2 to 5 times the OBW, centered on the test channel

RBW= 1% to 5% of the OBW

VBW ≥ 3 x RBW

Sweep = auto

Detector function = peak

Trace = max hold

3.7.2.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.7.3.Test Result

Refer to Annex A.5 in this report.

3.8. Carried Frequency Separation

3.8.1.Requirement

According to FCC section 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

3.8.2.Test Procedures

The EUT must have its hopping function enabled. According to DA 00-705, use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

3.8.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.8.4.Test Result

Refer to Annex A.6 in this report.

3.9. Time of Occupancy (Dwell time)

3.9.1.Requirement

According to FCC section 15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

3.9.2.Test Procedures

Normal Mode:

DH1: Dwell time equal to Pulse time (ms) *(1600 / 2 /79)*31.6 Millisecond DH3: Dwell time equal to Pulse time (ms) * (1600 /4 /79) *31.6 Millisecond DH5: Dwell time equal to Pulse Time (ms)* (1600 / 6 /79) *31.6 Millisecond

AFH Mode:

DH1: Dwell time equal to Pulse time (ms) *(800 / 2 / 20)*(0.4*20) Millisecond DH3: Dwell time equal to Pulse time (ms) *(800 / 4 / 20)*(0.4*20) Millisecond DH5: Dwell time equal to Pulse Time (ms)* (800 / 6 / 20)*(0.4*20) Millisecond.

3.9.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.9.4.Test Result

Refer to Annex A.7 in this report.

3.10. Conducted Spurious Emissions and Band Edge

3.10.1.Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

3.10.2.Test Procedures

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.

3.10.3.Test Setup Layout

Refer to chapter 2.6.1 in this report.

3.10.4.Test Result

Refer to Annex A.8 and A.9 in this report.

Shenzhen Morlab Communications Technology Co., Ltd.

3.11. Conducted Emission

3.11.1.Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).

		•	,
Fraguency Dange (MIII)	Conducted Limit (dBµV)		
	Frequency Range (MHz)	Quai-peak	Average
	0.15 - 0.50	66 to 56	56 to 46
	0.50 - 5	56	46
	5 - 30	60	50

Note:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

3.11.2.Test Procedures

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

3.11.3.Test Setup Layout

Refer to chapter 2.6.2 in this report.

3.11.4.Test Result

Refer to Annex A.10 in this report.

3.12. Restricted Frequency Bands

3.12.1.Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

3.12.2.Test Procedures

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for f ≥ 1GHz, 100 kHz for f < 1GHz

VBW = 3 MHz

Sweep = auto

Detector function = peak/average

Trace = max hold

Allow the trace to stabilize

3.12.3.Test Setup Layout

Refer to chapter 2.6.3 in this report.

3.12.4.Test Result

Refer to Annex A.11 in this report.

3.13. Radiated Emission

3.13.1.Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note1: For above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. **Note2:**For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK).In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

3.13.2.Test Procedures

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 30MHz, the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9kHz-90 kHz, 110kHz-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

For measurements below 1GHz the resolution bandwidth is set to 100kHz for peak detection measurements or 120kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1GHz the resolution bandwidth is set to 1MHz, the video band width is set to 3MHz for peak measurements and as applicable for average measurements.

The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions. For measurements above 1 GHz, keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

3.13.3.Test Setup Layout

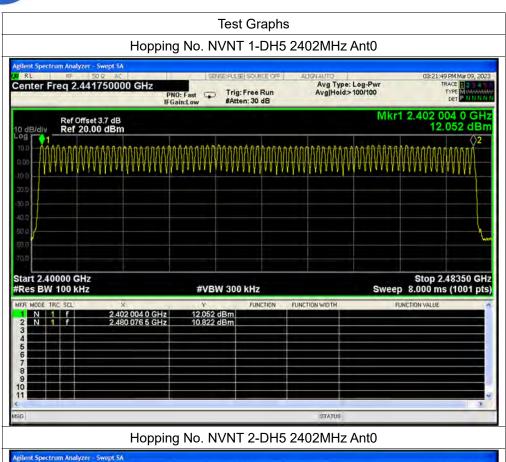
Refer to chapter 2.6.3 in this report.

3.13.4.Test Result

Refer to Annex A.12 in this report.

E-mail: service@morlab.cn

Http://www.morlab.cn



Annex A Test Data and Result

A.1. Number of Hopping Frequency

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant0	79	15	Pass
NVNT	2-DH5	Ant0	79	15	Pass
NVNT	3-DH5	Ant0	79	15	Pass
NVNT	1-DH5	Ant3	79	15	Pass
NVNT	2-DH5	Ant3	79	15	Pass
NVNT	3-DH5	Ant3	79	15	Pass

Aplient Spectrum Analyzer - Swept SA

PRU: Freq 2.441750000 GHz

PRO: Fast
IFGain.Low

Ref Offset 3.7 dB
Ref 20.00 dBm

Ref 20.00 dBm

Start 2.40000 GHz

#Res BW 100 kHz

#VBW 300 kHz

Start 2.40000 GHz

#Res BW 100 kHz

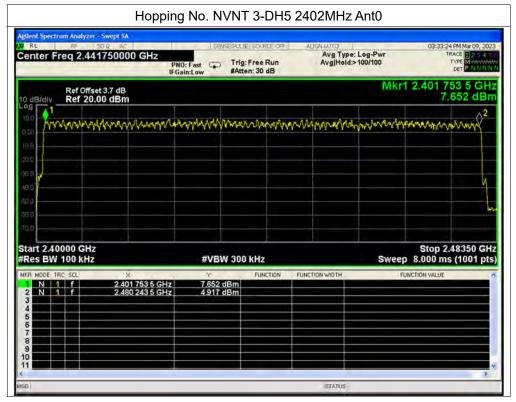
#VBW 300 kHz

Start 2.400 dBm

Start 2.400 dBm

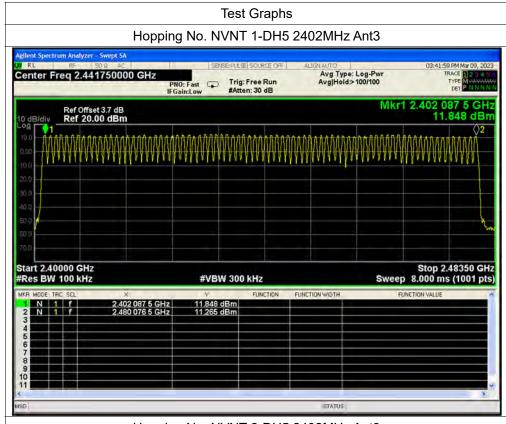
Start 2.400 dBm

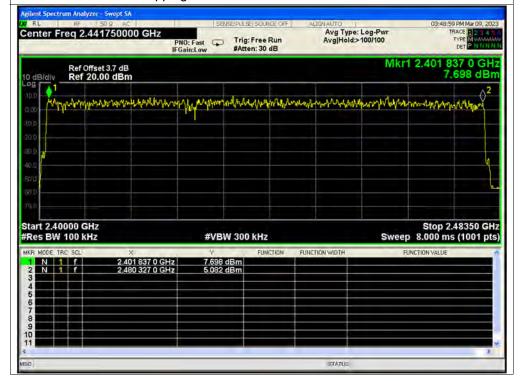
Function width
Function value

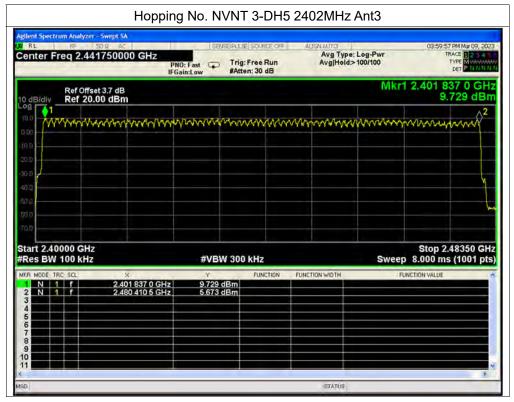

Function value

Function value

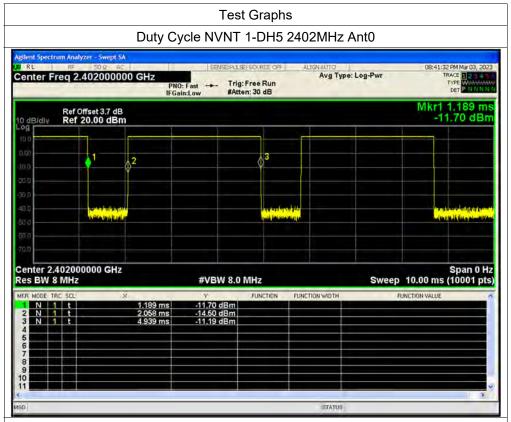

STATUS

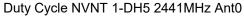


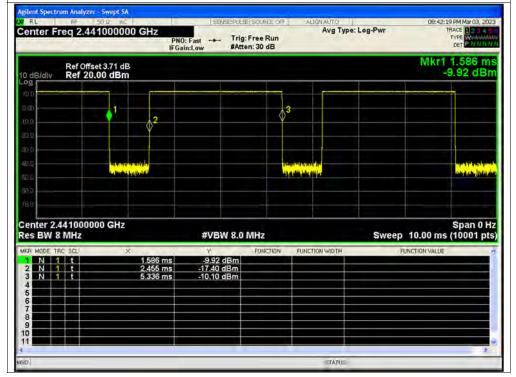




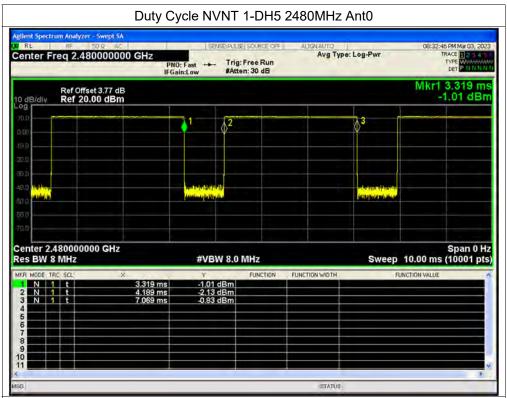
Hopping No. NVNT 2-DH5 2402MHz Ant3

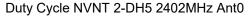


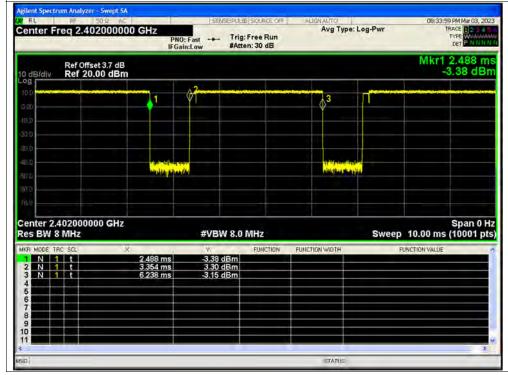


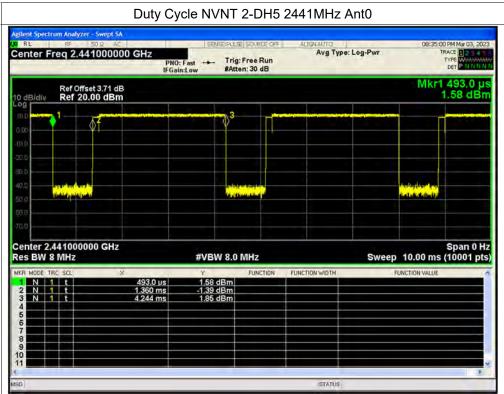

A.2. Duty Cycle of Test Signal

O a maliti a m	Na - 4 -	Frequency	A 4	Double Occale (0/)	Correction Factor	1/T
Condition	Mode	(MHz)	Antenna	Duty Cycle (%)	(dB)	(kHz)
NVNT	1-DH5	2402	Ant0	76.83	1.14	0.35
NVNT	1-DH5	2441	Ant0	76.83	1.14	0.35
NVNT	1-DH5	2480	Ant0	76.8	1.15	0.35
NVNT	2-DH5	2402	Ant0	76.91	1.14	0.35
NVNT	2-DH5	2441	Ant0	76.89	1.14	0.35
NVNT	2-DH5	2480	Ant0	76.91	1.14	0.35
NVNT	3-DH5	2402	Ant0	76.99	1.14	0.35
NVNT	3-DH5	2441	Ant0	76.96	1.14	0.35
NVNT	3-DH5	2480	Ant0	76.99	1.14	0.35
NVNT	1-DH5	2402	Ant3	76.83	1.14	0.35
NVNT	1-DH5	2441	Ant3	76.8	1.15	0.35
NVNT	1-DH5	2480	Ant3	76.8	1.15	0.35
NVNT	2-DH5	2402	Ant3	76.91	1.14	0.35
NVNT	2-DH5	2441	Ant3	76.91	1.14	0.35
NVNT	2-DH5	2480	Ant3	76.93	1.14	0.35
NVNT	3-DH5	2402	Ant3	76.96	1.14	0.35
NVNT	3-DH5	2441	Ant3	76.99	1.14	0.35
NVNT	3-DH5	2480	Ant3	76.99	1.14	0.35

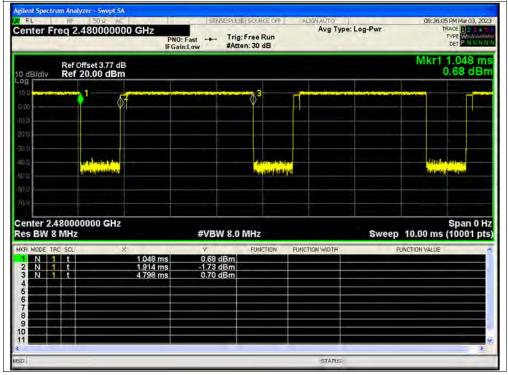


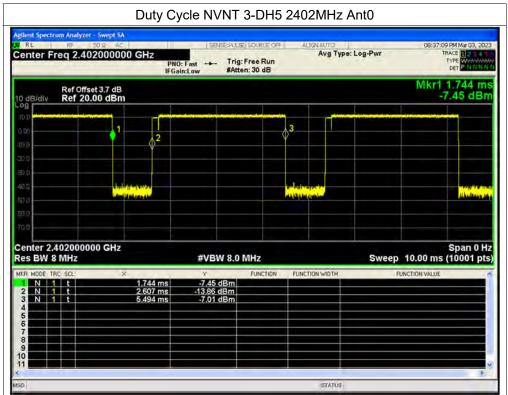


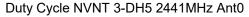


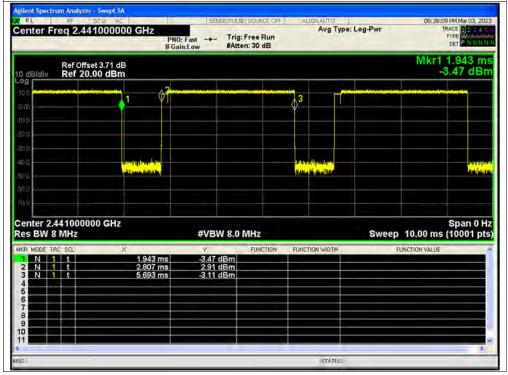


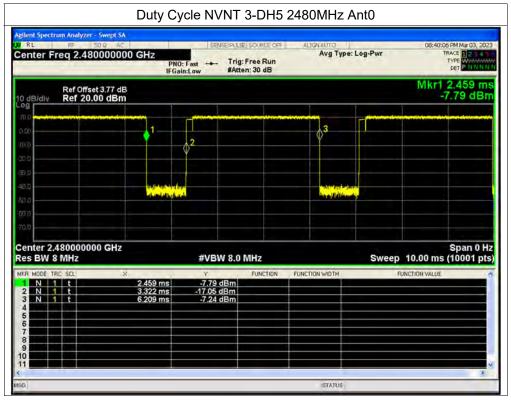


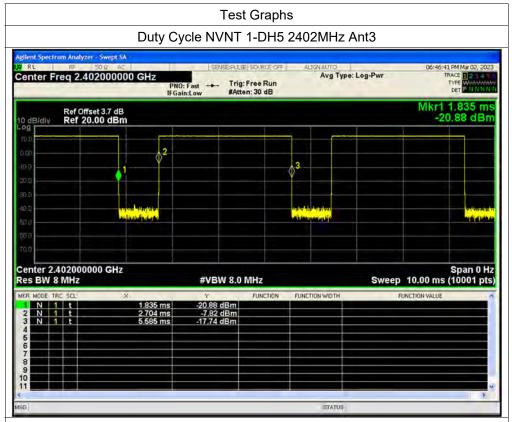


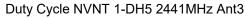


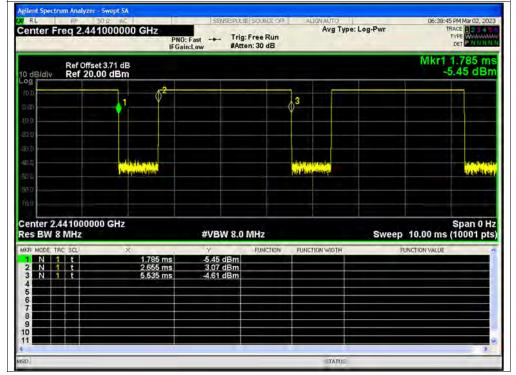


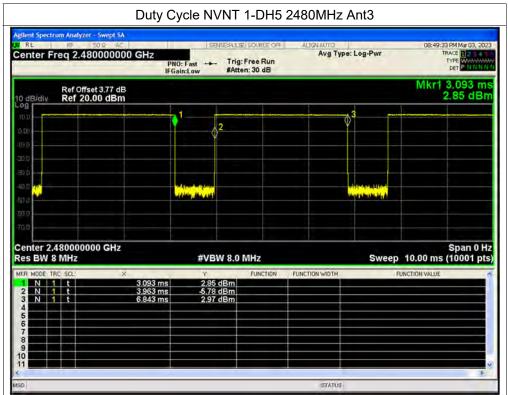


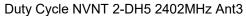


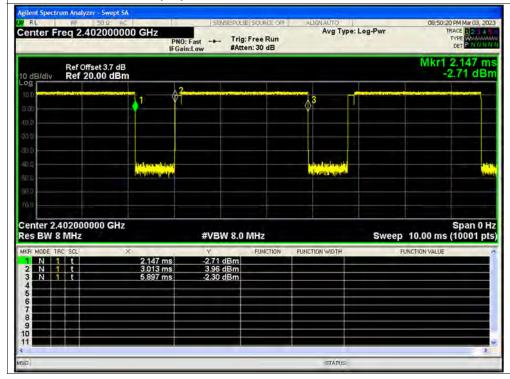


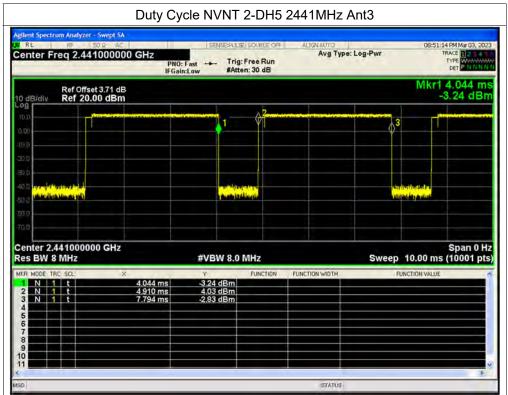


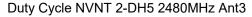




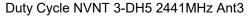


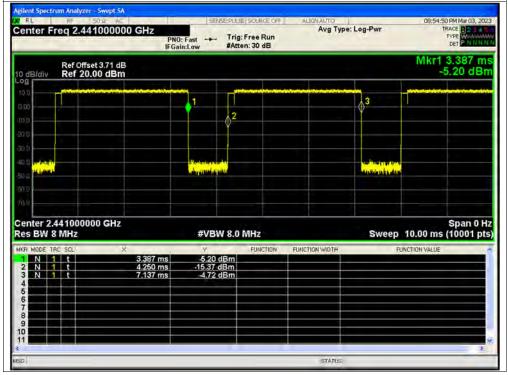


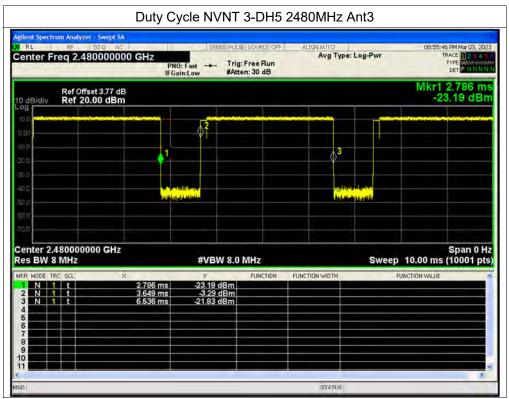










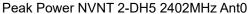


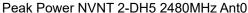
A.3. Maximum Peak Conducted Output Power

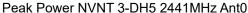
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant0	12.65	0	12.65	21	Pass
NVNT	1-DH5	2441	Ant0	12.54	0	12.54	21	Pass
NVNT	1-DH5	2480	Ant0	11.62	0	11.62	21	Pass
NVNT	2-DH5	2402	Ant0	12.27	0	12.27	21	Pass
NVNT	2-DH5	2441	Ant0	12.14	0	12.14	21	Pass
NVNT	2-DH5	2480	Ant0	11.18	0	11.18	21	Pass
NVNT	3-DH5	2402	Ant0	12.61	0	12.61	21	Pass
NVNT	3-DH5	2441	Ant0	12.63	0	12.63	21	Pass
NVNT	3-DH5	2480	Ant0	11.31	0	11.31	21	Pass
NVNT	1-DH5	2402	Ant3	12.52	0	12.52	21	Pass
NVNT	1-DH5	2441	Ant3	12.77	0	12.77	21	Pass
NVNT	1-DH5	2480	Ant3	12.11	0	12.11	21	Pass
NVNT	2-DH5	2402	Ant3	12.4	0	12.4	21	Pass
NVNT	2-DH5	2441	Ant3	12.46	0	12.46	21	Pass
NVNT	2-DH5	2480	Ant3	11.68	0	11.68	21	Pass
NVNT	3-DH5	2402	Ant3	12.72	0	12.72	21	Pass
NVNT	3-DH5	2441	Ant3	12.67	0	12.67	21	Pass
NVNT	3-DH5	2480	Ant3	11.95	0	11.95	21	Pass
NVNT	1-DH5	2402	Ant0+3	-	-	15.60	21	Pass
NVNT	1-DH5	2441	Ant0+3	-	-	15.67	21	Pass
NVNT	1-DH5	2480	Ant0+3	-	-	14.88	21	Pass
NVNT	2-DH5	2402	Ant0+3	-	-	15.35	21	Pass
NVNT	2-DH5	2441	Ant0+3	-	-	15.31	21	Pass
NVNT	2-DH5	2480	Ant0+3	-	-	14.45	21	Pass
NVNT	3-DH5	2402	Ant0+3	-	-	15.68	21	Pass
NVNT	3-DH5	2441	Ant0+3	-	-	15.66	21	Pass
NVNT	3-DH5	2480	Ant0+3	-	-	14.65	21	Pass

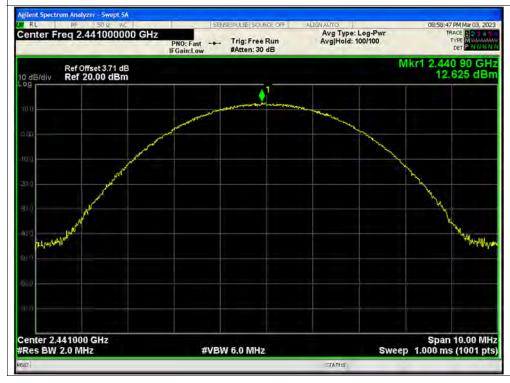
Test Graphs

Peak Power NVNT 1-DH5 2402MHz Ant0


Peak Power NVNT 1-DH5 2441MHz Ant0



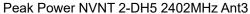


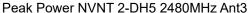


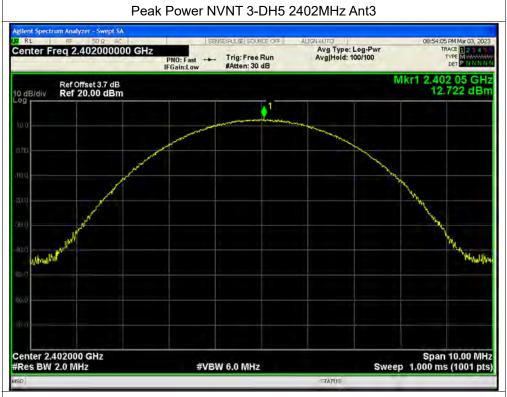
Page 48 of 165

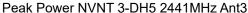
Test Graphs

Peak Power NVNT 1-DH5 2402MHz Ant3


Peak Power NVNT 1-DH5 2441MHz Ant3





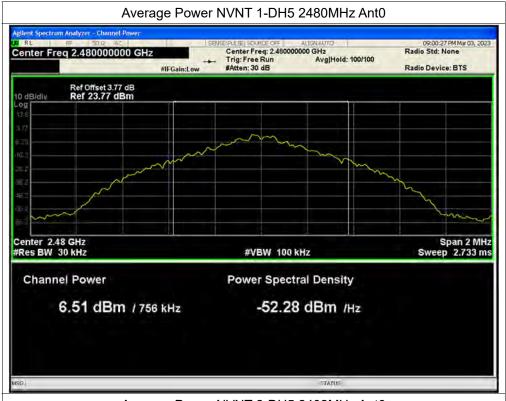


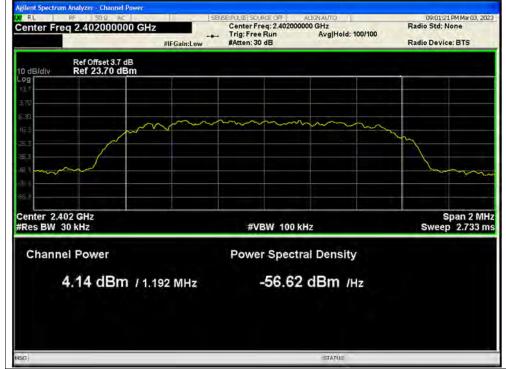


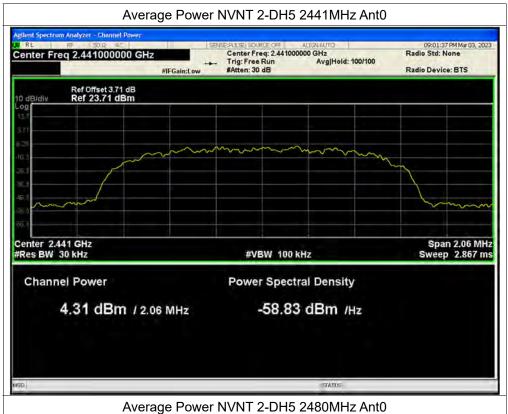


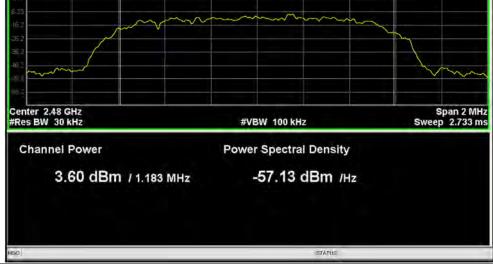
A.4. Maximum Average Conducted Output Power

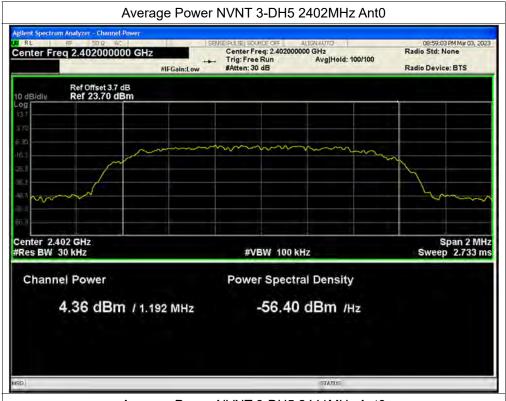
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant0	6.58	1.14	7.72	21	Pass
NVNT	1-DH5	2441	Ant0	6.81	1.14	7.95	21	Pass
NVNT	1-DH5	2480	Ant0	6.51	1.15	7.66	21	Pass
NVNT	2-DH5	2402	Ant0	4.14	1.14	5.28	21	Pass
NVNT	2-DH5	2441	Ant0	4.31	1.14	5.45	21	Pass
NVNT	2-DH5	2480	Ant0	3.6	1.14	4.74	21	Pass
NVNT	3-DH5	2402	Ant0	4.36	1.14	5.5	21	Pass
NVNT	3-DH5	2441	Ant0	4.32	1.14	5.46	21	Pass
NVNT	3-DH5	2480	Ant0	3.2	1.14	4.34	21	Pass
NVNT	1-DH5	2402	Ant3	6.65	1.14	7.79	21	Pass
NVNT	1-DH5	2441	Ant3	7.07	1.15	8.22	21	Pass
NVNT	1-DH5	2480	Ant3	6.18	1.15	7.33	21	Pass
NVNT	2-DH5	2402	Ant3	4.39	1.14	5.53	21	Pass
NVNT	2-DH5	2441	Ant3	5.19	1.14	6.33	21	Pass
NVNT	2-DH5	2480	Ant3	3.84	1.14	4.98	21	Pass
NVNT	3-DH5	2402	Ant3	4.42	1.14	5.56	21	Pass
NVNT	3-DH5	2441	Ant3	4.46	1.14	5.6	21	Pass
NVNT	3-DH5	2480	Ant3	3.79	1.14	4.93	21	Pass
NVNT	1-DH5	2402	Ant0+3	-	-	10.77	21	Pass
NVNT	1-DH5	2441	Ant0+3	-	-	11.10	21	Pass
NVNT	1-DH5	2480	Ant0+3	-	-	10.51	21	Pass
NVNT	2-DH5	2402	Ant0+3	-	-	8.42	21	Pass
NVNT	2-DH5	2441	Ant0+3	-	-	8.92	21	Pass
NVNT	2-DH5	2480	Ant0+3	-	-	7.87	21	Pass
NVNT	3-DH5	2402	Ant0+3	-	-	8.54	21	Pass
NVNT	3-DH5	2441	Ant0+3	-	-	8.54	21	Pass
NVNT	3-DH5	2480	Ant0+3	-	-	7.66	21	Pass

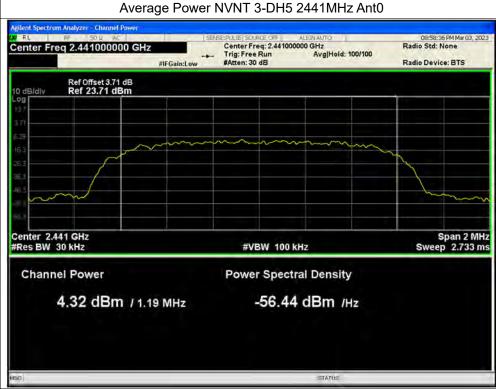


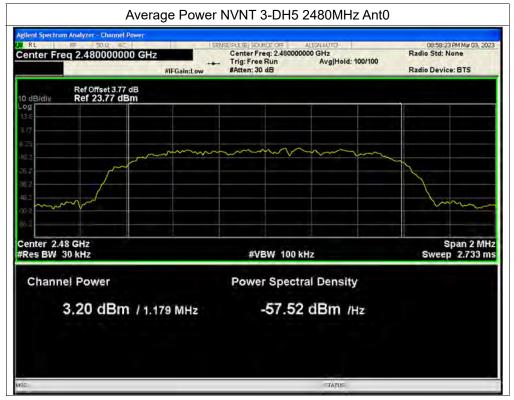






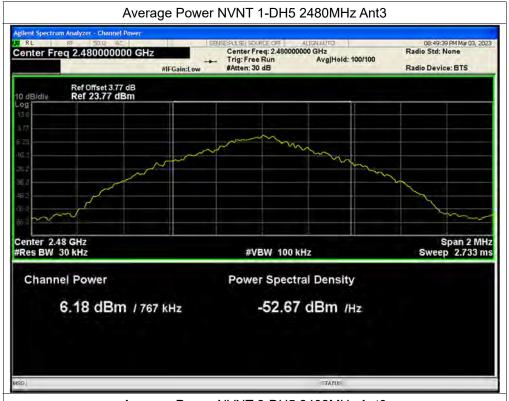


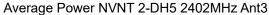


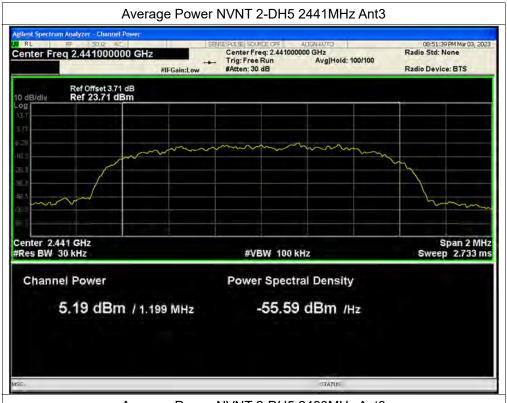


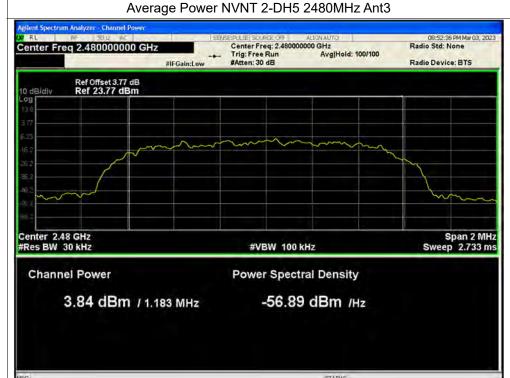
Http://www.morlab.cn

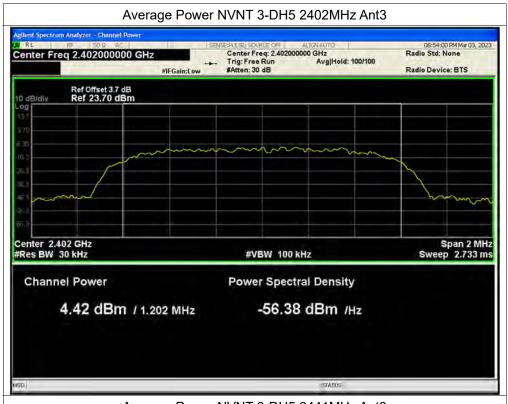
E-mail: service@morlab.cn

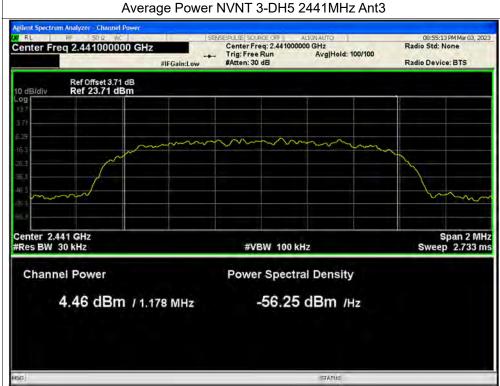


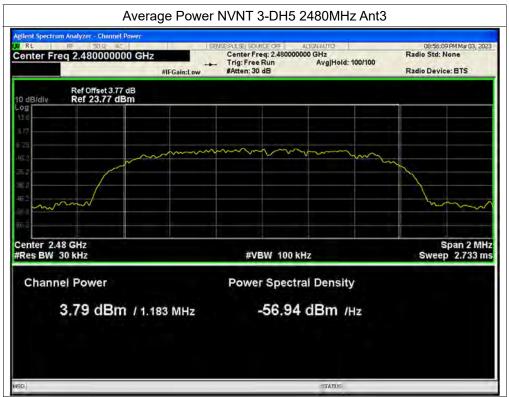


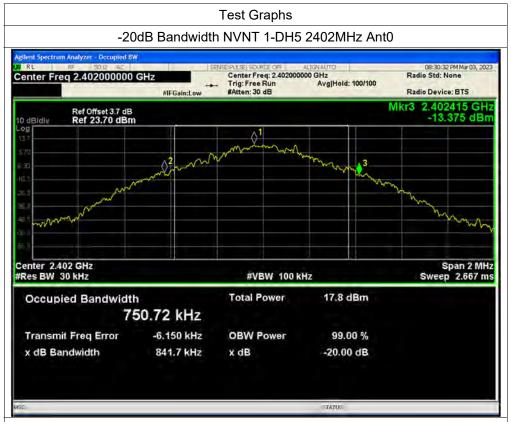






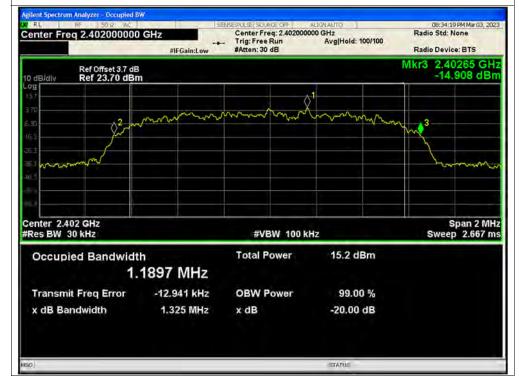


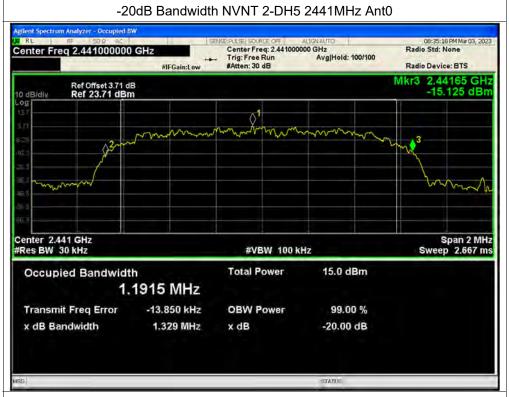




A.5. 20 dB Bandwidth

Condition	Mode	Frequency	A 4	-20 dB Bandwidth	Limit -20 dB	Verdict
		(MHz)	Antenna	(MHz)	Bandwidth (MHz)	
NVNT	1-DH5	2402	Ant0	0.842	0	Pass
NVNT	1-DH5	2441	Ant0	0.803	0	Pass
NVNT	1-DH5	2480	Ant0	0.854	0	Pass
NVNT	2-DH5	2402	Ant0	1.325	0	Pass
NVNT	2-DH5	2441	Ant0	1.329	0	Pass
NVNT	2-DH5	2480	Ant0	1.345	0	Pass
NVNT	3-DH5	2402	Ant0	1.292	0	Pass
NVNT	3-DH5	2441	Ant0	1.265	0	Pass
NVNT	3-DH5	2480	Ant0	1.27	0	Pass
NVNT	1-DH5	2402	Ant3	0.814	0	Pass
NVNT	1-DH5	2441	Ant3	0.796	0	Pass
NVNT	1-DH5	2480	Ant3	0.798	0	Pass
NVNT	2-DH5	2402	Ant3	1.346	0	Pass
NVNT	2-DH5	2441	Ant3	1.322	0	Pass
NVNT	2-DH5	2480	Ant3	1.322	0	Pass
NVNT	3-DH5	2402	Ant3	1.323	0	Pass
NVNT	3-DH5	2441	Ant3	1.333	0	Pass
NVNT	3-DH5	2480	Ant3	1.307	0	Pass



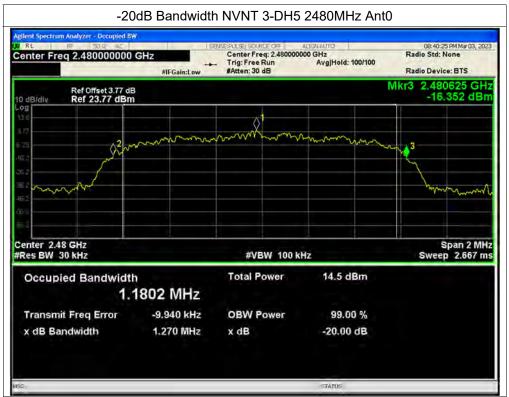


-20dB Bandwidth NVNT 2-DH5 2402MHz Ant0



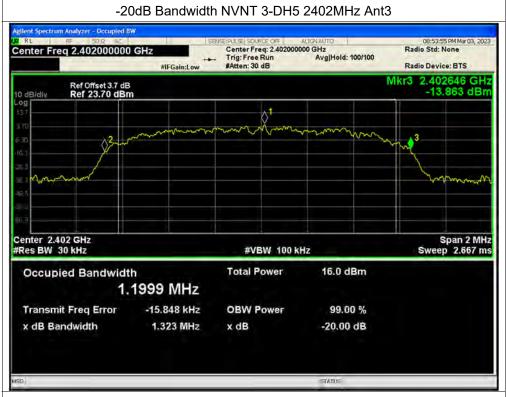
-20dB Bandwidth NVNT 2-DH5 2480MHz Ant0

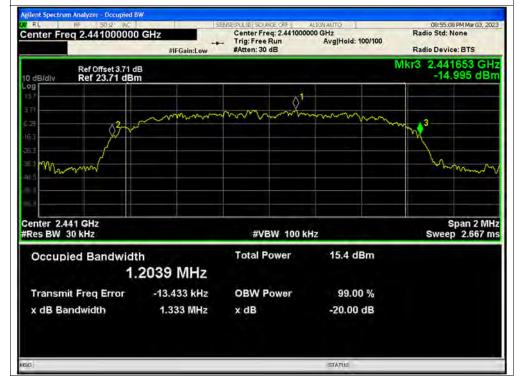
Page 69 of 165



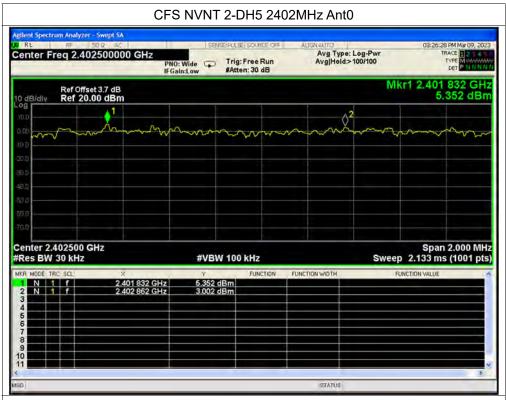
-20dB Bandwidth NVNT 1-DH5 2441MHz Ant3

-20dB Bandwidth NVNT 2-DH5 2402MHz Ant3

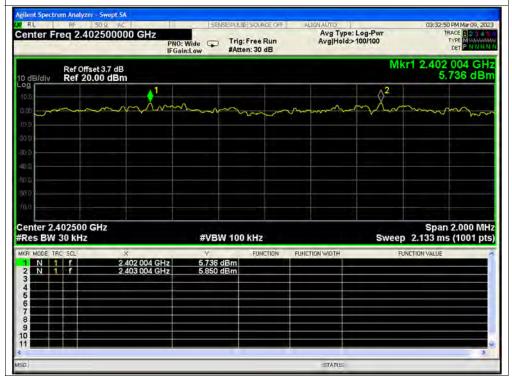


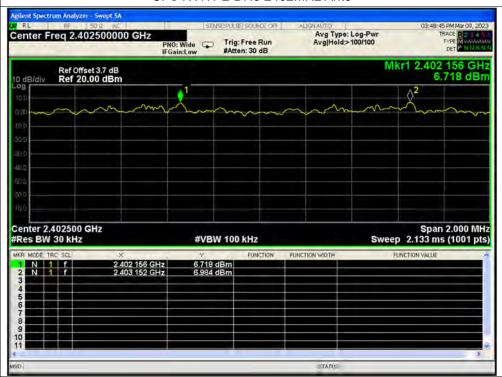


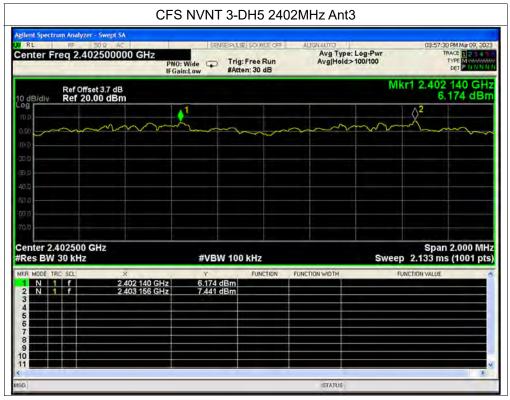


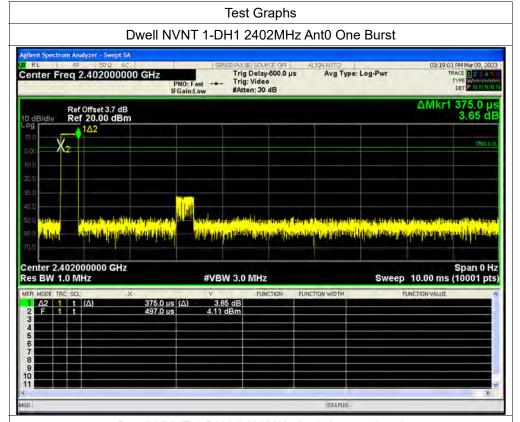

A.6. Carried Frequency Separation

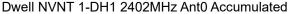
Condition	Mode	Antenna	Hopping Freq1 Hopping Freq2 (MHz)		HFS	Limit	Verdict
			(MHz)	rropping rreqz (wiriz)	(MHz)	(MHz)	Verdict
NVNT	1-DH5	Ant0	2401.966	2402.97	1.004	0.561	Pass
NVNT	2-DH5	Ant0	2401.832	2402.862	1.03	0.883	Pass
NVNT	3-DH5	Ant0	2402.004	2403.004	1	0.861	Pass
NVNT	1-DH5	Ant3	2402.002	2403.05	1.048	0.543	Pass
NVNT	2-DH5	Ant3	2402.156	2403.152	0.996	0.897	Pass
NVNT	3-DH5	Ant3	2402.14	2403.156	1.016	0.882	Pass

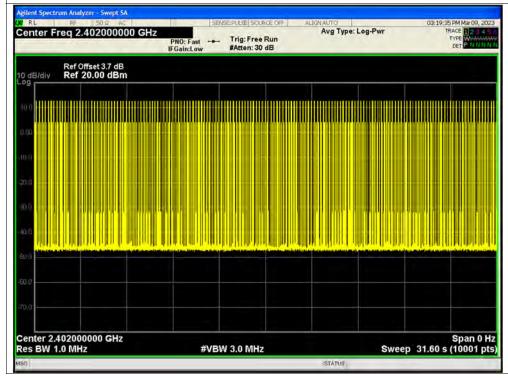



CFS NVNT 3-DH5 2402MHz Ant0








A.7. Time of Occupancy (Dwell time)

Conditio n	Mode	Frequenc y (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2402	Ant0	0.375	117.75	314	31600	400	Pass
NVNT	1-DH3	2402	Ant0	1.631	282.163	173	31600	400	Pass
NVNT	1-DH5	2402	Ant0	2.879	285.021	99	31600	400	Pass
NVNT	2-DH1	2402	Ant0	0.383	120.645	315	31600	400	Pass
NVNT	2-DH3	2402	Ant0	1.633	282.509	173	31600	400	Pass
NVNT	2-DH5	2402	Ant0	2.883	351.726	122	31600	400	Pass
NVNT	3-DH1	2402	Ant0	0.383	120.262	314	31600	400	Pass
NVNT	3-DH3	2402	Ant0	1.634	277.78	170	31600	400	Pass
NVNT	3-DH5	2402	Ant0	2.885	308.695	107	31600	400	Pass
NVNT	1-DH1	2402	Ant3	0.374	119.306	319	31600	400	Pass
NVNT	1-DH3	2402	Ant3	1.63	264.06	162	31600	400	Pass
NVNT	1-DH5	2402	Ant3	2.879	279.263	97	31600	400	Pass
NVNT	2-DH1	2402	Ant3	0.381	120.396	316	31600	400	Pass
NVNT	2-DH3	2402	Ant3	1.635	281.22	172	31600	400	Pass
NVNT	2-DH5	2402	Ant3	2.883	348.843	121	31600	400	Pass
NVNT	3-DH1	2402	Ant3	0.375	117.75	314	31600	400	Pass
NVNT	3-DH3	2402	Ant3	1.634	281.048	172	31600	400	Pass
NVNT	3-DH5	2402	Ant3	2.885	326.005	113	31600	400	Pass

