Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: Low Range: 1LSB = $6.1\mu V$, $3.99019 \pm 0.7\%$ (k=2) full range = -100...+300 mV $3.97763 \pm 0.7\%$ (k=2) $3.97614 \pm 0.7\% (k=2)$ full range = -1.....+3mV 61nV, 1LSB = DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Z Y X **Calibration Factors** 404.478 ± 0.15% (k=2) 404.654 \pm 0.15% (k=2) 405.101 \pm 0.15% (k=2) **High Range** #### **Connector Angle** Certificate No: Z19-60029 **Low Range** | Connector Angle to be used in DASY system | 330.5° ± 1 ° | |---|--------------| Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client : Sporton Certificate No: Z18-60389 ## CALIBRATION GERTIFICATE Object DAE4 - SN: 1437 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: October 15, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|--|-----------------------| | Process Calibrator 753 | 1971018 20-Jun-18 (CTTL, No.J18X05034) | June-19 | | | | | Name **Function** Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Qi Dianyuan SAR Project Leader Issued: October 17, 2018 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. Methods Applied and Interpretation of Parameters: DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Page 2 of 3 Certificate No: Z18-60389 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: Low Range: 1LSB = 1LSB = 6.1μV, 61nV, full range = full range = -100...+300 mV ge = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors X | | Υ | Z | | |-----------------------|-----------------------|-----------------------|-----------------------|--| | High Range | 404.020 ± 0.15% (k=2) | 403.552 ± 0.15% (k=2) | 403.969 ± 0.15% (k=2) | | | Low Range | 3.95263 ± 0.7% (k=2) | 3.94039 ± 0.7% (k=2) | 3.90670 ± 0.7% (k=2) | | #### **Connector Angle** Certificate No: Z18-60389 | Connector Angle to be used in DASY system | 64.5° ± 1 ° | |---|-------------| | | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton ## CALIBRATION CERTIFICATE Object ES3DV3 - SN:3191 Calibration procedure(s) QA CAL-01.v9; QA CAL-23.v5; QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: January 29, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | C-1 D-4- (O 415 + ++++ | | |--|------------------|-----------------------------------|------------------------| | Power meter NRP | | Cal Date (Certificate No.) | Scheduled Calibration | | | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: S5277 (20x) | | Apr-19 | | DAE4 | | 04-Apr-18 (No. 217-02682) | Apr-19 | | | SN: 660 | 19-Dec-18 (No. DAE4-660_Dec18) | Dec-19 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-18 (No. ES3-3013_Dec18) | Dec-19 | | | | | | | Secondary Standards | ID | Check Date (in house) | 0-1-11-10: | | Power meter E4419B | SN: GB41293874 | | Scheduled Check | | Power sensor E4412A | | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | | | | Network Analyzer E8358A | | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | THOMP THIS PLEASE TO SO THE PROPERTY OF PR | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | Calibrated by: Name Function Signature Michael Weber Laboratory, Fechnician Approved by: Katja Poković Technical Manager Issued: February 1, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: ES3-3191_Jan19 #### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: **TSL** NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Methods Applied and Interpretation of Parameters:** - NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ES3-3191_Jan19 Page 2 of 10 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3191 ## Basic Calibration Parameters | | Sensor X | Sensor Y | - | · · · · · · · · · · · · · · · · · · · | |--------------------------|----------|----------|----------|---------------------------------------| | Norm $(\mu V/(V/m)^2)^A$ | 1.27 | | Sensor Z | Unc (k=2) | | DCP (mV) ^B | 93.6 | 1.25 | 1.32 | ± 10.1 % | | | 93.6 | 100.1 | 97.4 | | Calibration Results for Modulation Response | 0 | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Unc ^E
(k=2) | |--------------|---------------------------|---|---------|------------|-----|---------|----------|-------------|---------------------------| | - | CVV | X | 0.0 | 0.0 | 1.0 | 0.00 | 200.0 | ±3.8 % | ± 4.7 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 212.2 | 10.0 /0 | 14.7 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 211.9 | | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the ES3DV3- SN:3191 January 29, 2019 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3191 #### **Other Probe Parameters** | Sensor Arrangement | Triongutar | |---|------------| | Connector Angle (°) | Triangular | | | -5.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | | | Probe Body Diameter | 337 mm | | | 10 mm | | Tip Length | 10 mm | | Tip Diameter | | | Probe Tip to Sensor X Calibration Point | 4 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm | | | 311111 | Certificate No: ES3-3191_Jan19 Page 4 of 10 # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3191 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k≃2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 6.59 | 6.59 | 6.59 | 0.80 | 1.16 | ± 12.0 % | | 835 | 41.5 | 0.90 | 6.38 | 6.38 | 6.38 | 0.52 | 1.40 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.51 | 5.51 | 5.51 | 0.53 | 1.38 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.28 | 5.28 | 5.28 | 0.77 | 1.20 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 5.21 | 5.21 | 5.21 | 0.79 | 1.18 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 4.85 | 4.85 | 4.85 | 0.53 | 1.51 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.69 | 4.69 | 4.69 | 0.80 | 1.25 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.47 | 4.47 | 4.47 | 0.73 | 1.32 | ± 12.0 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined in the convF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # DASY/EASY - Parameters of Probe: ES3DV3 - SN:3191 Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
<u>Permittivity</u> F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|-----------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 6.38 | 6.38 | 6.38 | 0.80 | 1.19 | ± 12.0 % | | 835 | 55.2 | 0.97 | 6.17 | 6.17 | 6.17 | 0.65 | 1.31 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 5.20 | 5.20 | 5.20 | 0.49 | 1.61 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.94 | 4.94 | 4.94 | 0.59 | 1.52 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 4.72 | 4.72 | 4.72 | 0.71 | 1.34 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.56 | 4.56 | 4.56 | 0.74 | 1.23 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 4.38 | 4.38 | 4.38 | 0.80 | 1.20 | ± 12.0 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) January 29, 2019 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) #### **Conversion Factor Assessment** #### Deviation from Isotropy in Liquid Error (ϕ, θ) , f = 900 MHz #### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: EX3-3819 #### CALIBRATION GERTILE Object Calibration procedure(s) QA CAL-01: v9; QA CAL-14: v5; QA CAL-23: v5; QA CAL-25: v7 Calibration procedure for dosimetric Efield probes Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | | T ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|--------------------------------------|------------------------| | Primary Standards | ID | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power meter NRP | SN: 104778 | | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-1 <u>8 (No. 217-02673)</u> | Apr-19 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-18 (No. 217-02682) | Apr-19 | | | SN: 660 | 19-Dec-18 (No. DAE4-660_Dec18) | Dec-19 | | DAE4 | | 31-Dec-18 (No. ES3-3013_Dec18) | Dec-19 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-10 (Ng. 200 co.10_200.07) | | | | | Check Date (in house) | Scheduled Check | | Secondary Standards | ID | | In house check: Jun-20 | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | Network Analyzer E8358A | SN: US41080477 | 31-IVIAL-14 (III House check out 10) | | Signature **Function** Name Michael Webe Calibrated by: Katja Pokovic Approved by: Issued: March 2, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: **TSL** NORMx,y,z tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle Certificate No: EX3-3819_Mar19 information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819 **Basic Calibration Parameters** | Basic Calibration Paran | neters | | | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Basio Gailbian | Sensor X | Sensor Y | Sensor Z | | | 2. Δ | 0.46 | 0.40 | 0.46 | ± 10.1 % | | Norm $(\mu V/(V/m)^2)^A$ | 101.7 | 100.6 | 101.3 | | | DCP (mV) ^B | 101.7 | 100.0 | | | **Calibration Results for Modulation Response** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Unc (k=2) | |-----|---------------------------|-------|---------|------------|-----|---------|----------|-------------|-----------| | | CIA | 1 x 1 | 0.0 | 0.0 | 1.0 | 0.00 | 149.0 | ±3.0 % | ± 4.7 % | | 0 | CW | ++++ | 0.0 | 0.0 | 1.0 | | 142.6 | | | | | | 1 7 | 0.0 | 0.0 | 1.0 | | 155.7 | | <u> </u> | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. [^] The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. March 1, 2019 EX3DV4-SN:3819 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819 #### **Other Probe Parameters** | Other Probe Parameters Sensor Arrangement | Triangular | |---|------------| | | 112.8 | | Connector Angle (°) | enabled | | Mechanical Surface Detection Mode | | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1.4 mm | | Recommended Measurement Distance from Surface | 1.4 11111 | Page 4 of 10 Certificate No: EX3-3819_Mar19 March 1, 2019 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|-------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.00 | 10.00 | 10.00 | 0.42 | 1.05 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.57 | 9.57 | 9.57 | 0.55 | 0.89 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.43 | 9.43 | 9.43 | 0.41 | 1.05 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.68 | 8.68 | 8.68 | 0.29 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.54 | 8.54 | 8.54 | 0.40 | 0.89 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.27 | 8.27 | 8.27 | 0.23 | 0.99 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.20 | 8.20 | 8.20 | 0.35 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.64 | 7.64 | 7.64 | 0.37 | 0.86 | ± 12.0 %_ | | 2450 | 39.2 | 1.80 | 7.21 | 7.21 | 7.21 | 0.34 | 0.92 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.06 | 7.06 | 7.06 | 0.38 | 0.89 | ± 12.0 % | | 3300 | 38.2 | 2.71 | 6.91 | 6.91 | 6.91 | 0.29 | 1.20 | ± 14.0 % | | 3500 | 37.9 | 2.91 | 6.89 | 6.89 | 6.89 | 0.25 | 1.20 | ± 14.0 % | | 3700 | 37.7 | 3.12 | 6.67 | 6.67 | 6.67 | 0.25 | 1.25 | ± 14.0 % | | 5250 | 35.9 | 4.71 | 5.07 | 5.07 | 5.07 | 0.40 | 1.80 | ± 14.0 % | | 5600 | 35.5 | 5.07 | 4.70 | 4.70 | 4.70 | 0.40 | 1.80 | ± 14.0 % | | 5750 | 35.4 | 5.22 | 4.77 | 4.77 | 4.77 | 0.40 | 1.80 | ± 14.0 % | ^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. March 1, 2019 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819 Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Parameter De Relative Permittivity F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|--------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 9.68 | 9.68 | 9.68 | 0.69 | 0.80 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.40 | 9.40 | 9.40 | 0.49 | 0.97 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.36 | 9.36 | 9.36 | 0.50 | 0.92 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.06 | 8.06 | 8.06 | 0.33 | 0.85 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.66 | 7.66 | 7.66 | 0.25 | 1.11 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.49 | 7.49 | 7.49 | 0.32 | 0.96 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.32 | 7.32 | 7.32 | 0.37 | 0.89 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.04 | 7.04 | 7.04 | 0.34 | 0.95 | ± 12.0 % | | 3300 | 51.6 | 3.08 | 6.60 | 6.60 | 6.60 | 0.28 | 1.20 | ± 14.0 % | | 3500 | 51.3 | 3.31 | 6.57 | 6.57 | 6.57 | 0.25 | 1.20 | ± 14.0 % | | 3700 | 51.0 | 3.55 | 6.37 | 6.37 | 6.37 | 0.30 | 1.25 | ± 14.0 % | | 5250 | 48.9 | 5.36 | 4.46 | 4.46 | 4.46 | 0.50 | 1.90 | ± 14.0 % | | 5600 | 48.5 | 5.77 | 3.92 | 3.92 | 3.92 | 0.50 | 1.90 | ± 14.0 % | | 5750 | 48.3 | 5.94 | 4.07 | 4.07 | 4.07 | 0.50 | 1.90 | ± 14.0 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) March 1, 2019 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3819 March 1, 2019 ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (ϕ, ϑ) , f = 900 MHz