Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton
Certificate No: CD835V3-1045_Sep18
CALIBRATION CERTIFICATE

Object
CD835V3-SN: 1045

Calibration procedure(s)
QA CAL-20.v6
Calibration procedure for dipoles in air

Calibration date:
September 19, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Probe EF3DV3	SN: 4013	05-Mar-18 (No. EF3-4013_Mar18)	Mar-19
DAE4	SN: 781	17-Jan-18 (No. DAE4-781_Jan18)	Jan-19
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
RF generator R\&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	in house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	- clor
Approved by:	Katja Pokovic	Technical Manager	

Issued: September 24, 2018
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid \& Partner
Engineering $A G$
Zeughausstrasse 43, 8004 Zurich, Switzerland

C Service suisse d'étalonnage
s
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011
American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections.
It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipote positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70 cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20 mm wide, its length exceeds the dipole arm length (180 or 90 mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	$\mathrm{dx}, \mathrm{dy}=5 \mathrm{~mm}$	
Frequency	$835 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Input power drift	$<0.05 \mathrm{~dB}$	

Maximum Field values at 835 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	$109.3 \mathrm{~V} / \mathrm{m}=40.77 \mathrm{dBV} / \mathrm{m}$
Maximum measured above low end	100 mW input power	$108.2 \mathrm{~V} / \mathrm{m}=40.68 \mathrm{dBV} / \mathrm{m}$
Averaged maximum above arm	100 mW input power	$108.8 \mathrm{~V} / \mathrm{m} \pm \mathbf{1 2 . 8} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	16.0 dB	$40.8 \Omega-11.3 \mathrm{j} \Omega$
835 MHz	32.3 dB	$49.4 \Omega+2.3 \mathrm{j} \Omega$
880 MHz	18.1 dB	$57.9 \Omega-11.0 \mathrm{j} \Omega$
900 MHz	18.2 dB	$48.3 \Omega-12.1 \mathrm{j} \Omega$
945 MHz	20.5 dB	$49.1 \Omega+9.3 \mathrm{j} \Omega$

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.
The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.
Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

DASY5 E-field Result

Test Laboratory: SPEAG Lab2
DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1045
Communication System: UID 0 - CW ; Frequency: 835 MHz
Medium parameters used: $\sigma=0 \mathrm{~S} / \mathrm{m}, \varepsilon_{\mathrm{r}}=1 ; \rho=0 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: RF Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole E-Field measurement @ $835 \mathrm{MHz} / \mathrm{E}-$ Scan $-835 \mathrm{MHz} \mathrm{d}=15 \mathrm{~mm} /$ Hearing Aid Compatibility Test (41x361x1):
Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: $0,0,-6.3 \mathrm{~mm}$
Reference Value $=132.0 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.00 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=40.77 \mathrm{dBV} / \mathrm{m}$
Emission category: M3
MIF scaled E-field

$\begin{aligned} & \text { Grid } 1 \mathrm{M} 3 \\ & 40.25 \mathrm{dBV} / \mathrm{m} \end{aligned}$	$\begin{aligned} & \text { Grid } 2 \mathrm{M} 3 \\ & 40.68 \mathrm{dBV} / \mathrm{m} \end{aligned}$	$\begin{aligned} & \text { Grid } 3 \mathrm{M} 3 \\ & 40.63 \mathrm{dBV} / \mathrm{m} \end{aligned}$
Grid 4 M4	Grid 5 M4	Grid 6 M4
35.68 dBV/m	35.97 dBV/m	$35.93 \mathrm{dBV} / \mathrm{m}$
Grid 7 M3	Grid 8 M3	Grid 9 M3
$40.47 \mathrm{dBV} / \mathrm{m}$	$40.77 \mathrm{dBV} / \mathrm{m}$	$40.67 \mathrm{dBV} / \mathrm{m}$

CD835V3, serial no. 1045 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.
<Justification of the extended calibration>

CD835V3 - serial no. 1045						
	835MHZ					
Date of Measurement	Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
09.19.2018	-32.3		49.4		2.3	
09.18.2019	-29.104	-9.89	48.042	-1.358	1.772	-0.528
09.17.2020	-33.129	2.57	50.259	-0.859	0.57221	1.72779

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.
<Dipole Verification Data> - D835 V3, serial no. 1045 (Data of Measurement : 09.18.2019)
835 MHz - Head

SPORTON LAB.
<Dipole Verification Data> - CD835 V3, serial no. 1045 (Data of Measurement : 9.17.2020)
835 MHz - Head

1 Start 335 MHz
Tri Sil Smith ($\mathrm{R}+\mathrm{j} \times$) scale 1.000 U [F1 Del]

Calibration Laboratory of
Schmid \& Partner

Schweizerischer Kalibrierdienst
C
Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Object

Calibration procedure(s)

CD1880V3-SN: 1038

QA CAL-20.v6
Calibration procedure for dipoles in air

September 19, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Probe EF3DV3	SN: 4013	05-Mar-18 (No. EF3-4013_Mar18)	Mar-19
DAE4	SN: 781	17-Jan-18 (No. DAE4-781_Jan18)	Jan-19
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
RF generator R\&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
Network Analyzer HP 8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: September 24, 2018
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Sinnech 50
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No: SCS 0108
Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011
American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections.
It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70 cm away from any obstacles.
- E-field distribution: E field is measured in the x - y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20 mm wide, its length exceeds the dipole arm length (180 or 90 mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	$\mathrm{dx}, \mathrm{dy}=5 \mathrm{~mm}$	
Frequency	$1730 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Input power drift	$1880 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Maximum Field values at 1730 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	$97.0 \mathrm{~V} / \mathrm{m}=39.74 \mathrm{dBV} / \mathrm{m}$
Maximum measured above low end	100 mW input power	$96.0 \mathrm{~V} / \mathrm{m}=39.65 \mathrm{dBV} / \mathrm{m}$
Averaged maximum above arm	100 mW input power	$\mathbf{9 6 . 5 \mathrm { V } / \mathrm { m } \pm 1 2 . 8 \% (\mathrm { k } = \mathbf { 2 })}$

Maximum Field values at $1880 \mathbf{~ M H z}$

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	$90.3 \mathrm{~V} / \mathrm{m}=\mathbf{3 9 . 1 1 \mathrm { dBV } / \mathrm { m }}$
Maximum measured above low end	100 mW input power	$88.8 \mathrm{~V} / \mathrm{m}=38.97 \mathrm{dBV} / \mathrm{m}$
Averaged maximum above arm	100 mW input power	$\mathbf{8 9 . 5 ~ V / m} \pm \mathbf{1 2 . 8} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Nominal Frequencies

Frequency	Return Loss	Impedance
1730 MHz	22.9 dB	$55.7 \Omega+5.1 \mathrm{j} \Omega$
1880 MHz	21.2 dB	$59.3 \Omega+2.0 \mathrm{j} \Omega$
1900 MHz	21.6 dB	$59.1 \Omega-1.1 \mathrm{j} \Omega$
1950 MHz	25.9 dB	$50.7 \Omega-5.0 \mathrm{j} \Omega$
2000 MHz	20.7 dB	$43.8 \Omega+6.1 \mathrm{j} \Omega$

Additional Frequencies

Frequency	Return Loss	Impedance
1730 MHz	22.9 dB	$55.7 \Omega+5.1 \mathrm{j} \Omega$

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.
The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.
Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

DASY5 E-field Result

Test Laboratory: SPEAG Lab2
DUT: HAC Dipole 1880 MHz ; Type: CD1880V3; Serial: CD1880V3 - SN: 1038

Communication System: UID $0-\mathrm{CW}$; Frequency: 1880 MHz , Frequency: 1730 MHz
Medium parameters used: $\sigma=0 \mathrm{~S} / \mathrm{m}, \epsilon_{\mathrm{r}}=1 ; \rho=0 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: RF Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EF3DV3 - SN4013; ConvF(1, 1, 1)@ $1880 \mathrm{MHz}, \operatorname{ConvF}(1,1,1) @ 1730 \mathrm{MHz}$; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole E-Field measurement @ $1880 \mathrm{MHz} / \mathrm{E}-$ Scan $-1880 \mathrm{MHz} \mathrm{d}=15 \mathrm{~mm} /$ Hearing Aid Compatibility Test (41x181x1):
Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: $0,0,-6.3 \mathrm{~mm}$
Reference Value $=155.2 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.03 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=39.11 \mathrm{dBV} / \mathrm{m}$
Emission category: M2
MIF scaled E-field

Grid I M2 $38.75 \mathrm{dBV} / \mathrm{m}$	Grid 2 M2 $39.11 \mathrm{dBV} / \mathrm{m}$	Grid 3 M2 $39.05 \mathrm{dBV} / \mathrm{m}$
Grid 4 M2	Grid 5 M2	Grid 6 M2
$36.11 \mathrm{dBV} / \mathrm{m}$	36.24 dBV/m	$36.17 \mathrm{dBV} / \mathrm{m}$
Grid 7 M2	Grid 8 M2	Grid 9 M2
$38.77 \mathrm{dBV} / \mathrm{m}$	$38.97 \mathrm{dBV} / \mathrm{m}$	$38.81 \mathrm{dBV} / \mathrm{m}$

Dipole E-Field measurement @ $1730 \mathrm{MHz} /$ E-Scan -1730 MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: $0,0,-6.3 \mathrm{~mm}$
Reference Value $=168.4 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.00 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=39.74 \mathrm{dBV} / \mathrm{m}$
Emission category: M2
MIF scaled E-field

Grid $1 \mathrm{M2}$	Grid $2 \mathrm{M2}$	Grid $3 \mathrm{M2}$
$39.27 \mathrm{dBV} / \mathrm{m}$	$39.65 \mathrm{dBV} / \mathrm{m}$	$39.59 \mathrm{dBV} / \mathrm{m}$
Grid $4 \mathrm{M2}$	Grid 5 M 2	Grid $6 \mathrm{M2}$
$36.98 \mathrm{dBV} / \mathrm{m}$	$37.17 \mathrm{dBV} / \mathrm{m}$	$37.12 \mathrm{dBV} / \mathrm{m}$
Grid $7 \mathrm{M2}$	Grid $8 \mathrm{M2}$	Grid $9 \mathrm{M2}$
$39.5 \mathrm{dBV} / \mathrm{m}$	$39.74 \mathrm{dBV} / \mathrm{m}$	$39.61 \mathrm{dBV} / \mathrm{m}$

CD1880V3, serial no. 1038 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.
<Justification of the extended calibration>

CD1880V3 - serial no. 1038						
	1730MHZ					
Date of Measurement	Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
09.19.2018	-22.9		55.7		5.1	
09.18.2019	-21.704	-5.22	56.98	1.28	5.926	0.826
09.17.2020	-20.861	-8.9	56.653	-0.953	5.4734	-0.3734
	1880MHZ					
Date of Measurement	Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
09.19.2018	-21.2		59.3		2	
09.18.2019	-21.662	2.18	58.318	-0.982	2.923	0.923
09.17.2020	-22.276	5.08	59.3	-0.04	1.7621	0.2379

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.
<Dipole Verification Data> - D1880 V3, serial no. 1038 (Data of Measurement : 09.18.2019)

1880 MHz - Head

SPORTON LAB.
<Dipole Verification Data> - CD1880 V3, serial no. 1038 (Data of Measurement : 9.17.2020)
1880 MHz - Head

1 Start 1.38 GHz
IFBW 70 kHz
Stop 2.38 GHz Cor

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Clien
Sporton
CertificateNo, CD2600V3-1010 Mat19
CALIBRATION CERTIFICATE

Object
Calibration procedure(s)

CD2600V3-SN: 1010

QA CAL-20.V7 Calibration Procedure for Validation Sources in air

Calibration date:

March 14, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	O4-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: $5058(20 \mathrm{k})$	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: $5047.2 / 06327$	04-Apr-18 (No.217-02683)	Apr-19
Probe EF3DV3	SN: 4013	03-Jan-19 (No. EF3-4013_Jan19)	Jan-20
DAE4	SN: 781	09-Jan-19 (No. DAE4-781_Jan19)	Jan-20

Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
RF generator R\&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
Network Analyzer HP 8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Claudio Leubler	

Issued: March 14, 2019
This calibration certificate shall not be reproduced except in fuil without written approval of the laboratory.

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S	Schweizerischer Kalibrierdienst
C	Service suisse d'étalonnage
S	Servizio svizzero di taratura
	Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011
American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the tabie) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections.
It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70 cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20 mm wide, its length exceeds the dipole arm length (180 or 90 mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	$\mathrm{dx}, \mathrm{dy}=5 \mathrm{~mm}$	
Frequency	$2600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Input power drift	$<0.05 \mathrm{~dB}$	

Maximum Field values at 2600 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	$84.9 \mathrm{~V} / \mathrm{m}=38.58 \mathrm{dBV} / \mathrm{m}$
Maximum measured above low end	100 mW input power	$84.0 \mathrm{~V} / \mathrm{m}=38.49 \mathrm{dBV} / \mathrm{m}$
Averaged maximum above arm	100 mW input power	$\mathbf{8 4 . 5 \mathrm { V } / \mathrm { m } \pm \mathbf { 1 2 . 8 } \% (\mathbf { k } = \mathbf { 2 })}$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
2450 MHz	24.0 dB	$45.3 \Omega-3.7 \mathrm{j} \Omega$
2550 MHz	30.7 dB	$52.4 \Omega+1.8 \mathrm{j} \Omega$
2600 MHz	26.5 dB	$54.8 \Omega-1.1 \mathrm{j} \Omega$
2650 MHz	25.2 dB	$52.5 \Omega-5.0 \mathrm{j} \Omega$
2750 MHz	19.9 dB	$46.3 \Omega-9.0 \mathrm{j} \Omega$

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.
The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.
Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2600 MHz ; Type: CD2600V3; Serial: CD2600V3 - SN: 1010

Communication System: UID $0-\mathrm{CW}$; Frequency: 2600 MHz
Medium parameters used: $\sigma=0 \mathrm{~S} / \mathrm{m}, \varepsilon_{\mathrm{r}}=1 ; \rho=0 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: RF Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 2600 MHz ; Calibrated: 03.01.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 09.01.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole E-Field measurement @ $2600 \mathrm{MHz} / \mathrm{E}-\mathrm{Scan}-2600 \mathrm{MHz} \mathrm{d}=15 \mathrm{~mm} /$ Hearing Aid Compatibility Test (41x181x1):
Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: $0,0,-6.3 \mathrm{~mm}$
Reference Value $=62.41 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=38.58 \mathrm{dBV} / \mathrm{m}$
Emission category: M2

MIF scaled E-field

Grid $1 \mathrm{M2} 2$ $38.15 \mathrm{dBV} / \mathrm{m}$	Grid $2 \mathrm{M2}$	Grid $3 \mathrm{M2} 2$
Grid 4 M 2	GBV/m	$38.45 \mathrm{dBV} / \mathrm{m}$
$37.72 \mathrm{dBV} / \mathrm{m}$	$38.04 \mathrm{dBV} / \mathrm{m}$	Grid $6 \mathrm{M2}$
$38.01 \mathrm{dBV} / \mathrm{m}$		
Grid $7 \mathrm{M2}$	Grid 8 M 2	Grid $9 \mathrm{M2}$
$38.23 \mathrm{dBV} / \mathrm{m}$	$38.58 \mathrm{dBV} / \mathrm{m}$	$38.54 \mathrm{dBV} / \mathrm{m}$

$$
0 \mathrm{~dB}=84.91 \mathrm{~V} / \mathrm{m}=38.58 \mathrm{dBV} / \mathrm{m}
$$

CD2600V3, serial no. 1010 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.
<Justification of the extended calibration>

CD2600V3 - serial no. 1010						
Date of Measurement	Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
03.14 .2019 (Cal. Report)	-26.535		54.826			
03.13.2020 (extended)	-27.031	1.87	52.661	2.165	-1.0561	

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.
<Dipole Verification Data> - CD2600 V3, serial no. 1010 (Data of Measurement : 03.13.2020)
2600 MHz - Head

SPORTON INTERNATIONAL INC.
TEL : 886-3-327-3456
FAX : 886-3-328-4978

S Schweizerischer Kalibrierdienst

Zeughausstrasse 43, 8004 Zurich, Switzerland
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Sporton
Certificate No: CD3500V3-1009_Feb19

CALIBRATION CERTIFICATE

Object

Calibration procedure(s)

Calibration date:

CD3500V3-SN: 1009

QA CAL-20.v7 Calibration Procedure for Validation Sources in air

February 18, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facillty: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Centificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Probe EF3DV3	SN: 4013	03-Jan-19 (No. EF3-4013_Jan19)	Jan-20
DAE4	SN: 781	09-Jan-19 (No. DAE4-781_Jan19)	Jan-20
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
RF generator R\&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
Network Analyzer HP 8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	
			Issued: February 18, 2019

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

(sis)
S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011
American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions:' Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections.
It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70 cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20 mm wide, its length exceeds the dipole arm length (180 or 90 mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	$\mathrm{dx}, \mathrm{dy}=5 \mathrm{~mm}$	
Frequency	$3500 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Input power drift	$<0.05 \mathrm{~dB}$	

Maximum Field values at 3500 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	$85.2 \mathrm{~V} / \mathrm{m}=38.61 \mathrm{dBV} / \mathrm{m}$
Maximum measured above low end	100 mW input power	$84.1 \mathrm{~V} / \mathrm{m}=38.49 \mathrm{dBV} / \mathrm{m}$
Averaged maximum above arm	100 mW input power	$84.6 \mathrm{~V} / \mathrm{m} \pm 12.8 \%(\mathrm{k}=2)$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
3300 MHz	17.9 dB	$64.5 \Omega+1.4 \mathrm{j} \Omega$
3400 MHz	22.1 dB	$55.9 \Omega-5.8 \mathrm{j} \Omega$
3500 MHz	24.7 dB	$52.0 \Omega-5.6 \mathrm{j} \Omega$
3600 MHz	23.2 dB	$48.3 \Omega-6.6 \mathrm{j} \Omega$
3700 MHz	22.1 dB	$42.9 \Omega-2.0 \mathrm{j} \Omega$

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.
The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.
Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Date: 18.02.2019

Test Laboratory: SPEAG Lab2
DUT: HAC Dipole 3500 MHz ; Type: CD3500V3; Serial: CD3500V3 - SN: 1009
Communication System: UID 0 - CW ; Frequency: 3500 MHz
Medium parameters used: $\sigma=0 \mathrm{~S} / \mathrm{m}, \varepsilon_{\mathrm{r}}=1 ; \rho=0 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: RF Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 3500 MHz ; Calibrated: 03.01.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 09.01.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole E-Field measurement @ $3500 \mathrm{MHz} / \mathrm{E}-$ Scan $-3500 \mathrm{MHz} \mathrm{d}=15 \mathrm{~mm} /$ Hearing Aid Compatibility Test (41x181x1):
Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: $0,0,-6.3 \mathrm{~mm}$
Reference Value $=33.68 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=38.61 \mathrm{dBV} / \mathrm{m}$
Emission category: M2
MIF scaled E-field

Grid $1 \mathrm{M2}$ $38.14 \mathrm{dBV} / \mathrm{m}$	Grid 2 M 2 $38.49 \mathrm{dBV} / \mathrm{m}$	Grid $3 \mathrm{M2}$ $38.48 \mathrm{dBV} / \mathrm{m}$
Grid $4 \mathrm{M2}$ $38.34 \mathrm{dBV} / \mathrm{m}$	Grid $5 \mathrm{M2}$ $38.61 \mathrm{dBV} / \mathrm{m}$	Grid $6 \mathrm{M2}$ $38.55 \mathrm{dBV} / \mathrm{m}$
Grid 7 M 2 $38.31 \mathrm{dBV} / \mathrm{m}$	Grid $8 \mathrm{M2}$	Grid $9 \mathrm{M2}$

CD3500V3, serial no. 1009 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.
<Justification of the extended calibration>

CD3500V3 - serial no. 1009						
	3500MHZ					
Date of Measurement	Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
02.18.2019 (Cal. Report)	-24.698		52.048		-5.5853	
$\begin{aligned} & 02.17 .2020 \\ & \text { (extended) } \end{aligned}$	-23.48	-4.932	55.132	-3.084	-4.9272	-0.6581

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.
<Dipole Verification Data> - CD3500 V3, serial no. 1009 (Data of Measurement : 02.17.2020) 3500 MHz - Head

Calibration Laboratory of
 Schmid \& Partner
 Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton
Certificate No: CD5500V3-1009_Jan19
CALIBRATION CERTIFICATE

Object	CD5500V3-SN: 1009		
Calibration procedure(s)	QA CAL-20.v7 Calibration Procedure for Validation Sources in air		
Calibration date:	January 30, 2019		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility; environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.			
Calibration Equipment used (MATE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Schedul
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2/06327	04-Apr-18 (No. 217-02683)	Apr-19
Probe EF3DV3	SN: 4013	03-Jan-19 (No. EF3-4013_Jan19)	Jan-20
DAE4	SN: 781	09-Jan-19 (No. DAE4-781_Jan19)	Jan-20
Secondary Standards	ID \#	Check Date (in house)	Schedul
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house
Power sensor HP 8482A	SN: US37295597	$09-$ Oct-09 (in house check Oct-17)	In house
FF generator R\&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house
Network Analyzer HP 8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house
	Name	Function	Signatu
Calibrated by:	Leif Klysner	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	
			Issued:

Calibration Laboratory of
 Schmid \＆Partner
 Engineering AG

Zeughausstrasse 43， 8004 Zurich，Switzeriand

Schweizerischer Kalibrierdienst
Service suisse d＇étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service（SAS）
Accreditation No．：SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

［1］ANSI－C63．19－2011
American National Standard，Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids．

Methods Applied and Interpretation of Parameters：

－Coordinate System：y－axis is in the direction of the dipole arms．z－axis is from the basis of the antenna （mounted on the table）towards its feed point between the two dipole arms．x－axis is normal to the other axes． In coincidence with the standards［1］，the measurement planes（probe sensor center）are selected to be at a distance of 15 mm above the top metal edge of the dipole arms．
－Measurement Conditions：Further details are available from the hardcopies at the end of the certificate．All figures stated in the certificate are valid at the frequency indicated．The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler．While the dipole under test is connected，the forward power is adjusted to the same level．
－Antenna Positioning：The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor．The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections．
It is verified before the mounting of the dipole under the Test Arch phantom，that its arms are perfectly in a line．It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom．The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job．Before the measurement，the distance between phantom surface and probe tip is verified．The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point（upper surface of the dipole）and the matching grid reference point（tip of the probe）considering the probe sensor offset．The vertical distance to the probe is essential for the accuracy．
－Feed Point Impedance and Return Loss：These parameters are measured using a HP 8753E Vector Network Analyzer．The impedance is specified at the SMA connector of the dipole．The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air，at least 70 cm away from any obstacles．
－E－field distribution：E field is measured in the x－y－plane with an isotropic ER3D－field probe with 100 mW forward power to the antenna feed point．In accordance with［1］，the scan area is 20 mm wide，its length exceeds the dipole arm length（ 180 or 90 mm ）．The sensor center is 15 mm （in z）above the metal top of the dipole arms．Two 3D maxima are available near the end of the dipole arms．Assuming the dipole arms are perfectly in one line，the average of these two maxima（in subgrid 2 and subgrid 8 ）is determined to compensate for any non－parallelity to the measurement plane as well as the sensor displacement．The E－field value stated as calibration value represents the maximum of the interpolated 3D－E－field，in the plane above the dipole surface．

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$ ，which for a normal distribution corresponds to a coverage probability of approximately 95% ．

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	$\mathrm{dx}, \mathrm{dy}=5 \mathrm{~mm}$	
Frequency	$5500 \mathrm{MHz} \pm 1 \mathrm{MHz}$	
Input power drift	$<0.05 \mathrm{~dB}$	

Maximum Field values at 5500 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum above arm	100 mW input power	$\mathbf{9 9 . 8} \mathrm{V} / \mathrm{m} \pm \mathbf{1 2 . 8} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
5000 MHz	21.4 dB	$43.5 \Omega-4.6 \mathrm{j} \Omega$
5200 MHz	29.9 dB	$47.3 \Omega+1.6 \mathrm{j} \Omega$
5500 MHz	23.9 dB	$56.8 \Omega+0.4 \mathrm{j} \Omega$
5800 MHz	21.4 dB	$42.8 \Omega+3.1 \mathrm{j} \Omega$
5900 MHz	21.3 dB	$47.5 \Omega+8.1 \mathrm{j} \Omega$

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.
The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.
Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

DASY5 E-field Result

Date: 30.01.2019
Test Laboratory: SPEAG Lab2
DUT: HAC Dipole 5500 MHz ; Type: CD5500V3; Serial: CD5500V3 - SN: 1009

Communication System: UID $0-\mathrm{CW}$; Frequency: 5500 MHz
Medium parameters used: $\sigma=0 \mathrm{~S} / \mathrm{m}, \varepsilon_{\mathrm{r}}=1 ; \rho=0 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: RF Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 5500 MHz ; Calibrated: 03.01.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 09.01.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.2(1495); SEMCAD X 14.6.12 (7450)

Dipole E-Field measurement @ $5500 \mathrm{MHz} / \mathrm{E}-$ Scan -5500 MHz d=15mm/Hearing Aid Compatibility Test (41x121x1):
Interpolated grid: $\mathrm{dx}=0.5000 \mathrm{~mm}, \mathrm{dy}=0.5000 \mathrm{~mm}$
Device Reference Point: $0,0,-6.3 \mathrm{~mm}$
Reference Value $=132.0 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Applied MIF $=0.00 \mathrm{~dB}$
RF audio interference level $=39.99 \mathrm{dBV} / \mathrm{m}$
Emission category: M2
MIF scaled E-field

$\begin{aligned} & \text { Grid } 1 \mathrm{M2} \\ & 39.13 \mathrm{dBV} / \mathrm{m} \end{aligned}$	Grid 2 M2 $39.36 \mathrm{dBV} / \mathrm{m}$	Grid 3 M2 $39.25 \mathrm{dBV} / \mathrm{m}$
Grid 4 M2	Grid 5 M2	Grid 6 M2
39.74 dBV/m	$39.99 \mathrm{dBV} / \mathrm{m}$	$39.86 \mathrm{dBV} / \mathrm{m}$
Grid 7 M2	Grid 8 M2	Grid 9 M2
$39.24 \mathrm{dBV} / \mathrm{m}$	$39.51 \mathrm{dBV} / \mathrm{m}$	39.4 dBV/m

$$
0 \mathrm{~dB}=99.84 \mathrm{~V} / \mathrm{m}=39.99 \mathrm{dBV} / \mathrm{m}
$$

CD5500V3, serial no. 1009 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.
<Justification of the extended calibration>

CD5500V3 - serial no. 1009						
	5500MHZ					
Date of Measurement	Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
01.30.2019 (Cal. Report)	-23.899		56.798		0.44631	
$01.29 .2020$ (extended)	-25.387	-6.226	52.651	4.147	-4.274	4.7203

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.
<Dipole Verification Data> - CD5500 V3, serial no. 1009 (Data of Measurement : 01.29.2020)
5500 MHz - Head

Dr1 sll Smith ($\mathrm{R}+\mathrm{j} \times$) Scale 1.000 L [F1 Del]

