

DASY5 Validation Report for Head TSL

Date: 25.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1016

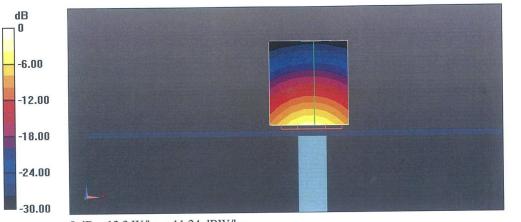
Communication System: UID 0 - CW; Frequency: 3400 MHz, Frequency: 3500 MHz, Frequency: 3600 MHz Medium parameters used: f = 3400 MHz; σ = 2.85 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³, Medium parameters used: f = 3500 MHz; σ = 2.92 S/m; ϵ_r = 37.7; ρ = 1000 kg/m³, Medium parameters used: f = 3600 MHz; σ = 2.99 S/m; ϵ_r = 37.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.75, 7.75, 7.75) @ 3400 MHz, ConvF(7.75, 7.75, 7.75) @ 3500 MHz, ConvF(7.5, 7.5, 7.5) @ 3600 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm 3400/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.20 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 6.90 W/kg; SAR(10 g) = 2.60 W/kg Maximum value of SAR (measured) = 13.4 W/kg

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm 3500/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.35 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 6.74 W/kg; SAR(10 g) = 2.54 W/kg Maximum value of SAR (measured) = 13.2 W/kg


Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm 3600/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.96 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 6.71 W/kg; SAR(10 g) = 2.5 W/kg Maximum value of SAR (measured) = 13.3 W/kg

Certificate No: D3500V2-1016_Jul19

Page 8 of 13

0 dB = 13.3 W/kg = 11.24 dBW/kg

Certificate No: D3500V2-1016_Jul19

Page 9 of 13

View Channel Sweep Calibration Trace Scale Marker System Window Help File 3.500000 GHz 54.190 Ω 11.884 pF -3.8264 Ω 46.368 Ω 3.400000 GHz -7.8346 Ω 5.9771 pF 3.600000 GHz 59.194 Ω $800.38 \text{ m}\Omega$ 35.384 pH 54.424 mU 3.500000 GHz -40.300 ° Ch 1 Avg = 20 Ch1: Start 3.20000 GHz Stop 3.80000 GHz 3.500000 GHz 284 dB 10.00 dB S11 5.00 3.400000 GHz -20.984 dB 0.00 3.800000 GHz -21.462 dB -5.00 10.00 -15.00 -20.00 -5 25.00 30.00 35.00 40.00 Ch 1 Avg = 20 Ch1: Start 3.20000 GHz Stop 3.80000 GHz LCL CH 1: S11 C* 1-Port Avg=20 Delay Status

Impedance Measurement Plot for Head TSL

Certificate No: D3500V2-1016_Jul19

Page 10 of 13

DASY5 Validation Report for Body TSL

Date: 23.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1016

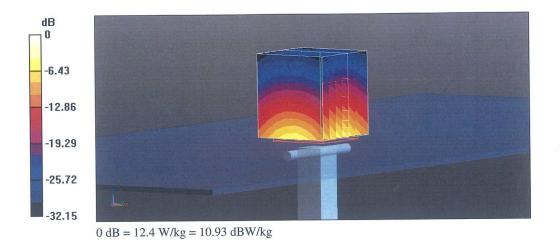
Communication System: UID 0 - CW; Frequency: 3500 MHz, Frequency: 3400 MHz, Frequency: 3600 MHz Medium parameters used: f = 3400 MHz; σ = 3.22 S/m; ϵ_r = 50.3; ρ = 1000 kg/m³, Medium parameters used: f = 3500 MHz; σ = 3.32 S/m; ϵ_r = 50.2; ρ = 1000 kg/m³, Medium parameters used: f = 3600 MHz; σ = 3.42 S/m; ϵ_r = 50; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.35, 7.35, 7.35) @ 3400 MHz, ConvF(7.1, 7.1, 7.1) @ 3500 MHz, ConvF(7.35, 7.35, 7.35) @ 3600 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

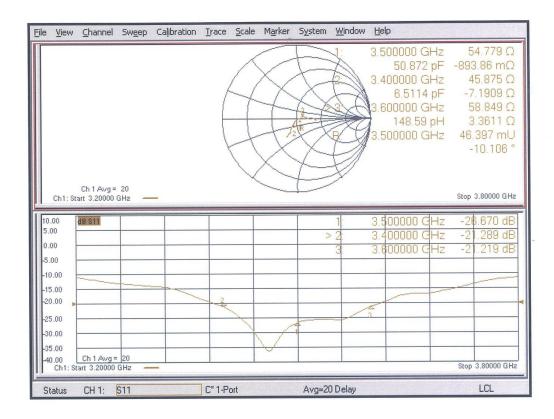
Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3400/Zoom Scan , dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.31 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 6.53 W/kg; SAR(10 g) = 2.44 W/kg Maximum value of SAR (measured) = 12.3 W/kg

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3500/Zoom Scan , dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.85 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 6.47 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 12.4 W/kg


```
Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3600/Zoom Scan ,
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 65.08 V/m; Power Drift = -0.04 dB
Peak SAR (extrapolated) = 16.9 W/kg
SAR(1 g) = 6.39 W/kg; SAR(10 g) = 2.36 W/kg
Maximum value of SAR (measured) = 12.2 W/kg
```

Certificate No: D3500V2-1016_Jul19

Page 11 of 13


Certificate No: D3500V2-1016_Jul19

Page 12 of 13

Impedance Measurement Plot for Body TSL

Certificate No: D3500V2-1016_Jul19

Page 13 of 13

2600 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CTTL (Auden)		Certif	icate No: D2600V2-1012_Jul19
ALIBRATION C	ERTIFICATI	E	
Dbject	D2600V2 - SN:1	012	4
Calibration procedure(s)	QA CAL-05.v11		
	Calibration Proce	edure for SAR Validation Sc	ources between 0.7-3 GHz
Calibration date:	July 17 0010		
and and date.	July 17, 2019		
his calibration certificate docume	nts the traceability to nat	ional standards, which realize the phy	rsical units of measurements (SI).
the measurements and the uncert	anties with confidence p	probability are given on the following p	ages and are part of the certificate.
All calibrations have been conducted	ed in the closed laborato	ry facility: environment temperature (2	$22 \pm 3)^{\circ}$ C and humidity < 70%
Calibration Equipment used (M&TE	E critical for calibration)		
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
ower sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
ower sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
eference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
eference Probe EX3DV4	SN: 7349	29-May-19 (No. EX3-7349_May19)) May-20
AE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
econdary Standards	ID #	Check Date (in house)	Scheduled Check
ower meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)) In house check: Oct-20
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
ower sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
F generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
etwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	MULLET
approved by:	Katja Pokovic	Technical Manager	Ally
			Issued: July 17, 2019

Certificate No: D2600V2-1012_Jul19

Page 1 of 8

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1012 Jul19

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	102.10.2
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	inter option
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.38 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.4 ± 6 %	2.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.0 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
	oonanion	
SAR measured	250 mW input power	6.26 W/kg

Certificate No: D2600V2-1012_Jul19

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.5 Ω - 6.3 jΩ	
Return Loss	- 23.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.8 Ω - 4.7 jΩ
Return Loss	- 21.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG		
-----------------------	--	--

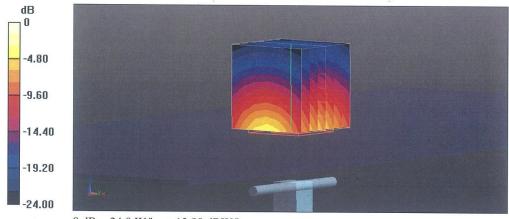
Certificate No: D2600V2-1012_Jul19

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 16.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

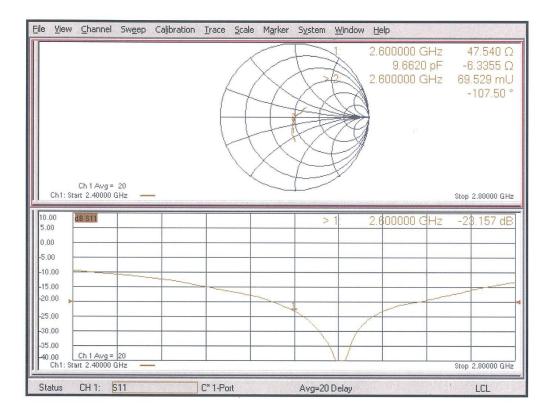
Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.02 S/m; ϵ_r = 37.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.6 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.38 W/kg Maximum value of SAR (measured) = 24.0 W/kg

0 dB = 24.0 W/kg = 13.80 dBW/kg


Certificate No: D2600V2-1012_Jul19

Page 5 of 8

Impedance Measurement Plot for Head TSL

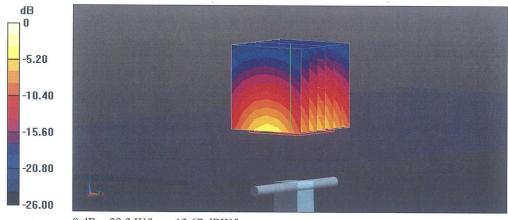
Certificate No: D2600V2-1012_Jul19

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 17.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

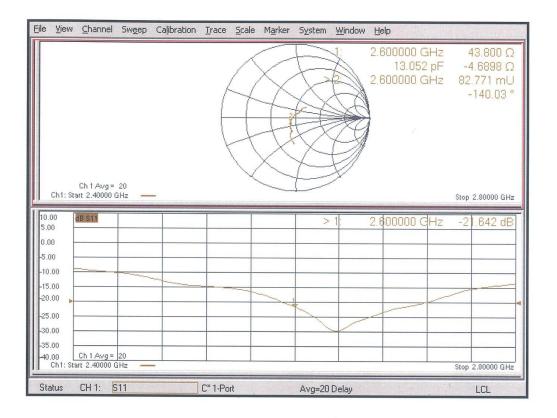
Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.2 S/m; ϵ_r = 50.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.1 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.26 W/kg Maximum value of SAR (measured) = 23.3 W/kg

0 dB = 23.3 W/kg = 13.67 dBW/kg


Certificate No: D2600V2-1012_Jul19

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2600V2-1012_Jul19

Page 8 of 8

5G MHz Dipole Calibration Certificate

Calibration Laboratory of Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage С Engineering AG Servizio svizzero di taratura Zeughausstrasse 43, 8004 Zurich, Switzerland S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **CTTL** (Auden) Certificate No: D5GHzV2-1262_Jan19 **CALIBRATION CERTIFICATE** D5GHzV2 - SN:1262 Object QA CAL-22.v4 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: January 31, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-18 (No. 217-02672/02673) Apr-19 Power sensor NRP-Z91 SN: 103244 04-Apr-18 (No. 217-02672) Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) Apr-19 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Apr-19 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Apr-19 Reference Probe EX3DV4 SN: 3503 31-Dec-18 (No. EX3-3503_Dec18) Dec-19 DAE4 SN: 601 04-Oct-18 (No. DAE4-601_Oct18) Oct-19 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter EPM-442A SN: GB37480704 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 SN: US41080477 Network Analyzer Agilent E8358A 31-Mar-14 (in house check Oct-18) In house check: Oct-19 Name Function Signature Calibrated by: Michael Weber Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: February 5, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1262_Jan19

Page 1 of 13

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1262_Jan19

Page 2 of 13