TEST REPORT No. I19Z61344-WMD01 for OnePlus Technology (Shenzhen) Co., Ltd. **Smart Phone** **Model Name: HD1925** FCC ID: 2ABZ2-EE143 with Hardware Version: 46 Software Version: Oxygen OS 10.0.HD61CB Issued Date: 2019-11-01 #### Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government. #### **Test Laboratory:** #### CTTL-Telecommunication Technology Labs, CAICT No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191. Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504 Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn ## **REPORT HISTORY** | Report Number | Revision | Description | Issue Date | |-----------------|----------|-------------------------|------------| | I19Z61344-WMD01 | Rev.0 | 1 st edition | 2019-10-25 | | I19Z61344-WMD01 | Rev.1 | Adjust the EUT | 2019-11-01 | | | | Voltage information. | | Note: the latest revision of the test report supersedes all previous version. ## **CONTENTS** | 1. | TEST LABORATORY4 | |--------|--| | 1.1 | . INTRODUCTION & ACCREDITATION4 | | 1.2 | Z. TESTING LOCATION4 | | 1.3 | 5. TESTING ENVIRONMENT | | 1.4 | PROJECT DATA5 | | 1.5 | S. SIGNATURE | | 2. | CLIENT INFORMATION6 | | 2.1 | . APPLICANT INFORMATION6 | | 2.2 | MANUFACTURER INFORMATION | | 3. | EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | | 3.1 | . ABOUT EUT | | 3.2 | . INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST | | 3.3 | 8. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST | | 4. | REFERENCE DOCUMENTS | | 4.1 | . REFERENCE DOCUMENTS FOR TESTING 8 | | 5. | LABORATORY ENVIRONMENT9 | | 6. | SUMMARY OF TEST RESULT 10 | | 7. | TEST EQUIPMENTS UTILIZED11 | | AN | NNEX A: MEASUREMENT RESULTS | | I | A.1 OUTPUT POWER | | | | | I | A.2 EMISSION LIMIT | | | | | A | A.2 EMISSION LIMIT | | I | A.2 EMISSION LIMIT | | H
H | A.2 EMISSION LIMIT | | | A.2 EMISSION LIMIT 22 A.3 FREQUENCY STABILITY 29 A.4 OCCUPIED BANDWIDTH 32 A.5 EMISSION BANDWIDTH 47 | | | A.2 EMISSION LIMIT | ## 1. Test Laboratory #### 1.1. Introduction & Accreditation Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2005 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0 and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website. #### 1.2. <u>Testing Location</u> Location 1: CTTL (huayuan North Road) Address: No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191 Location 2: CTTL(Shouxiang) Address: No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China 100191 ## 1.3. <u>Testing Environment</u> Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75% 1.4. Project data Testing Start Date: 2019-08-30 Testing End Date: 2019-10-25 1.5. Signature Dong Yuan (Prepared this test report) Zhou Yu (Reviewed this test report) 赵慧麟 Zhao Hui Lin Deputy Director of the laboratory (Approved this test report) ## 2. Client Information Address /Post: Address /Post: #### 2.1. Applicant Information Company Name: OnePlus Technology (Shenzhen) Co., Ltd. 18C02, 18C03, 18C04 and 18C05, Shum Yip Terra Building, Binhe Avenue North, Futian District, Shenzhen Contact: Ariel Cheng Email: ariel.cheng@oneplus.com Telephone: 13823398081 #### 2.2. Manufacturer Information Company Name: OnePlus Technology (Shenzhen) Co., Ltd. 18C02, 18C03, 18C04 and 18C05, Shum Yip Terra Building, Binhe Avenue North, Futian District, Shenzhen Contact: Ariel Cheng Email: ariel.cheng@oneplus.com Telephone: 13823398081 ## 3. Equipment Under Test (EUT) and Ancillary Equipment (AE) #### 3.1. About EUT Description Smart Phone Model Name HD1925 FCC ID 2ABZ2-EE143 Antenna Integrated Output power 29.79dBm maximum EIRP measured for PCS1900 Extreme vol. Limits 3.6VDC to 4.3VDC (nominal: 3.87VDC) Extreme temp. Tolerance 0°C to +35°C Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL. #### 3.2. Internal Identification of EUT used during the test | EUT ID* | IMEI | HW Version | SW Version | Date of receipt | |---------|-----------------|-------------------|--------------------------|-----------------| | UT05a | 990013820050933 | 46 | Oxygen OS
10.0.HD61CB | 2019-08-30 | | UT13a | 990013820050230 | 46 | Oxygen OS
10.0.HD61CB | 2019-08-30 | ^{*}EUT ID: is used to identify the test sample in the lab internally. #### 3.3. Internal Identification of AE used during the test # AE ID* Description AE1 Battery AE1 Model BLP745 Manufacturer Sunwoda Electronic Co.,Ltd. Capacitance 4010mAh ^{*}AE ID: is used to identify the test sample in the lab internally. ## 4. Reference Documents ## 4.1. Reference Documents for testing The following documents listed in this section are referred for testing. | Reference | Title | Version | |-------------------|--|---------| | FCC Part 22 | PUBLIC MOBILE SERVICES | 10-1-18 | | | | Edition | | FCC Part 24 | PERSONAL COMMUNICATIONS SERVICES | 10-1-18 | | | | Edition | | ANSI/TIA-603-E | Land Mobile FM or PM Communications Equipment | 2016 | | | Measurement and Performance Standards | | | ANSI/TIA-102.CAAA | DIGITAL C4FMCQPSK TRANSCEIVER MEASUREMENT | 2016 | | -E | METHODS | | | ANSI C63.26 | American National Standard for Compliance Testing of | 2015 | | | Transmitters Used in Licensed Radio Services | | | KDB 971168 D01 | MEASUREMENT GUIDANCE FOR CERTIFICATION OF | v03r01 | | | LICENSED DIGITAL TRANSMITTERS | | ## 5. LABORATORY ENVIRONMENT **Fully-anechoic chamber FAC-3** (9 meters × 6.5 meters × 4 meters) did not exceed following limits along the EMC testing: | Temperature | Min. = 15 °C, Max. = 35 °C | |---|---| | Relative humidity | Min. = 15 %, Max. = 75 % | | Shielding effectiveness | 0.014MHz - 1MHz, >60dB; | | | 1MHz - 1000MHz, >90dB. | | Electrical insulation | > 2 MΩ | | Ground system resistance | < 4 Ω | | Site voltage standing-wave ratio (S_{VSWR}) | Between 0 and 6 dB, from 1GHz to 18GHz | | Uniformity of field strength | Between 0 and 6 dB, from 80 to 4000 MHz | ## 6. SUMMARY OF TEST RESULT #### **GSM850** | Items | List | Clause in FCC rules | Verdict | |-------|-----------------------------|---------------------|---------| | 1 | Output Power | 22.913 | Р | | 2 | Emission Limit | 22.917 | Р | | 3 | Frequency Stability | 2.1055 | Р | | 4 | Occupied Bandwidth | 2.1049 | Р | | 5 | Emission Bandwidth | 22.917 | Р | | 6 | Band Edge Compliance | 22.917 | Р | | 7 | Conducted Spurious Emission | 22.917 | Р | #### **PCS1900** | Items | List | Clause in FCC rules | Verdict | |-------|-----------------------------|---------------------|---------| | 1 | Output Power | 24.232 | Р | | 2 | Emission Limit | 24.238 | Р | | 3 | Frequency Stability | 2.1055 | Р | | 4 | Occupied Bandwidth | 2.1049 | Р | | 5 | Emission Bandwidth | 24.238 | Р | | 6 | Band Edge Compliance | 24.238 | Р | | 7 | Conducted Spurious Emission | 24.238 | Р | | 8 | peak-to-average power ratio | 24.232 | Р | #### Terms used in Verdict column | Р | Pass. The EUT complies with the essential requirements in the standard. | | |----|---|--| | NP | Not Performed. The test was not performed by CTTL. | | | NA | Not Applicable. The test was not applicable. | | | BR | Re-use test data from basic model report. | | | F | Fail. The EUT does not comply with the essential requirements in the | | | | standard. | | The device supports two antennas(UAT or LAT). All the test items of UAT are tested while output power, emission limit, occupied bandwidth and emission bandwidth of LAT are tested. ## 7. Test Equipments Utilized | NO. | Description | Туре | Series
Number | Manufacture | Cal Due
Date | Calibration
Interval | |-----|--|----------|------------------|--------------|-----------------|-------------------------| | 1 | Universal Radio
Communication
Tester | CMU200 | 108646 | R&S | 2020-01-03 | 1 year | | 2 | Spectrum
Analyzer | FSU26 | 200030 | R&S | 2020-06-03 | 1 year | | 3 | Climate chamber | SH-242 | 93008556 | ESPEC | 2019-12-21 | 2 year | | 4 | EMI Antenna | VULB9163 | 9163-235 | Schwarzbeck | 2019-11-20 | 1 year | | 5 | EMI Antenna | 3117 | 00058889 | ETS-Lindgren | 2020-02-02 | 1 year | | 6 | EMI Antenna | 3117 | 00119024 | ETS-Lindgren | 2020-02-25 | 1 year | | 7 | EMI Antenna | 9117 | 167 | Schwarzbeck | 2020-05-27 | 1 year | | 8 | Signal Generator | N5183A | MY49060052 | R&S | 2020-06-24 | 1 year | | 9 | Test Receiver | E4440A | MY48250642 | Agilent | 2020-03-18 | 1 year | | 10 | Universal Radio
Communication
Tester | CMW500 | 143008 | R&S | 2019-11-26 | 1 year | ## **ANNEX A: MEASUREMENT RESULTS** #### **A.1 OUTPUT POWER** #### A.1.1 Summary During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure max power transmission and proper modulation. In all cases, output power is within the specified limits. #### A.1.2 Conducted #### A.1.2.1 Method of Measurements The EUT was set up for the max output power with pseudo random data modulation. These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0MHz and 1909.8MHz for PCS1900 band; 824.2MHz, 836.6MHz and 848.8MHz for GSM850 band. (bottom, middle and top of operational frequency range). #### A.1.2.2 Measurement result ## **UAT Measurement Results:** #### GSM850 | | Dower step | Nominal Peak |
-------|------------|--------------------| | | Power step | output power (dBm) | | GSM | 5 | 33dBm(2W) | | GPRS | 3 | 33dBm(2W) | | EGPRS | 6 | 33dBm(2W) | #### **Measurement result** #### GSM(GMSK) | Frequency (MHz) | Power Step | Output power (dBm) | |-----------------|------------|--------------------| | 824.2 | 5 | 32.28 | | 836.6 | 5 | 32.84 | | 848.8 | 5 | 32.79 | ## GPRS(GMSK,1Slot) | Frequency (MHz) | Power Step | Output power (dBm) | |-----------------|------------|--------------------| | 824.2 | 3 | 32.04 | | 836.6 | 3 | 33.09 | | 848.8 | 3 | 32.59 | | Frequency (MHz) | Power Step | Output power (dBm) | |-----------------|------------|--------------------| | 824.2 | 6 | 26.40 | | 836.6 | 6 | 28.17 | | 848.8 | 6 | 27.67 | #### PCS1900 | | Power step | Nominal Peak output | |-------|------------|---------------------| | | | power (dBm) | | GSM | 0 | 30dBm(1W) | | GPRS | 3 | 30dBm(1W) | | EGPRS | 5 | 30dBm(1W) | #### **Measurement result** #### GSM(GMSK) | , | | | |-----------------|------------|--------------------| | Frequency (MHz) | Power Step | Output power (dBm) | | 1850.2 | 0 | 29.21 | | 1880.0 | 0 | 29.50 | | 1909.8 | 0 | 29.27 | ## GPRS(GMSK,1Slot) | Frequency (MHz) | Power Step | Output power (dBm) | |-----------------|------------|--------------------| | 1850.2 | 3 | 29.24 | | 1880.0 | 3 | 29.54 | | 1909.8 | 3 | 29.33 | | Frequency (MHz) | Power Step | Output power (dBm) | |-----------------|------------|--------------------| | 1850.2 | 5 | 25.43 | | 1880.0 | 5 | 25.66 | | 1909.8 | 5 | 25.68 | #### **LAT Measurement Results:** #### GSM850 | | Power step | Nominal Peak | |-------|------------|--------------------| | | | output power (dBm) | | GSM | 5 | 33dBm(2W) | | GPRS | 3 | 33dBm(2W) | | EGPRS | 6 | 33dBm(2W) | #### **Measurement result** ## GSM(GMSK) | Frequency (MHz) | Power Step | Output power (dBm) | |-----------------|------------|--------------------| | 824.2 | 5 | 32.30 | | 836.6 | 5 | 32.90 | | 848.8 | 5 | 33.08 | ## GPRS(GMSK,1Slot) | Frequency (MHz) | Power Step | Output power (dBm) | |-----------------|------------|--------------------| | 824.2 | 3 | 32.09 | | 836.6 | 3 | 32.49 | | 848.8 | 3 | 32.59 | | Frequency (MHz) | Power Step | Output power (dBm) | |-----------------|------------|--------------------| | 824.2 | 6 | 26.41 | | 836.6 | 6 | 27.73 | | 848.8 | 6 | 26.99 | #### PCS1900 | | Power step | Nominal Peak output power (dBm) | |-------|------------|---------------------------------| | | | power (dbill) | | GSM | 0 | 30dBm(1W) | | GPRS | 3 | 30dBm(1W) | | EGPRS | 5 | 30dBm(1W) | #### **Measurement result** ## GSM(GMSK) | Frequency (MHz) | Power Step | Output power (dBm) | |-----------------|------------|--------------------| | 1850.2 | 0 | 30.09 | | 1880.0 | 0 | 29.99 | | 1909.8 | 0 | 30.29 | ## GPRS(GMSK,1Slot) | Frequency (MHz) | Power Step | Output power (dBm) | |-----------------|------------|--------------------| | 1850.2 | 3 | 29.87 | | 1880.0 | 3 | 29.75 | | 1909.8 | 3 | 30.10 | | Frequency (MHz) | Power Step | Output power (dBm) | |-----------------|------------|--------------------| | 1850.2 | 5 | 26.08 | | 1880.0 | 5 | 26.65 | | 1909.8 | 5 | 26.19 | #### A.1.3 Radiated #### A.1.3.1 Description This is the test for the maximum radiated power from the EUT. Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts." #### A.1.3.2 Method of Measurement The measurements procedures in TIA-603-E-2016 are used. 1. EUT was placed on a 1.5-meter-high non-conductive stand at a 3-meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 4. An amplifier should be connected to the Signal Source output port. And the cable should be connected between the Amplifier and the Substitution Antenna. - The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. - The measurement results are obtained as described below: - Power (EIRP) = P_{Mea} P_{Ag} P_{cl} G_a - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi. #### **UAT Measurement Results:** #### **GSM 850-ERP** #### Limits | | Power Step | Burst Peak ERP (dBm) | |-------|------------|----------------------| | GSM | 5 | ≤38.45dBm (7W) | | GPRS | 3 | ≤38.45dBm (7W) | | EGPRS | 6 | ≤38.45dBm (7W) | #### **Measurement result** #### **GSM** | Frequency | P _{Mea} | P _{cl} | P _{Ag} | Ga | Correction | ERP | Limit | Margin | Polarization | |-----------|------------------|-----------------|-----------------|-------|------------|-------|-------|--------|--------------| | (MHz) | (dBm) | (dB) | (dB) | (dBi) | (dB) | (dBm) | (dBm) | (dB) | Polarization | | 824.20 | -16.19 | 2.26 | 45.79 | 0.96 | 2.15 | 26.15 | 38.45 | 12.30 | Н | | 836.60 | -14.70 | 2.26 | 45.66 | 0.82 | 2.15 | 27.37 | 38.45 | 11.08 | Н | | 848.80 | -13.54 | 2.28 | 45.54 | 0.79 | 2.15 | 28.36 | 38.45 | 10.09 | Н | #### **GPRS** | Frequency | P _{Mea} | P _{cl} | P _{Ag} | Ga | Correction | ERP | Limit | Margin | Polarization | |-----------|------------------|-----------------|-----------------|-------|------------|-------|-------|--------|--------------| | (MHz) | (dBm) | (dB) | (dB) | (dBi) | (dB) | (dBm) | (dBm) | (dB) | Polarization | | 824.20 | -16.27 | 2.26 | 45.79 | 0.96 | 2.15 | 26.07 | 38.45 | 12.38 | Н | | 836.60 | -14.88 | 2.26 | 45.66 | 0.82 | 2.15 | 27.19 | 38.45 | 11.26 | Н | | 848.80 | -13.50 | 2.28 | 45.54 | 0.79 | 2.15 | 28.40 | 38.45 | 10.05 | Н | #### **EGPRS-8PSK** | Frequency | P _{Mea} | P _{cl} | P _{Ag} | Ga | Correction | ERP | Limit | Margin | Delevization | |-----------|------------------|-----------------|-----------------|-------|------------|-------|-------|--------|--------------| | (MHz) | (dBm) | (dB) | (dB) | (dBi) | (dB) | (dBm) | (dBm) | (dB) | Polarization | | 824.20 | -20.25 | 2.26 | 45.79 | 0.96 | 2.15 | 22.09 | 38.45 | 16.36 | Н | | 836.60 | -19.49 | 2.26 | 45.66 | 0.82 | 2.15 | 22.58 | 38.45 | 15.87 | Н | | 848.80 | -20.56 | 2.28 | 45.54 | 0.79 | 2.15 | 21.34 | 38.45 | 17.11 | Н | Frequency: 848.80MHz $Peak\;ERP\;(dBm) = P_{Mea}(-13.50dBm) - P_{cl}(2.28dB) - P_{Ag}(-45.54dB) - G_a\;(-0.79dB) - 2.15dB = 28.40dBm$ #### PCS1900-EIRP #### Limits | | Power Step | Burst Peak EIRP (dBm) | |-------|------------|-----------------------| | GSM | 0 | ≤33dBm (2W) | | GPRS | 3 | ≤33dBm (2W) | | EGPRS | 5 | ≤33dBm (2W) | #### **Measurement result** #### **GSM** | Frequency (MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | G _a (dBi) | EIRP (dBm) | Limit (dBm) | Margin (dB) | Polarization | |-----------------|------------------------|----------------------|----------------------|----------------------|------------|-------------|-------------|--------------| | 1850.20 | -17.67 | 2.93 | 43.75 | 4.87 | 28.02 | 33.00 | 4.98 | Н | | 1880.00 | -15.93 | 2.85 | 43.75 | 4.82 | 29.79 | 33.00 | 3.21 | V | | 1909.80 | -16.52 | 2.89 | 43.77 | 4.76 | 29.12 | 33.00 | 3.88 | Н | #### **GPRS** | Frequency (MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | G _a (dBi) | EIRP (dBm) | Limit (dBm) | Margin (dB) | Polarization | |-----------------|------------------------|----------------------|----------------------|----------------------|------------|-------------|-------------|--------------| | 1850.20 | -17.69 | 2.93 | 43.75 | 4.87 | 28.00 | 33.00 | 5.00 | V | | 1880.00 | -16.07 | 2.85 | 43.75 | 4.82 | 29.65 | 33.00 | 3.35 | V | | 1909.80 | -16.45 | 2.89 | 43.77 | 4.76 | 29.19 | 33.00 | 3.81 | Н | #### **EGPRS-8PSK** | Frequency (MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | G _a (dBi) | EIRP (dBm) | Limit (dBm) | Margin (dB) | Polarization | |-----------------|------------------------|----------------------|----------------------|----------------------|------------|-------------|-------------|--------------| | 1850.20 | -23.97 | 2.93 | 43.75 | 4.87 | 21.72 | 33.00 | 11.28 | Н | | 1880.00 | -21.92 | 2.85 | 43.75 | 4.82 | 23.80 | 33.00 | 9.20 | Н | | 1909.80 | -22.48 | 2.89 | 43.77 | 4.76 | 23.16 | 33.00 | 9.84 | Н | Frequency: 1880.00MHz $Peak \; EIRP \; (dBm) = P_{Mea}(-15.93dBm) \; - \; P_{cl}(2.85dB) \; - \; P_{Ag}(-43.75dB) \; - \; G_a \; (-4.82dB) = 29.79dBm \; - \; P_{cl}(2.85dB) P_{cl}(2.$ ANALYZER SETTINGS:
RBW = VBW = 300kHz Note: Expanded measurement uncertainty is U = 2.84 dB, k = 2. #### **LAT Measurement Results:** #### PCS1900-EIRP #### Limits | | Power Step | Burst Peak EIRP (dBm) | |-------|------------|-----------------------| | GSM | 0 | ≤33dBm (2W) | | GPRS | 3 | ≤33dBm (2W) | | EGPRS | 5 | ≤33dBm (2W) | #### **Measurement result** #### **GSM** | Frequency (MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | G _a (dBi) | EIRP (dBm) | Limit (dBm) | Margin (dB) | Polarization | |-----------------|------------------------|----------------------|----------------------|----------------------|------------|-------------|-------------|--------------| | 1850.20 | -16.72 | 2.93 | 43.75 | 4.87 | 28.97 | 33.00 | 4.03 | Н | | 1880.00 | -16.60 | 2.85 | 43.75 | 4.82 | 29.12 | 33.00 | 3.88 | V | | 1909.80 | -15.49 | 2.89 | 43.77 | 4.76 | 30.15 | 33.00 | 2.85 | Н | #### **GPRS** | Frequency (MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | G _a (dBi) | EIRP (dBm) | Limit (dBm) | Margin (dB) | Polarization | |-----------------|------------------------|----------------------|----------------------|----------------------|------------|-------------|-------------|--------------| | 1850.20 | -16.69 | 2.93 | 43.75 | 4.87 | 29.00 | 33.00 | 4.00 | Н | | 1880.00 | -16.62 | 2.85 | 43.75 | 4.82 | 29.10 | 33.00 | 3.90 | Н | | 1909.80 | -15.86 | 2.89 | 43.77 | 4.76 | 29.78 | 33.00 | 3.22 | Н | #### **EGPRS-8PSK** | Frequency (MHz) | P _{Mea} (dBm) | P _{cl} (dB) | P _{Ag} (dB) | G _a (dBi) | EIRP (dBm) | Limit (dBm) | Margin (dB) | Polarization | |-----------------|------------------------|----------------------|----------------------|----------------------|------------|-------------|-------------|--------------| | 1850.20 | -21.93 | 2.93 | 43.75 | 4.87 | 23.76 | 33.00 | 9.24 | Н | | 1880.00 | -21.81 | 2.85 | 43.75 | 4.82 | 23.91 | 33.00 | 9.09 | V | | 1909.80 | -21.02 | 2.89 | 43.77 | 4.76 | 24.62 | 33.00 | 8.38 | Н | Frequency: 1880.00MHz $Peak \; EIRP \; (dBm) = P_{Mea}(-16.60dBm) \; - \; P_{cl}(2.85dB) \; - \; P_{Ag}(-43.75dB) \; - \; G_a \; (-4.82dB) = 29.12dBm \; - \; P_{cl}(2.85dB) P_{cl}(2.$ ANALYZER SETTINGS: RBW = VBW = 300kHz Note1: Expanded measurement uncertainty is U = 2.84 dB, k = 2. Note2: The worst case is verified for LAT. #### A.2 EMISSION LIMIT #### A.2.1 Measurement Method The measurement procedures in TIA-603E-2016 are used. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GSM850. #### The procedure of radiated spurious emissions is as follows: 1. EUT was placed on a 1.5-meter-high non-conductive stand at a 3-meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r) . The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. 4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test. A amplifier should be connected in for the test. The Path loss (Ppl) is the summation of the cable loss and the gain of the amplifier. The measurement results are obtained as described below: Power (EIRP) = $P_{Mea} - P_{pl} - G_a$ - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi. #### A.2.2 Measurement Limit Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A.2.3 Measurement Results Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz) and GSM850 band (824.2MHz, 836.6MHz, 848.8MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 ,GSM850 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. #### A.2.4 Measurement Results Table | Frequency | Channel | Frequency Range | Result | |-------------|---------|-----------------|--------| | GSM 850MHz | Low | 30MHz-10GHz | Pass | | | Middle | 30MHz-10GHz | Pass | | | High | 30MHz-10GHz | Pass | | GSM 1900MHz | Low | 30MHz-20GHz | Pass | | | Middle | 30MHz-20GHz | Pass | | | High | 30MHz-20GHz | Pass | #### A.2.5 Sweep Table | Working
Frequency | Subrange
(GHz) | RBW | VBW | Sweep time (s) | |----------------------|-------------------|--------|--------|----------------| | | 0.03~1 | 100KHz | 300KHz | 10 | | | 1-2 | 1 MHz | 3 MHz | 2 | | 850MHz | 2~5 | 1 MHz | 3 MHz | 3 | | | 5~8 | 1 MHz | 3 MHz | 3 | | | 8~10 | 1 MHz | 3 MHz | 3 | | | 0.03~1 | 100KHz | 300KHz | 10 | | | 1-2 | 1 MHz | 3 MHz | 2 | | | 2~5 | 1 MHz | 3 MHz | 3 | | 1900MHz | 5~8 | 1 MHz | 3 MHz | 3 | | 1900IVITZ | 8~11 | 1 MHz | 3 MHz | 3 | | | 11~14 | 1 MHz | 3 MHz | 3 | | | 14~18 | 1 MHz | 3 MHz | 3 | | | 18~20 | 1 MHz | 3 MHz | 2 | ## **UAT Measurement Results:** #### **GSM Mode Channel 128/824.2MHz** | Frequency | P _{Mea} | Path | Antenna | Correction | Peak ERP | Limit | Margin | Polarization | |-----------|------------------|----------|-----------|------------|----------|--------|--------|--------------| | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | (dB) | (dBm) | (dBm) | (dB) | Polarization | | 1648.01 | -54.11 | 3.56 | 5.23 | 2.15 | -54.59 | -13.00 | 41.60 | V | | 2472.00 | -15.82 | 4.59 | 6.02 | 2.15 | -16.54 | -13.00 | 3.50 | Н | | 3298.02 | -46.22 | 5.29 | 7.72 | 2.15 | -45.94 | -13.00 | 32.90 | Н | | 4124.02 | -29.19 | 6.04 | 9.02 | 2.15 | -28.36 | -13.00 | 15.40 | V | | 4950.01 | -54.52 | 6.69 | 9.85 | 2.15 | -53.51 | -13.00 | 40.50 | Н | | 5771.01 | -32.64 | 7.23 | 10.55 | 2.15 | -31.47 | -13.00 | 18.50 | Н | #### **GSM Mode Channel 190/836.6MHz** | Frequency | P _{Mea} | Path | Antenna | Correction | Peak ERP | Limit | Margin | Polarization | |-----------|------------------|----------|-----------|------------|----------|--------|--------|--------------| | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | (dB) | (dBm) | (dBm) | (dB) | Polarization | | 1674.01 | -43.83 | 3.58 | 5.19 | 2.15 | -44.37 | -13.00 | 31.40 | Н | | 2510.00 | -45.71 | 4.63 | 6.12 | 2.15 | -46.37 | -13.00 | 33.40 | V | | 3347.02 | -23.11 | 5.32 | 7.83 | 2.15 | -22.75 | -13.00 | 9.70 | V | | 4186.02 | -29.93 | 6.17 | 9.09 | 2.15 | -29.16 | -13.00 | 16.20 | V | | 5023.01 | -32.55 | 6.56 | 9.93 | 2.15 | -31.33 | -13.00 | 18.30 | V | | 5859.01 | -50.91 | 7.26 | 10.53 | 2.15 | -49.79 | -13.00 | 36.80 | V | #### **GSM Mode Channel 251/848.8MHz** | Frequency | P _{Mea} | Path | Antenna | Correction | Peak ERP | Limit | Margin | Polarization | |-----------|------------------|----------|-----------|------------|----------|--------|--------|--------------| | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | (dB) | (dBm) | (dBm) | (dB) | Polarization | | 1698.01 | -43.02 | 3.60 | 5.14 | 2.15 | -43.63 | -13.00 | 30.60 | Н | | 2546.00 | -45.95 | 4.66 | 6.18 | 2.15 | -46.58 | -13.00 | 33.60 | V | | 3395.02 | -26.43 | 5.36 | 7.95 | 2.15 | -25.99 | -13.00 | 13.00 | Н | | 4246.02 | -42.28 | 6.24 | 9.15 | 2.15 | -41.52 | -13.00 | 28.50 | Н | | 5097.01 | -32.04 | 6.76 | 10.04 | 2.15 | -30.91 | -13.00 | 17.90 | Н | | 5945.01 | -40.97 | 7.47 | 10.51 | 2.15 | -40.08 | -13.00 | 27.10 | Н | #### GSM Mode Channel 512/1850.2MHz | Frequency | P _{Mea} | Path | Antenna | Peak EIRP | Limit | Margin | Polarization | |-----------|------------------|----------|-----------|-----------|--------|--------|--------------| | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | (dBm) | (dBm) | (dB) |
Polarization | | 3700.02 | -46.28 | 6.43 | 8.48 | -44.23 | -13.00 | 31.23 | Н | | 5551.02 | -49.24 | 7.18 | 10.59 | -45.83 | -13.00 | 32.83 | V | | 7399.01 | -55.31 | 8.12 | 12.08 | -51.35 | -13.00 | 38.35 | Н | | 9243.01 | -53.87 | 9.02 | 13.25 | -49.64 | -13.00 | 36.64 | V | | 11111.01 | -52.30 | 9.79 | 13.18 | -48.91 | -13.00 | 35.91 | V | | 12953.01 | -49.44 | 10.49 | 13.47 | -46.46 | -13.00 | 33.46 | V | #### GSM Mode Channel 661/1880.0MHz | Frequency | P _{Mea} | Path | Antenna | Peak EIRP | Limit | Margin | Polarization | |-----------|------------------|----------|-----------|-----------|--------|--------|--------------| | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | (dBm) | (dBm) | (dB) | Polarization | | 3760.02 | -42.30 | 6.26 | 8.56 | -40.00 | -13.00 | 27.00 | Н | | 5644.02 | -47.47 | 7.27 | 10.57 | -44.17 | -13.00 | 31.17 | Н | | 7533.01 | -54.77 | 8.26 | 12.23 | -50.80 | -13.00 | 37.80 | V | | 9393.01 | -55.00 | 9.04 | 13.34 | -50.70 | -13.00 | 37.70 | Н | | 11284.01 | -50.78 | 9.90 | 13.14 | -47.54 | -13.00 | 34.54 | V | | 13169.01 | -47.19 | 10.63 | 13.74 | -44.08 | -13.00 | 31.08 | Н | #### **GSM Mode Channel 810/1909.8MHz** | Frequency | P _{Mea} | Path | Antenna | Peak EIRP | Limit | Margin | Polarization | |-----------|------------------|----------|-----------|-----------|--------|--------|--------------| | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | (dBm) | (dBm) | (dB) | Polarization | | 3820.02 | -48.47 | 6.08 | 8.65 | -45.90 | -13.00 | 32.90 | Н | | 5733.02 | -52.76 | 7.29 | 10.55 | -49.50 | -13.00 | 36.50 | V | | 7644.01 | -53.74 | 8.17 | 12.32 | -49.59 | -13.00 | 36.59 | Н | | 9542.01 | -54.29 | 9.39 | 13.36 | -50.32 | -13.00 | 37.32 | V | | 11465.01 | -50.89 | 9.90 | 13.11 | -47.68 | -13.00 | 34.68 | V | | 13359.01 | -48.15 | 10.57 | 14.00 | -44.72 | -13.00 | 31.72 | Н | ## **LAT Measurement Results:** #### **GSM Mode Channel 128/824.2MHz** | Frequency | P _{Mea} | Path | Antenna | Correction | Peak ERP | Limit | Margin | Polarization | |-----------|------------------|----------|-----------|------------|----------|--------|--------|--------------| | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | (dB) | (dBm) | (dBm) | (dB) | Polarization | | 1648.01 | -37.24 | 3.56 | 5.23 | 2.15 | -37.72 | -13.00 | 24.70 | V | | 2472.00 | -36.17 | 4.59 | 6.02 | 2.15 | -36.89 | -13.00 | 23.90 | Н | | 3290.02 | -54.95 | 5.29 | 7.70 | 2.15 | -54.69 | -13.00 | 41.70 | V | | 4120.02 | -55.57 | 6.04 | 9.02 | 2.15 | -54.74 | -13.00 | 41.70 | Н | | 4934.01 | -54.25 | 6.72 | 9.83 | 2.15 | -53.29 | -13.00 | 40.30 | Н | | 5763.01 | -54.59 | 7.24 | 10.55 | 2.15 | -53.43 | -13.00 | 40.40 | Н | #### **GSM Mode Channel 190/836.6MHz** | Frequency | P _{Mea} | Path | Antenna | Correction | Peak ERP | Limit | Margin | Delegization | |-----------|------------------|----------|-----------|------------|----------|--------|--------|--------------| | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | (dB) | (dBm) | (dBm) | (dB) | Polarization | | 1674.01 | -39.95 | 3.58 | 5.19 | 2.15 | -40.49 | -13.00 | 27.50 | Н | | 2510.00 | -36.78 | 4.63 | 6.12 | 2.15 | -37.44 | -13.00 | 24.40 | Н | | 3341.02 | -53.94 | 5.31 | 7.82 | 2.15 | -53.58 | -13.00 | 40.60 | V | | 4186.02 | -55.14 | 6.17 | 9.09 | 2.15 | -54.37 | -13.00 | 41.40 | V | | 5012.01 | -55.16 | 6.58 | 9.92 | 2.15 | -53.97 | -13.00 | 41.00 | V | | 5855.01 | -53.42 | 7.25 | 10.53 | 2.15 | -52.29 | -13.00 | 39.30 | Н | #### **GSM Mode Channel 251/848.8MHz** | Frequency | P _{Mea} | Path | Antenna | Correction | Peak ERP | Limit | Margin | Polarization | |-----------|------------------|----------|-----------|------------|----------|--------|--------|--------------| | (MHz) | (dBm) | Loss(dB) | Gain(dBi) | (dB) | (dBm) | (dBm) | (dB) | Polarization | | 1698.01 | -50.61 | 3.60 | 5.14 | 2.15 | -51.22 | -13.00 | 38.20 | V | | 2546.00 | -40.66 | 4.66 | 6.18 | 2.15 | -41.29 | -13.00 | 28.30 | Н | | 3380.02 | -54.38 | 5.34 | 7.91 | 2.15 | -53.96 | -13.00 | 41.00 | V | | 4261.02 | -54.85 | 6.23 | 9.16 | 2.15 | -54.07 | -13.00 | 41.10 | Н | | 5084.01 | -55.45 | 6.73 | 10.02 | 2.15 | -54.31 | -13.00 | 41.30 | V | | 5929.01 | -52.89 | 7.47 | 10.51 | 2.15 | -52.00 | -13.00 | 39.00 | Н | Note: Expanded measurement uncertainty is U = 5.16 dB, k = 2. Note: The worst case is verified for LAT. #### A.3 FREQUENCY STABILITY #### A.3.1 Method of Measurement In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER. - 1. Measure the carrier frequency at room temperature. - 2. Subject the EUT to overnight soak at 0°C. - 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on mid channel of PCS 1900 and GSM850, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - Repeat the above measurements at 10[°]C increments from 0[°]C to +30[°]C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements. - 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing. - 6. Subject the EUT to overnight soak at +30°C. - 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 8. Repeat the above measurements at 10[°]C increments from 0[°]C to +30[°]C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements. - 9. At all temperature levels hold the temperature to $\pm 0.5^{\circ}$ during the measurement procedure. #### A.3.2 Measurement Limit #### A.3.2.1 For Hand carried battery powered equipment According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.6VDC and 4.3VDC, with a nominal voltage of 3.87VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. For the purposes of measuring frequency stability these voltage limits are to be used. #### A.3.2.2 For equipment powered by primary supply voltage According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. #### A.3.3 Measurement results #### **GSM 850** #### **Frequency Error vs Voltage** | 1/ 1/ // // // | - (11) | - / \ | |----------------|----------------------|-----------------------| | Voltage (V) | Frequency error (Hz) | Frequency error (ppm) | | 3.6 | -13.17 | 0.0157 | | 3.87 | -16.92 | 0.0202 | | 4.3 | -19.63 | 0.0235 | #### **Frequency Error vs Temperature** | Temperature (°C) | Frequency error (Hz) | Frequency error (ppm) | |------------------|----------------------|-----------------------| | 0 | -12.20 | 0.0146 | | 10 | -8.33 | 0.0100 | | 20 | -5.68 | 0.0068 | | 30 | -5.81 | 0.0069 | #### **EGPRS 850 - 8PSK** #### **Frequency Error vs Voltage** | Voltage (V) | Frequency error (Hz) | Frequency error (ppm) | |-------------|----------------------|-----------------------| | 3.6 | 19.89 | 0.0238 | | 3.87 | 19.95 | 0.0238 | | 4.3 | 19.34 | 0.0231 | #### **Frequency Error vs Temperature** | Temperature (°C) | Frequency error (Hz) | Frequency error (ppm) | |------------------|----------------------|-----------------------| | 0 | 15.92 | 0.0190 | | 10 | 16.89 | 0.0202 | | 20 | 16.01 | 0.0191 | | 30 | 13.50 | 0.0161 | #### **PCS 1900** #### **Frequency Error vs Voltage** | Voltage (V) | Frequency error (Hz) | Frequency error (ppm) | |-------------|----------------------|-----------------------| | 3.6 | -25.44 | 0.0135 | | 3.87 | -25.51 | 0.0136 | | 4.3 | -21.24 | 0.0113 | ## **Frequency Error vs Temperature** | Temperature (°C) | Frequency error (Hz) | Frequency error (ppm) | |------------------|----------------------|-----------------------| | 0 | -28.02 | 0.0149 | | 10 | -24.80 | 0.0132 | | 20 | -23.05 | 0.0123 | | 30 | -24.60 | 0.0131 | #### **EGPRS 1900 - 8PSK** #### **Frequency Error vs Voltage** | Voltage (V) | Frequency error (Hz) | Frequency error (ppm) | |-------------|----------------------|-----------------------| | 3.6 | -14.82 | 0.0079 | | 3.87 | -20.05 | 0.0107 | | 4.3 | 9.94 | 0.0053 | ## **Frequency Error vs Temperature** | Temperature (°C) | Frequency error (Hz) | Frequency error (ppm) | |------------------|----------------------|-----------------------| | 0 | -15.79 | 0.0084 | | 10 | -9.01 | 0.0048 | | 20 | 10.36 | 0.0055 | | 30 | -15.21 | 0.0081 | #### A.4 OCCUPIED BANDWIDTH #### A.4.1 Occupied Bandwidth Results Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the
measured 99% BW. Spectrum analyzer plots are included on the following pages. The measurement method is from KDB 971168: - a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW). - b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW. - c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level. - d) Set the detection mode to peak, and the trace mode to max hold. - e) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth. #### **UAT Measurement Results:** #### GSM 850(99% BW) | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 824.2 | 245.19 | | 836.6 | 245.19 | | 848.8 | 245.99 | ## GSM 850 Channel 128-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 15:47:01 ## Channel 190-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 15:48:13 ## Channel 251-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 15:49:24 #### **GPRS 850(99% BW)** | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 824.2 | 241.99 | | 836.6 | 244.39 | | 848.8 | 245.19 | #### **GPRS 850** ## Channel 128-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 16:14:36 ## Channel 190-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 16:15:47 ## Channel 251-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 16:16:59 #### EGPRS 850-8PSK (99% BW) | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 824.2 | 241.99 | | 836.6 | 250.00 | | 848.8 | 247.60 | #### **EGPRS 850-8PSK** ## Channel 128-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 16:43:48 # Channel 190-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 16:45:00 # Channel 251-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 16:46:11 # PCS 1900 (99% BW) | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 1850.2 | 244.39 | | 1880.0 | 241.99 | | 1909.8 | 243.59 | # PCS 1900 Channel 512-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 17:13:59 # Channel 661-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 17:15:11 # Channel 810-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 17:16:22 # GPRS 1900(99% BW) | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 1850.2 | 242.79 | | 1880.0 | 241.99 | | 1909.8 | 242.79 | # **GPRS 1900** # Channel 512-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 17:42:10 # Channel 661-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 17:43:21 # Channel 810-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 17:44:33 # EGPRS 1900-8PSK (99% BW) | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 1850.2 | 244.39 | | 1880.0 | 243.59 | | 1909.8 | 245.99 | #### **EGPRS 1900-8PSK** # Channel 512-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 18:09:50 # Channel 661-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 18:11:02 # Channel 810-Occupied Bandwidth (99% BW) Date: 4.SEP.2019 18:12:13 # LAT Measurement Results: GSM 850(99% BW) | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 836.6 | 242.79 | # Channel 190-Occupied Bandwidth (99% BW) Date: 14.OCT.2019 13:42:25 # **GPRS 850(99% BW)** | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 836.6 | 248.40 | # Channel 190-Occupied Bandwidth (99% BW) Date: 14.OCT.2019 13:50:57 # EGPRS 850-8PSK (99% BW) | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 836.6 | 244.39 | # Channel 190-Occupied Bandwidth (99% BW) Date: 14.0CT.2019 13:57:08 # PCS 1900 (99% BW) | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 1880.0 | 241.19 | # Channel 661-Occupied Bandwidth (99% BW) Date: 14.OCT.2019 15:08:41 # **GPRS 1900(99% BW)** | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 1880.0 | 244.39 | # Channel 661-Occupied Bandwidth (99% BW) Date: 14.OCT.2019 15:16:52 # EGPRS 1900-8PSK (99% BW) | Frequency (MHz) | Occupied Bandwidth (99% BW) (kHz) | |-----------------|-----------------------------------| | 1880.0 | 243.59 | # Channel 661-Occupied Bandwidth (99% BW) Date: 14.0CT.2019 15:23:32 # **A.5 EMISSION BANDWIDTH** #### A.5.1Emission Bandwidth Results The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. #### **UAT Measurement Results:** #### **GSM 850** | Frequency (MHz) | Emission Bandwidth (kHz) | |-----------------|--------------------------| | 824.2 | 315.71 | | 836.6 | 314.90 | | 848.8 | 315.71 | # GSM 850 Channel 128-Emission Bandwidth Date: 4.SEP.2019 15:51:26 # **Channel 190-Emission Bandwidth** Date: 4.SEP.2019 15:52:38 # **Channel 251-Emission Bandwidth** Date: 4.SEP.2019 15:53:49 #### **GPRS 850** | Frequency (MHz) | Emission Bandwidth (kHz) | |-----------------|--------------------------| | 824.2 | 315.71 | | 836.6 | 314.10 | | 848.8 | 317.31 | # **GPRS 850** # **Channel 128-Emission Bandwidth** Date: 4.SEP.2019 16:20:29 # **Channel 190-Emission Bandwidth** Date: 4.SEP.2019 16:21:40 # **Channel 251-Emission Bandwidth** Date: 4.SEP.2019 16:22:52 #### **EGPRS 850-8PSK** | Frequency (MHz) | Emission Bandwidth (kHz) | |-----------------|--------------------------| | 824.2 | 305.29 | | 836.6 | 298.88 | | 848.8 | 312.50 | # **EGPRS 850-8PSK** # **Channel 128-Emission Bandwidth** Date: 4.SEP.2019 16:48:09 # **Channel 190-Emission Bandwidth** Date: 4.SEP.2019 16:49:20 #### **Channel 251-Emission Bandwidth** Date: 4.SEP.2019 16:50:32 # **PCS 1900** | Frequency (MHz) Emission Bandwidth (kHz) | | |--|--------| | 1850.2 | 316.51 | | 1880.0 | 310.90 | | 1909.8 | 314.90 | # **PCS 1900** # **Channel 512-Emission Bandwidth** Date: 4.SEP.2019 17:18:24 # **Channel 661-Emission Bandwidth** Date: 4.SEP.2019 17:19:35 # **Channel 810-Emission Bandwidth** Date: 4.SEP.2019 17:20:47 #### **GPRS 1900** | Frequency (MHz) | Emission Bandwidth (kHz) | | |-----------------|--------------------------|--| | 1850.2 | 313.30 | | | 1880.0 | 312.50 | | | 1909.8 | 314.90 | | # **GPRS 1900** # **Channel 512-Emission Bandwidth** Date: 4.SEP.2019 17:46:30 # **Channel 661-Emission Bandwidth** Date: 4.SEP.2019 17:47:42 # **Channel 810-Emission Bandwidth** Date: 4.SEP.2019 17:48:54 # **EGPRS 1900-8PSK** | Frequency (MHz) | Emission Bandwidth (kHz) | | |-----------------|--------------------------|--| | 1850.2 | 308.49 | | | 1880.0 | 307.69 | | | 1909.8 | 306.89 | | # **EGPRS 1900-8PSK** #### **Channel 512-Emission Bandwidth** Date: 4.SEP.2019 18:14:11 # **Channel 661-Emission Bandwidth** Date: 4.SEP.2019 18:15:22 # **Channel 810-Emission Bandwidth** Date: 4.SEP.2019 18:16:34 #### **LAT Measurement Results:** #### **GSM 850** | Frequency (MHz) | Emission Bandwidth (kHz) | |-----------------|--------------------------| | 836.6 | 314.10 | #### **Channel 190-Emission Bandwidth** Date: 14.OCT.2019 13:44:27 ### **GPRS 850** | Frequency (MHz) | Emission Bandwidth (kHz) | | |-----------------|--------------------------|--| | 836.6 | 320.51 | | # **Channel 190-Emission Bandwidth** Date: 14.OCT.2019 13:54:27 #### **EGPRS 850-8PSK** | Frequency (MHz) | Emission Bandwidth (kHz) | | |-----------------|--------------------------|--| | 836.6 | 308.49 | | # **Channel 190-Emission Bandwidth** Date: 14.OCT.2019 14:00:26 # **PCS 1900** | Frequency (MHz) | Emission Bandwidth (kHz) | |-----------------|--------------------------| | 1880.0 | 313.30 | # **Channel 661-Emission Bandwidth** Date: 14.0CT.2019 15:12:09 # **EGPRS 1900-8PSK** | Frequency (MHz) | Emission Bandwidth (kHz) | | |-----------------|--------------------------|--| | 1880.0 | 314.90 | | # **Channel 661-Emission Bandwidth** Date: 14.OCT.2019 15:27:27 # A.6 BAND EDGE COMPLIANCE #### **Measurement limit** On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. According to KDB 971168 6.0, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth. #### **UAT Measurement Results:** #### **GSM 850** # LOW BAND EDGE BLOCK-A (GSM850)-Channel 128 Date: 5.SEP.2019 13:59:50 # HIGH BAND EDGE BLOCK-C (GSM850) - Channel 251 Date: 5.SEP.2019 13:35:36 GPRS 850 LOW BAND EDGE BLOCK-A (GSM850)-Channel 128 Date: 4.SEP.2019 16:28:54 # HIGH BAND EDGE BLOCK-C (GSM850) - Channel 251 Date: 4.SEP.2019 16:34:11 # EGPRS 850-8PSK # LOW BAND EDGE BLOCK-A (GSM850)-Channel 128 Date: 4.SEP.2019 16:56:34 # HIGH BAND EDGE BLOCK-C (GSM850) -Channel 251 Date: 4.SEP.2019 17:01:51 PCS 1900 LOW BAND EDGE BLOCK-A (PCS-1900)-Channel 512 Date: 4.SEP.2019 17:27:30 # HIGH BAND EDGE BLOCK-C (PCS-1900) -Channel 810 Date: 4.SEP.2019 17:32:47 GPRS 1900 LOW
BAND EDGE BLOCK-A (PCS-1900)-Channel 512 Date: 4.SEP.2019 17:54:56 # HIGH BAND EDGE BLOCK-C (PCS-1900) -Channel 810 Date: 4.SEP.2019 18:00:13 # EGPRS 1900-8PSK LOW BAND EDGE BLOCK-A (PCS-1900)-Channel 512 Date: 4.SEP.2019 18:22:37 # HIGH BAND EDGE BLOCK-C (PCS-1900) -Channel 810 Date: 4.SEP.2019 18:27:53 # A.7 CONDUCTED SPURIOUS EMISSION #### A.7.1 Measurement Method The following steps outline the procedure used to measure the conducted emissions from the EUT. - Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz. - 2. Determine EUT transmit frequencies below outlines the band edge frequencies pertinent to conducted emissions testing. - According to KDB 971168 6.0, the applicable rule part specifies the reference bandwidth for measuring unwanted emission levels (typically, 100 kHz if the authorized frequency band/block is at or below 1 GHz and 1 MHz if the authorized frequency band/block is above 1 GHz) #### **GSM850 Transmitter** | Channel | Frequency (MHz) | | |---------|-----------------|--| | 128 | 824.2 | | | 190 | 836.6 | | | 251 | 848.8 | | #### **PCS1900 Transmitter** | Channel | Frequency (MHz) | | |---------|-----------------|--| | 512 | 1850.2 | | | 661 | 1880.0 | | | 810 | 1909.8 | | #### A. 7.2 Measurement Limit Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A.7.3 Measurement result #### **GSM850** Channel 128: 30MHz - 8.49GHz Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency. Date: 4.SEP.2019 16:06:18 # Channel 190: 30MHz – 8.49GHz Spurious emission limit –13dBm NOTE: peak above the limit line is the carrier frequency. Date: 4.SEP.2019 16:06:34 # Channel 251: 30MHz – 8.49GMHz Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency. Date: 4.SEP.2019 16:06:50 **PCS1900** #### Channel 512: 30MHz - 19.15GHz Spurious emission limit -13dBm. Date: 4.SEP.2019 17:33:53 # Channel 661: 30MHz - 19.15GHz Spurious emission limit -13dBm Date: 4.SEP.2019 17:34:08 # Channel 810: 30MHz - 19.15GHz Spurious emission limit -13dBm Date: 4.SEP.2019 17:34:24 # **A.8 PEAK-TO-AVERAGE POWER RATIO** According to 24.232(d), the transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission. According to KDB 971168: - a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function; - b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth; - c) Set the number of counts to a value that stabilizes the measured CCDF curve; - d) Set the measurement interval to 1ms; - e) Record the maximum PAPR level associated with a probability of 0.1%. #### A.8.1 Measurement limit not exceed 13 dB #### A.8.2 Measurement results | | Frequency (MHz) | PAPR (dB) | |-----------------|-----------------|-----------| | PCS1900 | 1880.0 | 7.95 | | GPRS1900 | 1880.0 | 7.98 | | EGPRS1900(8PSK) | 1880.0 | 10.54 | # **ANNEX B: Accreditation Certificate** United States Department of Commerce National Institute of Standards and Technology # Certificate of Accreditation to ISO/IEC 17025:2005 NVLAP LAB CODE: 600118-0 # Telecommunication Technology Labs, CAICT Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: # **Electromagnetic Compatibility & Telecommunications** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2019-09-26 through 2020-09-30 Effective Dates For the National Voluntary Laboratory Accreditation Program ***END OF REPORT***