

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: CD835V3-1045_Sep18

CALIBRATION CERTIFICATE

QA CAL-20.v6 Calibration proce	dure for dipoles in air	
September 19, 2	018	
its the traceability to national terms of the second strategies with confidence providence pro	onal standards, which realize the physical ur robability are given on the following pages a	nits of measurements (SI). Ind are part of the certificate.
ed in the closed laborator	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
ID#	Cal Date (Certificate No.)	Scheduled Calibration
SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
SN: 4013	05-Mar-18 (No. EF3-4013_Mar18)	Mar-19
SN: 781	17-Jan-18 (No. DAE4-781_Jan18)	Jan-19
ID #	Check Date (in house)	Scheduled Check
SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
Name	Function	Signature
Leif Klysner	Laboratory Technician	Sefler
Katja Pokovic	Technical Manager	letter
	QA CAL-20.v6 Calibration procession September 19, 2 Its the traceability to nati- inties with confidence p and in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 4013 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US31080477 Name Leif Klysner Katja Pokovic	QA CAL-20.v6 Calibration procedure for dipoles in air September 19, 2018 ts the traceability to national standards, which realize the physical ur inties with confidence probability are given on the following pages and in the closed laboratory facility: environment temperature (22 ± 3)° critical for calibration) ID # Cal Date (Certificate No.) SN: 104778 04-Apr-18 (No. 217-02672/02673) SN: 103244 04-Apr-18 (No. 217-02672) SN: 103245 04-Apr-18 (No. 217-02673) SN: 5058 (20k) 04-Apr-18 (No. 217-02682) SN: 5058 (20k) 04-Apr-18 (No. 217-02683) SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) SN: 781 17-Jan-18 (No. DAE4-781_Jan18) ID # Check Date (in house) SN: GB42420191 09-Oct-09 (in house check Oct-17) SN: US38485102 05-Jan-10 (in house check Oct-17) SN: US37295597 09-Oct-09 (in house check Oct-17) SN: US41080477 31-Mar-14 (in house check Oct-17) SN: US41080477 31-Mar-14 (in house check Oct-17) Name Function Leif Klysner Laboratory Technician Katja Pokovic Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- *Measurement Conditions:* Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- *E-field distribution:* E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52,10.1
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	835 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 835 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	109.3 V/m = 40.77 dBV/m
Maximum measured above low end	100 mW input power	108.2 V/m= 40.68 dBV/m
Averaged maximum above arm	100 mW input power	108.8 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	16.0 dB	40.8 Ω - 11.3 jΩ
835 MHz	32.3 dB	49.4 Ω + 2.3 jΩ
880 MHz	18.1 dB	57.9 Ω - 11.0 jΩ
900 MHz	18.2 dB	48.3 Ω - 12.1 jΩ
945 MHz	20.5 dB	49.1 Ω + 9.3 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Date: 19.09.2018

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1045

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm Reference Value = 132.0 V/m; Power Drift = 0.00 dB Applied MIF = 0.00 dB RF audio interference level = 40.77 dBV/m Emission category: M3

 MIF scaled E-field

 Grid 1 M3
 Grid 2 M3
 Grid 3 M3

 40.25 dBV/m
 40.68 dBV/m
 40.63 dBV/m

 Grid 4 M4
 Grid 5 M4
 Grid 6 M4

 35.68 dBV/m
 35.97 dBV/m
 35.93 dBV/m

 Grid 7 M3
 Grid 8 M3
 Grid 9 M3

 40.47 dBV/m
 40.77 dBV/m
 40.67 dBV/m

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S Servizio svizzero di taratura Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: CD1880V3-1038_Sep18

CALIBRATION CERTIFICATE

Object	CD1880V3 - SN:	1038	
Calibration procedure(s)	QA CAL-20.v6 Calibration proce	edure for dipoles in air	
Calibration date:	September 19, 2	018	
This calibration certificate docume The measurements and the uncer	ents the traceability to nati tainties with confidence p	onal standards, which realize the physical ur robability are given on the following pages ar	nits of measurements (SI). Ind are part of the certificate.
All calibrations have been conduc Calibration Equipment used (M&T	ted in the closed laborato E critical for calibration)	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Probe EF3DV3	SN: 4013	05-Mar-18 (No. EF3-4013_Mar18)	Mar-19
DAE4	SN: 781	17-Jan-18 (No. DAE4-781_Jan18)	Jan-19
Secondary Standards	D#	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
ower sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
ower sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
RF generator R&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
Network Analyzer HP 8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sof Myer
Approved by:	Katja Pokovic	Technical Manager	alles
			Issued: September 24, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- *Measurement Conditions:* Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	1730 MHz ± 1 MHz 1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1730 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	97.0 V/m = 39.74 dBV/m
Maximum measured above low end	100 mW input power	96.0 V/m = 39.65 dBV/m
Averaged maximum above arm	100 mW input power	96.5 V/m ± 12.8 % (k=2)

Maximum Field values at 1880 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	90.3 V/m = 39.11 dBV/m
Maximum measured above low end	100 mW input power	88.8 V/m = 38.97 dBV/m
Averaged maximum above arm	100 mW input power	89.5 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Nominal Frequencies

Frequency	Return Loss	Impedance
1730 MHz	22.9 dB	55.7 Ω + 5.1 jΩ
1880 MHz	21,2 dB	59.3 Ω + 2.0 jΩ
1900 MHz	21.6 dB	59.1 Ω - 1.1 jΩ
1950 MHz	25.9 dB	50.7 Ω - 5.0 jΩ
2000 MHz	20.7 dB	43.8 Ω + 6.1 jΩ

Additional Frequencies

Frequency	Return Loss	Impedance
1730 MHz	22.9 dB	55.7 Ω + 5.1 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1038

Communication System: UID 0 - CW ; Frequency: 1880 MHz, Frequency: 1730 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 1880 MHz, ConvF(1, 1, 1) @ 1730 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm Reference Value = 155.2 V/m; Power Drift = -0.03 dB Applied MIF = 0.00 dB RF audio interference level = 39.11 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.75 dBV/m	39.11 dBV/m	39.05 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
36.11 dBV/m	36.24 dBV/m	36.17 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.77 dBV/m	38.97 dBV/m	38.81 dBV/m

Dipole E-Field measurement @ 1730MHz/E-Scan - 1730MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 168.4 V/m; Power Drift = 0.00 dB

Applied MIF = 0.00 dB

RF audio interference level = 39.74 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
39.27 dBV/m	39.65 dBV/m	39.59 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
36.98 dBV/m	37.17 dBV/m	37.12 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
39.5 dBV/m	39.74 dBV/m	39.61 dBV/m

0 dB = 90.29 V/m = 39.11 dBV/m

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: CD2600V3-1018_Aug18

CALIBRATION CERTIFICATE

Object	CD2600V3 - SN:	1018	
Calibration procedure(s)	QA CAL-20.v6 Calibration proce	dure for dipoles in air	
Calibration date:	August 22, 2018		
This calibration certificate docume The measurements and the uncer All calibrations have been conduc	ents the traceability to nati tainties with confidence p ted in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages and ry facility: environment temperature (22 \pm 3)°C	ts of measurements (SI). d are part of the certificate. c and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Probe EF3DV3	SN: 4013	05-Mar-18 (No. EF3-4013 Mar18)	Mar-19
DAE4	SN: 781	17-Jan-18 (No. DAE4-781_Jan18)	Jan-19
Secondary Standards	י וח#	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
Power sensor HP E4412A	SN: US38485102	05-Jap-10 (in house check Oct-17)	In house check: Oct-20
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
BE generator B&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
Network Analyzer HP 8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1= 02
Approved by:	Katja Pokovic	Technical Manager	belly
			Issued: August 23, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- *Measurement Conditions:* Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- *E-field distribution:* E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2600 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2600 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	86.0 V/m = 38.69 dBV/m
Maximum measured above low end	100 mW input power	85.7 V/m = 38.66 dBV/m
Averaged maximum above arm	100 mW input power	85.8 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
2450 MHz	19.4 dB	43.5 Ω - 7.6 jΩ
2550 MHz	28.9 dB	47.1 Ω + 1.9 jΩ
2600 MHz	32.9 dB	49 .8 Ω + 2.2 jΩ
2650 MHz	33.6 dB	52.0 Ω + 0.8 jΩ
2750 MHz	22.1 dB	50.9 Ω - 7.9 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Date: 22.08.2018

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1018

Communication System: UID 0 - CW ; Frequency: 2600 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2600 MHz; Calibrated: 05.03.2018
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 17.01.2018
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm Reference Value = 64.13 V/m; Power Drift = 0.00 dB Applied MIF = 0.00 dB RF audio interference level = 38.69 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.4 dBV/m	38.69 dBV/m	38.62 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
37.92 dBV/m	38.1 dBV/m	38.04 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.47 dBV/m	38.66 dBV/m	38.53 dBV/m

Schweizerischer Kallbrierdienst

- S Service suisse d'étalonnage C
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: CD3500V3-1009 Feb19

CALIBRATION CERTIFICATE

Object

CD3500V3 - SN: 1009

Calibration procedure(s)

QA CAL-20.v7 Calibration Procedure for Validation Sources in air

Calibration date:

February 18, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Probe EF3DV3	SN: 4013	03-Jan-19 (No. EF3-4013_Jan19)	Jan-20
DAE4	SN: 781	09-Jan-19 (No. DAE4-781_Jan19)	Jan-20

ID #	Check Date (in house)	Scheduled Check
SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
Name	Function	Signature
Leif Klysner	Laboratory Technician	Sef Iller
Katja Pokovic	Technical Manager	fletty
	ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US41080477 Name Leif Klysner Katja Pokovic	ID #Check Date (in house)SN: GB4242019109-Oct-09 (in house check Oct-17)SN: US3848510205-Jan-10 (in house check Oct-17)SN: US3729559709-Oct-09 (in house check Oct-17)SN: 832283/01127-Aug-12 (in house check Oct-17)SN: US4108047731-Mar-14 (in house check Oct-18)NameFunctionLeif KlysnerLaboratory TechnicianKatja PokovicTechnical Manager

Issued: February 18, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

S

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011

American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	3500 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 3500 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	85.2 V/m = 38.61 dBV/m
Maximum measured above low end	100 mW input power	84.1 V/m = 38.49 dBV/m
Averaged maximum above arm	100 mW input power	84.6 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
3300 MHz	17.9 dB	64.5 Ω + 1.4 jΩ
3400 MHz	22.1 dB	55.9 Ω - 5.8 jΩ
3500 MHz	24.7 dB	52.0 Ω - 5.6 jΩ
3600 MHz	23.2 dB	48.3 Ω - 6.6 jΩ
3700 MHz	22.1 dB	42.9 Ω - 2.0 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Date: 18.02.2019

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 3500 MHz; Type: CD3500V3; Serial: CD3500V3 - SN: 1009

Communication System: UID 0 - CW ; Frequency: 3500 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 3500 MHz; Calibrated: 03.01.2019
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 09.01.2019
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole E-Field measurement @ 3500MHz/E-Scan - 3500MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 33.68 V/m; Power Drift = 0.01 dB Applied MIF = 0.00 dB RF audio interference level = 38.61 dBV/m Emission category: M2

MIF scaled E-field				
Grid 1 M2	Grid 2 M2	Grid 3 M2		
38.14 dBV/m	38.49 dBV/m	38.48 dBV/m		
Grid 4 M2	Grid 5 M2	Grid 6 M2		
38.34 dBV/m	38.61 dBV/m	38.55 dBV/m		
Grid 7 M2	Grid 8 M2	Grid 9 M2		
38.31 dBV/m	38.59 dBV/m	38.53 dBV/m		

Accredited by the Swiss Accreditation Service (SAS)

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
 - **Swiss Calibration Service**

Accreditation No.: SCS 0108

Multilateral Agreement for the recognition of calibration certificates Client Sporton

Certificate No: EF3-4047_Jan19

CALIBRATION CERTIFICATE

The Swiss Accreditation Service is one of the signatories to the EA

Object	EF3DV3- SN:4047
Calibration procedure(s)	QA CAL-02.v9, QA CAL-25.v7 Calibration procedure for E-field probes optimized for close near field evaluations in air
Calibration date:	January 30, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID		Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
DAE4	SN: 789	14-Jan-19 (No. DAE4-789_Jan19)	Jan-20
Reference Probe ER3DV6 SN: 2328 09-Oct-18 (No. EF		09-Oct-18 (No. ER3-2328_Oct18)	Oct-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Name	Function	Signature
Manu Seitz	Laboratory Technician	dit >
Katja Pokovic	Technical Manager	leag
		Issued: January 31, 2019
	Name Manu Seitz Katja Pokovic	NameFunctionManu SeitzLaboratory TechnicianKatja PokovicTechnical Manager

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

enter),
stem
and a second sec

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1309-2005, " IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005
- b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.1.1, May 2017

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell: f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). .
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	0.84	0.68	1.20	± 10.1 %
DCP (mV) ^B	96.3	98.2	94.1	

Calibration results for Frequency Response (30 MHz - 6 GHz)

Frequency	Target E-Field	Measured	Deviation	Measured	Deviation	Unc (k=2)
MHz	V/m	E-field (En) V/m	E-normai in %	E-field (Ep)	in %	70
30	77.2	77.3	0.2%	77.3	0.1%	± 5.1 %
100	77.4	78.0	0.8%	77.9	0.6%	± 5.1 %
450	77.1	77.8	1.0%	77.9	1.1%	± 5.1 %
600	77.1	77.4	0.5%	77.7	0.9%	± 5.1 %
750	77.2	77.4	0.2%	77.4	0.2%	± 5.1 %
1800	140.4	136.9	-2.5%	137.3	-2.2%	± 5.1 %
2000	133.0	129.2	-2.8%	129.4	-2.7%	± 5.1 %
2200	124.7	121.4	-2.7%	122.7	-1.6%	± 5.1 %
2500	123.6	120.6	-2.4%	121.8	-1.4%	± 5.1 %
3000	78.9	75.4	-4.4%	75.9	-3.7%	± 5.1 %
3500	256.3	248.2	-3.1%	246.0	-4.0%	± 5.1 %
3700	251.0	240.6	-4.1%	240.2	-4.3%	± 5.1 %
5200	50.9	50.9	0.1%	51.1	0.6%	± 5.1 %
5500	49.6	49.0	-1.3%	48.7	-2.0%	± 5.1 %
5800	48.9	49.2	0.6%	49.3	0.8%	± 5.1 %

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁸ Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

· · · · · · · · · ·

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4047

ŲťD	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	134.9	±3.3 %	±4.7%
		Y	0.00	0.00	1.00		134.5		
		Z	0.00	0.00	1.00		145.8		
10021-	GSM-FDD (TDMA, GMSK)	X	2.86	71.7	16.2	9.39	148.8	±2.2 %	±4.7 %
DAC		Y	2.74	67.4	14.0	Į	134.9		
		Z	2.46	70.8	16.0		134.1		
10061-	IEEE 802.11b WiFi 2.4 GHz	Х	3.86	74.5	22.3	3.60	147.9	±0.9 %	±4.7 %
CAB	(DSSS, 11 Mbps)	Ý	4.32	75.1	21. 9		149.2		
		Z	3.08	69.7	19.8		135.9		
10069-	10069- IEEE 802.11a/h WiFi 5 GHz	X	11.16	70.1	24.2	10.56	133.8	±3.0 %	±4.7 %
CAC (OFDM, 54	(OFDM, 54 Mbps)	Y	11.16	69.9	23.8		133.4		
		Z	10.90	69.7	24.0		140.7		
10077-	IEEE 802.11g WiFi 2.4 GHz	X	10.27	70.0	24.8	11.00	132.3	±3.0 %	±4.7%
CAB	(DSSS/OFDM, 54 Mbps)	Y	10.50	70.4	24.7		133.1		
		Z	10.09	69.8	24.7		138.1		
10172-	LTE-TDD (SC-FDMA, 1 RB, 20	X	6.24	71.6	25.1	9,21	136.7	±3.0 %	±4.7 %
CAG	MHz, QPSK)	Y	6.55	72.1	24.8		139.6		
		Z	5.89	70.4	24.4		143.0		
10173-	LTE-TDD (SC-FDMA, 1 RB, 20	X	6.60	72.6	25.6	9.48	135.6	±2.7 %	± 4.7 %
CAG	MHz, 16-QAM)	Y	6.95	73.0	25.2		138.7		
		Z	6.20	71.4	24.9		140.9		
10174-	LTE-TDD (SC-FDMA, 1 RB, 20	X	7.30	72.9	26.4	10.25	135.9	±2.2 %	±4.7 %
CAG	MHz, 64-QAM)	Y	7.63	73.3	26.1		139.1		
		Z.	6.88	71.6	25.7		141.1		
10295-	CDMA2000, RC1, SO3, 1/8th	X	6.03	71.0	27.2	12.49	128.1	±1.4 %	±4.7 %
AAB	Rate 25 fr.	Y	6.36	71.0	26.3		115.8		
		Z	5.50	68.7	25.8		114.5		

Calibration Results for Modulation Response

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a Numerical linearization parameter: uncertainty not required. ^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4047

Sensor Frequency Model Parameters

	Sensor X	Sensor Y	Sensor Z
Frequency Corr. (LF)	-0.33	-0.24	5.86
Frequency Corr. (HF)	2.82	2.82	2.82

Sensor Model Parameters

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	-32.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	335 mm
Probe Body Diameter	12 mm
Tip Length	25 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	1.5 mm
Probe Tip to Sensor Y Calibration Point	1.5 mm
Probe Tip to Sensor Z Calibration Point	1.5 mm

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), ϑ = 90°

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), ϑ = 90°

Dynamic Range f(E-field) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Deviation from Isotropy in Air Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

S

S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: EE3-4053_Apr19

CALIBRATION CERTIFICATE

Object

EF3DV3- SN:4053

Calibration procedure(s)

QA CAL-02.v9, QA CAL-25.v7, Calibration procedure for E-field probes optimized for close near field evaluations in air

Calibration date:

April 16, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

		Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		02 Apr 10 (No. 217 02892/02893)	Apr-20
Power meter NRP	SN: 104778	03-Api-19 (No. 217-02892)02093/	
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 789	14-Jan-19 (No. DAE4-789_Jan19)	Jan-20
Reference Probe ER3DV6	SN: 2328	09-Oct-18 (No. ER3-2328_Oct18)	Oct-19
O		Check Date (in house)	Scheduled Check
Secondary Standards	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature	A second second second
Calibrated by:	Manu Seitz	Laboratory Technician	fit	<u> </u>
Approved by:	Katja Poković	Technical/Manager	JAC B	<u>ب</u>
			Issued: Apri	1 18, 2019
This calibration certificate	e shall not be reproduced except in	a full without written approval of the laborat	ory.	

S

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
NORMx,y,z	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
En	incident E-field orientation normal to probe axis
Ep	incident E-field orientation parallel to probe axis
Polarization	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1309-2005, " IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005
- b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.1.1, May 2017

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). ٠
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal ٠ characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip ٠ (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	0.76	0.75	1.25	± 10.1 %
DCP (mV) ^B	100.3	95.8	94.0	

Calibration results for Frequency Response (30 MHz - 6 GHz)

Frequency MHz	Target E-Field V/m	Measured E-field (En)	Deviation E-normal	Measured E-field (Ep)	Deviation E-normal	Unc (k=2) %
		V/m	<u>in %</u>	<u>v/m</u>		+ E 1 9/
30	77.2	77.1	-0.2%	(7.5	0.4%	± 5.1 %
100	77.3	78.2	1.2%	77.7	0.6%	± 5.1 %
450	77.1	78.1	1.3%	77.4	0.4%	<u>± 5.1 %</u>
600	77.1	77.8	0.9%	77.0	-0.2%	<u>± 5.1 %</u>
750	77.1	77.5	0.6%	76.9	-0.3%	± 5.1 %
1800	143.3	139.5	-2.6%	139.2	-2.8%	<u>± 5.1 %</u>
2000	135.1	131.6	-2.6%	131.6	-2.6%	± 5.1 %
2200	127.7	123.8	-3.1%	124.6	-2.4%	± 5.1 %
2500	125.5	122.7	-2.2%	123.7	-1.5%	± 5.1 %
3000	79.5	75.9	-4.5%	76.8	-3.4%	± 5.1 %
		· · · ·				<u></u>
3500	256.7	248.2	-3.3%	245.8	-4.2%	± 5.1 %
3700	249.7	239.2	-4.2%	238.0	-4.7%	± 5.1 %
5200	50.7	51.1	0.7%	51.5	1.7%	± 5.1 %
5500	49.6	49.3	-0.7%	48.3	-2.6%	± 5.1 %
5800	48.9	48.6	-0.6%	49.7	1.7%	± 5.1 %

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^e Numerical linearization parameter: uncertainty not required.

^e Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	125.5	± 3.3 %	±4.7%
-		Y	0.00	0.00	1.00		121.1		
		Z	0.00	0.00	1.00		126.3		
10352-	Pulse Waveform (200Hz, 10%)	X	3.11	66.27	10.41	10.00	60.0	±2.0 %	±9.6 %
AAA	· · · · · · · · · · · · · · · · · · ·	Y	11.00	83.06	18.47		60.0		
		Z	8.83	80.20	17.45		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	1.50	63.07	7.87	6.99	80.0	±0.9%	±9.6%
AAA	· · · · · · · · · · · · · · · · · · ·	Y	15.00	87.09	18.45		80.0		
		Ż	15.00	86.82	18.24		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	0.67	61.32	5.95	3.98	95.0	±0.9%	± 9.6 %
AAA	·, ·,	Y	15.00	87.85	17.31		95.0		
		Z	15.00	88.05	17.29		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	0.34	60.64	4.90	2.22	120.0	± 1.0 %	±9.6 %
AAA		Y	15.00	88.77	16.41	1	120.0		
		Z	15.00	89.55	16.65		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.57	61.34	7.46	0.00	150.0	± 2.2 %	± 9.6 %
AAA		Y	1.02	65.58	11.93		150.0		
		Z	1.74	73.05	16.18		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.52	71.40	17. <u>71</u>	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.64	70.76	17.17		150.0		
		Z	3.11	73.72	18.79		150.0		
10396-	64-QAM Waveform, 100 kHz	X	3.10	74.06	20.48	3.01	150.0	±0.6%	± 9.6 %
AAA		Y	3.55	73.48	20.21		150.0		
		Z	3.62	74.03	20.62		150.0		
10399-	64-QAM Waveform, 40 MHz	Х	3.57	68.06	16.49	0.00	150.0	± 1.5 %	± 9.6 %
AAA		Y	3.65	67.76	16.29		150.0	1	
		Z	3.88	68.94	17.07	1	150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.80	66.20	15.99	0.00	150.0	± 3.0 %	± 9.6 %
AAA		Y	5.01	65.89	15.86		150.0		
		7	5.02	65.82	15.98		150.0		

Calibration Results for Modulation Response

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Frequency Model Parameters

	Sensor X	Sensor Y	Sensor Z
Frequency Corr. (LF)	0.12	-0.07	4.80
Frequency Corr. (HF)	2.82	2.82	2.82

Sensor Model Parameters

	C1	C2	α	T1	T2	Т3	T4	T5	T6
	fF	fF	V ^{−1}	ms.V ⁻²	ms.V⁻¹	ms	V ⁻²	V-1	
X	38.4	247.91	35.45	5.65	0.51	4.92	1.72	0.00	1.00
Y	61.1	408.33	37.60	15.75	0.63	5.05	0.90	0.41	1.01
Z	67.7	454.34	38.10	14.30	0.69	5.04	0.44	0.49	1.00

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	71
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	12 mm
Tip Length	25 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	1.5 mm
Probe Tip to Sensor Y Calibration Point	1.5 mm
Probe Tip to Sensor Z Calibration Point	1.5 mm

100

<u>0.</u>ō

• Y

•] Y

• Z

T Z

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=600 MHz,TEM,0°

Receiving Pattern (ϕ), ϑ = 90°

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(E-field) (TEM cell, f = 900 MHz)

Uncertainty of Linearlty Assessment: ± 0.6% (k=2)

Deviation from Isotropy in Air Error (\, \), f = 900 MHz

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR	Unc
				(dB)	(k=2)
0		CW	CW	0.00	± 4.7 %
10010	ÇAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	±9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)		1.87	± 9.6 %
10013	CAB	TEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDU (TDMA, GMSK)	GSM	9.39	<u>±9.0%</u>
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.07	19.0%
10024	DAC		GSM	12.62	+96%
10020	DAC		GSM	9.55	+96%
10020	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4 80	+9.6%
10028	DAC	GPRS-EDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6%
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6%
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 %
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	±9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±9.6%
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6 %
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6 %
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6%
10039	CAB	CDMA2000 (1xRT1, RC1)	CDMA2000	4.0/	±9.0 %
10042		IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Haitrate)		1.10	<u>19.0%</u>
10044		DECT (TDD, TDMA/EDM, CECK, Full Close 24)	DECT	13.80	19.0%
10048		DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	10.70	±9.0 %
10049		LIMTS-TOD (TD-SCDMA 1 28 Mons)	TD-SCDMA	11 01	+9.6%
10050	DAC	EDGE-EDD (TDMA 8PSK TN 0-1-2-3)	GSM	6.52	±9.6 %
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS. 2 Mbps)	WLAN	2.12	± 9.6 %
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6 <u>%</u>
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6%
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6%
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
10067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, <u>36 Mbps)</u>	WLAN	10.12	±9.6%
10068		IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)		10.24	±9.0%
10069		IEEE 802.11a/n WIFI 5 GHZ (OFDM, 54 M0ps)		0.00	±9.0 %
10071		IEEE 002.11g WIFI 2.4 GHz (DSSS/OFDM, 9 MUPS)		9.03	+96%
10072		IEEE 802.11g WIF1 2.4 GHz (DSSS/OFDM, 12 Mops)		9.92	+96%
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM 24 Mbps)	WLAN	10.30	± 9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6%
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6 %
10077	CAB	IEEE 802.11g WiFI 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6 %
10097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6 %
10098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6 %
10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6 %
10102		LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)		6.60	±9.6%
10103	CAG	LTE-TOD (SC-FUMA, 100% KB, 20 MHZ, QPSK)		9.29	<u></u>
10104		LTE-TOD (SC-FDMA, 100% KB, 20 MHZ, 10-QAM)		3.37	10.070 +0.60/
10105		LTE-TOD (SC-FDMA, 100% KB, 20 MHZ, 04-QAW)		5.90	+060%
10108	LCAG	LTE-FDD (SC-FDMA, 100% KB, 10 MHZ, QPSK)		0.60	I 9.0 70

10109	CAG	LTE-EDD (SC-EDMA 100% RB 10 MHz 16-OAM)		0.40	1.0.0.0/
10110	CAG	LTE-EDD /SC EDMA 100% RD & MU - ODO/()		6.43	±9.6%
10110	1000	LTE-FDD (SC-FDMA, 100% RB, 5 MHZ, QPSK)	LTE-FDD	5.75	± 9.6 %
10111		LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112		LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113		LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	+96%
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8 10	+96%
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbns, 16-OAM)	MIAN	0.10	1 1 0 6 0/
10116	CAC	IEEE 802 11n (HT Greenfield 135 Mbox 64-OAM)		0.40	19.0 %
10117	CAC	IEEE 802 11n /HT Mixed 12 5 Minos BDS/()		8.15	± 9.6 %
10118			WLAN	8.07	± 9.6 %
10110			WLAN	8.59	± 9.6 %
10119		IEEE 802.11n (H1 Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6 %
10140		LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	+96%
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, OPSK)		5 73	+0.6 %
10143	CAE	LTE-EDD (SC-EDMA 100% BB 3 MHz 16-OAM)		5.75	± 9.0 %
10144	CAE	TE-EDD (SC-EDMA 100% PB 2 MHz 64 OAM)		0.35	±9.6%
10145	CAE			6.65	± 9.6 %
10145		LTE-FUD (SC-FUMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146		LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6%
10149		LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	+96%
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	I TE-EDD	6 60	+96%
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, OPSK)		0.00	1 3.0 %
10152	CAG	LTE-TOD (SC-EDMA 50% RB 20 MHz 16 OAM)		9.20	±9.0 %
10153	CAG	17E-TOD (SC-EDMA 50% RB 20 MHz, 10-QAM)		9.92	± 9,6 %
10154	000	LTE FDD (00 FDMA, 50% RD, 20 MHZ, 64-0AM)	LIE-TDD	10.05	± 9.6 %
10154		LTE-FDD (SC-FDMA, 50% RB, 10 MHZ, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	+9.6%
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	I TE-EDD	6.62	+96%
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	ITE-EDD	6.56	1069/
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, OPSK)		5.00	19.0%
10161	CAF	LTE-EDD (SC-EDMA 50% RB 15 MHz 16 OAM)		0.02	<u> </u>
10162	CAF	LTE-EDD (SC-EDMA 50% PB 15 MHz, 64 OAM)		0.43	± 9.6 %
10166	CAE	LTE EDD (SC EDMA, 50% CD, 4 A MUL, 00000)		6.58	± 9.6 %
10167		1 TE FDD (30-FDMA, 50% RB, 1.4 MHZ, QPSK)	LTE-FDD	<u>5.46</u>	± 9.6 %
10107		LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6%
10170		LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	+9.6%
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)		649	+0.6%
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, OPSK)		0.45	10.0%
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-OAM)		0.49	<u>±9.0 %</u>
10174	CAG	LTE-TDD (SC-EDMA 1 RB 20 MHz 64-OAM)		9.40	±9.0 %
10175	CAG	LTE-EDD (SC-EDMA 1 PB 10 MHz, OPC(AW)		10.25	±9.6%
10176			LTE-FDD	5.72	±9.6 %
10170		LTE-FDD (SC-FDMA, 1 KB, 10 MHZ, 16-QAM)	LTE-FDD	6.52	±9.6%
40470		LITE-FUD (SC-FUMA, 1 KB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6%
101/8	CAG	LTE-FDU (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6%
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	+96%
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)		5 72	+0.0 /0
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz 16-OAM		0.1Z 6.E2	10.0%
10183	AAD	LTE-FDD (SC-FDMA 1 RB 15 MHz 64-OAM)		0.52	<u><u> </u></u>
10184	CAE			6.50	± 9.6 %
10185		LTE EDD (SC EDMA (DD SHILL (S SHILL)	LIE-FDD	5.73	±9.6 %
10100		LTE-FOD (OC-FDMA, 1 KB, 3 MHZ, 16-QAM)	LTE-FDD	6.51	±9.6 %
40407		LTE-FUD (SC-FUMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6 %
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6 %
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-OAM)	LTE-FDD	6.50	+96%
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WIAN	8.00	1060/
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-OAM)	WIAN	0.09	4020
10195	CAC	IEEE 802.11n (HT Greenfield 65 Mbps, 64-04M)		0.12	<u> </u>
10196	CAC	IEEE 802 11n (HT Mixed 6.5 Mboc BDSK)		0.21	±9.6%
10197	CAC	SEE 802.110 (HT Mixed, 0.0 MUps, DFSK)	WLAN	8.10	±9.6 %
10100		IEEE 002.1101 (011 WIXED, 39 MDDS, 16-UAM)	WLAN	8.13	±9.6 %
10130	- <u></u>	IEEE 002.110 (01 MIXed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6 %
10219	CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	+9.6%

10220	CAC	EFE 802 11n (HT Mixed 43 3 Mbns 16-OAM)	MALAN	9 13	+06%
10221	CAC	IEEE 802 11n (HT Mixed, 72.2 Mbps, 64 OAM)		0.13	19.0 %
10221			VYLAIN	0.21	19.0%
10222			WLAN	8.06	±9.6%
10223		IEEE 802.11/11 (HT MIXED, 90 MDps, 16-QAM)	WLAN	8.48	±9.6 %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6%
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6 %
10226		LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6 %
10227	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6 %
10228	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6%
10229	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	±9.6%
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TOD	10.25	±9.6%
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9,19	±9.6 %
10232	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	+9.6%
10233	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	+96%
10234	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)		9.21	+96%
10235	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz 16-QAM)	I TE-TDD	948	+96%
10236	CAF	LTE-TDD (SC-EDMA 1 RB 10 MHz 64-0AM)		10.75	+96%
10237	CAF			0.20	10.0%
10238				9.21	19.0 %
10200				9.40	19.0%
10239				10.25	± 9.0 %
10240		LTE-TUD (SC-FUMA, T KB, TS MITZ, QPSK)		9.21	±9.6 %
10241		LTE-TOD (SC-FDMA, 50% RB, 1.4 MHZ, 16-QAM)		9.82	±9.6 %
10242		LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)		9.86	±9.6%
10243		LTE-TDD (SC-PDMA, 50% RB, 1.4 MHz, QPSK)	LIE-IDD	9.46	±9.6%
10244		LTE-TUD (SC-FUMA, 50% RB, 3 MHZ, 16-QAM)		10.06	±9.6%
10245		LTE-TDD (SC-FDMA, 50% RB, 3 MHZ, 64-QAM)	LIE-IDD	10.06	± 9.6 %
10246	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	±9.6%
10247	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	±9.6%
10248		LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6 %
10249	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6 %
10250	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	±9.6 %
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6 %
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6%
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6%
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6 %
10257	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6 %
10258	ÇAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6 %
10259	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6 %
10260	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10261	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	±9.6 %
10262	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6 %
10263	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6 %
10264	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	±9.6 %
10265	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6 %
10266	ÇAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	±9.6%
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	±9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	±9.6 %
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	±9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	±9.6 %
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr	CDMA2000	12 40	+96%
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, OPSK)	LTE-FDD	5.81	+96%
10298	AAD	LTE-EDD (SC-EDMA, 50% RB, 3 MHz, OPSK)	LTE-FDD	5.72	+9.6%
10299		LTE-EDD (SC-EDMA 50% RB 3 MHz 16-04M)		6 30	+96%
				v.vv	

10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6 %
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	±9.6 %
10302	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL	WIMAX	12.57	±9.6%
		symbols)		1	
10303	AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6 %
10304	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	±9.6 %
10305	AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15	WIMAX	15.24	+9.6%
		symbols)			
10306	AAA	JEEE 802 16e WIMAX (29:18, 10ms, 10MHz, 640AM, PUSC, 18	WIMAX	14.67	+96%
	/001	symbole)		14.01	10.0 %
10307		IFFF 802 16e WIMAX (29:18 10ms 10MHz OPSK PUSC 18	WIMAX	14 40	+96%
10007	1.000	symbols)		14.45	10.0 %
10308		IEEE 802 16e WIMAX (29:18, 10ms, 10MHz, 16OAM, PUSC)	MIMAX	14 46	+96%
10309		IEEE 802 160 WIMAX (20:18, 10ms, 10MHz, 160AM, AMC 2v3, 18	VAGMAX	14.58	+96%
10303		evenhole)	VVIIVI///	14.00	19.0 %
10210	٨٨٨	EEE 902 160 MGMAX (20-19 10mg 10MHz ODOK AMC 222 19		14 57	406%
10310		DEEE 002. THE WIMAN (28.10, TOTIS, TOWINZ, GRON, AWG 233, TO	WINAA	14.07	19.0 %
10211				6.06	+069
10311		LIE-FUD (SC-FUMA, 100% KB, 13 MITZ, QFSK)		0.00	19.0%
10313	AAA	DEN 13		10.51	±9.0 %
10314	AAA	DEN 1:6	IDEN	13.48	±9.6%
10315		IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6%
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6 %
10317	AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6%
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6%
10354		Pulse Waveform (200Hz, 40%)	Generic	3.98	+96%
10355		Pulse Waveform (200Hz, 40%)	Generic	2.00	+06%
10355		Pulse Waveloinii (20012, 00%)	Generic	0.07	19.0 %
10350	AAA		Generic	0.97	±9.070
10387	AAA	QPSK waveform, 1 MHz	Generic	5.10	±9.6%
10388		QPSK waveform, 10 MHz	Generic	5.22	±9.6%
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6%
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±9.6%
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	± 9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6%
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6 %
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	+9.6%
10410	AAF	LTE-TDD (SC-EDMA 1 RB 10 MHz OPSK UI	I TE-TOD	7.82	+96%
10110	/	Subframe=2.3.4.7.8.9 Subframe Conf=4)			20.0 %
10414	ΑΑΑ	WLAN CODE 64-OAM 40MHz	Generic	8 54	+96%
10415		IEEE 802 11b WiFi 2 4 GHz (DSSS 1 Mbns 99nc duty cycle)	W/LAN	1 54	+96%
10415		IEEE 802 11a Mili 2.4 GHz (EPB OEDM 6 Mbra 90pa didy avala)		8.22	106%
10410		IEEE 002.11g WiFI 2.4 GHz (ERF-OFDW, 6 Mbps, 99pc duty cycle)		0.23	± 9.0 %
10417	AAB	TEEE 802.11a/n WIFLD GHZ (OFDM, 6 MDps, 99pc duty cycle)	WLAN	8.23	19.0%
10418		LEEE 802.11g WIFI 2.4 GHZ (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8,14	± 9.6 %
40115					
10419		LEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8.19	±9.6 %
L	<u> </u>	Short preambule)			
10422	AAB	LEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6 %
10423	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6 %
10424	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8,41	± 9.6 %
10426	AAB	IEEE 802,11n (HT Greenfield, 90 Mbps, 16-OAM)	WLAN	8.45	±9.6 %
10427	AAB	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-OAM)	WLAN	8.41	+96%
10430		LTE-EDD (OEDMA 5 MHz E-TM 3 1)		8.28	<u>% 3.0+</u>
10431				9.20	+0.6 %
10401				0.00	± 0.0 %
10432	AAU			0.34	<u> </u>
10433	AAU	LIE-FUD (OFDWA, 20 WHZ, E-TM 3.1)		8.34	<u>± 9.0 %</u>
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8,60	±9.6 %
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL	LTE-TDD	7.82	±9.6 %
		Subtrame=2,3,4,7,8,9)			
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6 %
10448	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	±9.6%
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	±9.6%
10450	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	± 9.6 %

10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	+9.6%
10456	AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	± 9.6 %
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	± 9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6 %
10461	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10462	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	± 9.6 %
10463	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6 %
10464	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD	7.82	± 9.6 %
10465	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.32	± 9.6 %
10466	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10467	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6 %
10468	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6 %
10469	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6 %
10470	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6 %
10471	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6 %
10472	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	± 9.6 %
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6 %
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	± 9.6 %
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7.8,9)	LTE-TOD	8.32	± 9.6 %
10478		LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6 %
10479		LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10480		LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6 %
10481		LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6 %
10482		LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD	7.71	±9.6 %
10483		LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.39	±9.6 %
10404		LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL <u>Subframe=2,3,4,7,8,9)</u>	LIE-IDD	8.47	± 9.6 %
10400	AAE	Subframe=2,3,4,7,8,9)		7.59	± 9.6 %
10486	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6 %
10487	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	± 9.6 %
10488	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD	7.70	± 9.6 %
10489	AAE	LTE-TOD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6 %
10490	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
1049 1	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %

		A TE TOD (OO EDMA FOR OD AC MUL AC OAM U		9.44	+069/
10492	AAE	LTE-TUD (SC-FUMA, 50% RB, 15 MHZ, 16-QAM, UL		0.41	I9.0 %
		Subframe=2,3,4,7,8,9)			
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.55	± 9.6 %
		Subframe=2.3.4.7.8.9)			
40404				7 74	+96%
10494	AAF	ETE-TUD (SC-FUMA, SU% RB, 20 MINZ, QPSK, UL		1.14	19.070
		Subframe=2,3,4,7,8,9)			
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.37	± 9.6 %
		Subframe=2.3.4.7.8.9)			
10496		LTE-TOD (SC-EDMA 50% RB 20 MHz 64-OAM LI	I TE-TOD	8.54	+9.6 %
10430		Cubinement 2.4.7.9.0)		0.01	- 0.0 ,0
		Subirane=2,3,4,7,0,9)		7.07	1000
10497	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL	LIE-IDD	1.67	±9.0%
		Subframe=2,3,4,7,8,9)			
10498	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.40	±9.6 %
		Subframe=2 3 4 7 8 9)			
10400				9.69	+06%
10499		LIE-IDD (30-FDWA, 100% KB, 1.4 MIN2, 04-QAM, 0L		0.00	1 9.0 %
		Subtrame=2,3,4,7,8,9)			
10500	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL	LTE-TDD	7.67	±9.6%
		Subframe=2,3,4,7,8,9)			
10501	AAR	LTE-TDD (SC-EDMA, 100% RB, 3 MHz, 16-QAM, UI	LTE-TDD	8.44	± 9.6 %
	1.00	Subframe=2.3.4.7.8.9)			
40500				0.60	106%
10502	AAB	ETE-TOD (SC-FDMA, 100% RB, 3 MHZ, 64-QAM, UL		0.52	19.0%
		Subframe=2,3,4,7,8,9)			
10503	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL	LTE-TDD	7.72	±9.6 %
-	1	Subframe=2.3.4.7.8.9)			
10504	AAF	LITE-TOD (SC-EDMA, 100% BB, 5 MHz, 16-OAM, UL	LTE-TDD	8.31	± 9.6 %
10004		Subframe=2.3.4.7.8.9)			
40505	A 4 5			9.54	106%
10505	AAE	LIE-TUU (SC-FUMA, 100% KB, 5 MHZ, 64-QAM, 0L		0.34	19.070
		Subframe=2,3,4,7,8,9)			
10506	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL	LTE-TDD	7.74	±9.6%
		Subframe=2.3.4.7.8.9)			
10507	AAF	LTE-TOD (SC-EDMA_100% RB_10 MHz_16-OAM_UI	LTE-TDD	8.36	+9.6%
10000		Subframe=2.3.4.7.8.0)			
40500	- A A E		LTE TOD	33.0	+06%
10508	AAE	LIE-TDD (SC-FDIMA, 100% RD, 10 MHZ, 04-QAM, OL		0.00	1 9.0 %
		Subframe=2,3,4,7,8,9)			
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL	LTE-TDD	7.99	± 9.6 %
	ł	Subframe=2,3,4,7,8,9)			
10510	AAE	LTE-TDD (SC-EDMA, 100% RB, 15 MHz, 16-QAM, UL	LTE-TDD	8.49	±9.6%
		Subframe= 234780			
40544	100			9.51	+06%
10511		LIE-TUU (SC-FUWA, 100% RB, 15 MITZ, 04-QAWI, OL		0.51	2 3.0 %
		Subtrame=2,3,4,7,8,9)			
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %
		Subframe=2.3.4.7.8.9)			
10513	AAF	LTE-TOD (SC-EDMA, 100% RB, 20 MHz, 16-OAM, UI	I TE-TOD	8.42	+9.6%
		212-100(00-1000,100,100,2000,2000,000)		0.12	
10511		500//ame-2,3,4,7,0,3)		0.45	+06%
10514		LTE-TUD (SU-FDIVIA, 100% KB, 20 WITZ, 04-QAW, UL		0.40	I 9.0 %
	L	Subtrame=2,3,4,7,8,9)			
10515	AAA	IEEE 802,11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6 %
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cvcle)	WLAN	1.57	±9.6 %
10517		IEEE 802 11h WiEi 2 4 GHz (DSSS 11 Mbns 99nc duty cycle)	WLAN	1.58	±9.6%
10510		IEEE 202 11a/b M/Ei 5 CHz (OEDM 0 Mbos 0000 duty dyols)	WI ANI	8 22	+06%
0018	AAB			0.23	1 5.0 70
10519	AAB	LEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	± 9.6 %
10521	AAR	IEEE 802.11a/h WiFi 5 GHz (OEDM, 24 Mhos, 99nc duty cycle)	WLAN	7,97	± 9.6 %
10522		IEEE 802 11a/b WiEi 5 CHz (OEDM 38 Mbps, 00ps duby cyclo)	WLAN	8 45	+96%
40500				0.40	1060/
10523	AAB	THEE OUZ. TRAIN WIND GHZ (UPDIN, 46 MIDPS, 99PC OUTY CYCIE)	VVLAN	0,00	13.0%
10524	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)		8.27	± 9.6 %
10525	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10526	AAR	IEEE 802.11ac WiEi (20MHz, MCS1, 99nc duty cycle)	WLAN	8.42	±9.6 %
10527		IEEE 902 1100 M/JEI (20MHz, MCC2, 00pc duty cycle)	WI AN	8 21	+06%
10327				0.61	10.0 /0
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	0.36	±9.6%
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10531	AAB	IEEE 802.11ac WiFi (20MHz. MCS6. 99pc duty cycle)	WLAN	8.43	± 9.6 %
10532		IEEE 802 11ac WiEi (20MHz, MCS7, 99nc duty cycle)	WLAN	8.29	+9.6%
10002	1778			0.20	1069/
10533	AAB	TEEE OUZ.TTAC WIFT (ZUMITZ, MUS8, 99pc OUTY CYCIE)		0.30	I J.O %
10534	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	WLAN	8.45	± 9.6 %

10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10536	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	WLAN	8.32	± 9.6 %
10537	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	WLAN	8.44	± 9.6 %
10538	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	WLAN	8.54	± 9.6 %
10540	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6 %
10542	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6 %
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6 %
10544	AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	WLAN	8.47	±9.6 %
10545	AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)	WLAN	8.55	± 9.6 %
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6 %
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6%
10548	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6%
10550	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.6 %
10551	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6 %
10552	AAB	LEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6 %
10553	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6%
10554	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6%
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6%
10557	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	WLAN	8.52	±9.6 %
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	WLAN	8.61	±9.6%
10560	AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	±9.6%
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	WLAN	8.56	±9.6 %
10562	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	WLAN	8.69	± 9.6 %
10563	AAC	EEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	WLAN	8.77	± 9.6 %
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty		8.25	±9.6%
40505				0.45	
10565		TEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty	WLAN	8.40	±9.0%
40500				0.12	+06%
10500		IEEE 802.11g WIFI 2.4 GHZ (DSSS-OFDIW, 16 Mbps, 99pc duty	WEAN	0.13	± 9.0 %
10567		IEEE 802 11a Milli 2 A GHz (DSSS-OEDM 24 Mbos, 99oc duty		8.00	+96%
10007		cycle)		0.00	10.0 %
10568		IEEE 802 11g WiEi 2 4 GHz (DSSS-OEDM_36 Mbps, 99pc duty	WLAN	8.37	± 9.6 %
		cvcle)			
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty	WLAN	8.10	± 9.6 %
		cycle)			
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty	WLAN	8.30	±9.6 %
1		cycle)			
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6 %
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6 %
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6 %
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6%
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty	WLAN	8.59	±9.6%
		cycle)			
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty	WLAN	8.60	± 9.6 %
		cycle)			
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty	WLAN	8.70	±9.6%
		cycle)			
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty	WLAN	8.4 9	± 9.6 %
		cycle)			
10579		IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty	WLAN	8.36	±9.6%
40800			14/1 4 5	0.70	+0.0 %
10580	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty	WLAN	8.76	±9.6%
40504			10/1 AN1	0.05	+0.6.0/
10581		PIECE 602.TTG WIFT 2.4 GHZ (DSSS-OFDIM, 48 Mbps, 90pc duty	VVLAIN	0.30	I 9.0 %
10592		EEE 902 11a Milli 2 4 GHz (DSSS-OEDM 54 Mine, 00na dutu		8.67	+96%
10082	1~~~	REELE OUZ, TTY YARTI Z.4 ONZ (DOOO-OFDIVI, 04 MUUPS, SUPE OULY		0.07	т <i>э.</i> џ /0
10582		EFE 802 11a/h W/Ei 5 GHz (OEDM 6 Mhos. 90ns duty cycle)	WIAN	8 50	+96%
10505		IEEE 802 11a/h Will to Gitz (OFDM 0 More, 90nd duby cycle)	WIAN	8.60	+96%
10595		IEEE 802 11a/h Will 5 GHz (OEDM 12 Mbns, 3000 duty cycle)	WIAN	8 70	+96%
10586		IEEE 802 11a/h W/iEi 5 GHz (OFDM, 12 Mops, sope duty cycle)	WLAN	8.49	+9.6%
10597		IEEE 802.11a/h WITTO GHZ (OF DW, TO MUPS, SOPE duty Cycle)	WIAN	8 36	+96%
10001			7 7 Int 13 5	0.00	20.070

					_
10588	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	± 9.6 %
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	± 9.6 %
10590	AAB	IEEE 802,11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	+96%
10591	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90nc duty cycle)	WLAN	8.63	+96%
10592	AAR	IEEE 802 11n (HT Mixed 20MHz MCS1 90nc duty cycle)		9 70	+06%
10502	AAB	IEEE 802.11n (ITT Mixed, 20MHz, MCS2, 00ne duty cycle)		0.19	±9.0 %
10500		IFEE 002.11m (IT Mixed, 20MHz, MCS2, 90pc duty cycle)	WLAN	8.04	± 9.6 %
10594		TEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10596		IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	WLAN	8.71	± 9.6 %
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	WEAN	8.72	± 9.6 %
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	WLAN	8.50	± 9.6 %
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90nc duty cycle)	WLAN	8 79	+96%
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	WIAN	8.88	+96%
10601	AAB	IEEE 802 11n (HT Mixed 40MHz MCS2 90nc duty cycle)	JA/LAN	8.82	+06%
10602	AAR	IEEE 802 11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)		9.02	100%
10602		IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90no duty cycle)		0.94	<u> </u>
10603		EEE 602.1111 (HT Mixed, 40MHz, MOS4, 90pc duty cycle)	VVLAN	9.03	±9.6 %
10004		IEEE 802.11n (H1 Mixed, 40MHz, MCS5, 90pc duty cycle)	WLAN	8.76	± 9.6 %
10605	AAB	TEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9.6 %
10606		IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	WLAN	8.64	± 9.6 %
10608	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10609	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	± 9.6 %
10610	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6%
10611	AAB	IEEE 802,11ac WiFi (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	+9.6%
10612	AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	WLAN	877	+96%
10613	AAB	IEEE 802.11ac WiEi (20MHz, MCS6, 90pc duty cycle)		8 04	+06%
10614	AAB	IEEE 802 11ac WiEi (20MHz, MCSZ, 90pc duty cycle)		0.54	19.0 %
10615		IEEE 802.11ac Will (20Miliz, MCS9, 00pc duty cycle)	VYLAN	0.09	<u>±9.0 %</u>
10616		IEEE 802.11ac Wiri (20Miriz, MOSO, 90pc duty cycle)		0.02	<u> </u>
10010			WLAN	8.82	± 9.6 %
10017		IEEE 802.11ac WIFI (40MHZ, MUS1, 90pc duty cycle)	WLAN	8.81	±9.6%
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	WLAN	8.58	±9.6%
10619	AAB	IEEE 802.11ac WIFI (40MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6%
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6%
10621	AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6 %
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6%
10624	AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	WLAN	8.96	+96%
10625	AAB	IEEE 802,11ac WiFi (40MHz, MCS9, 90pc duty cycle)	WLAN	8.96	+96%
10626	AAB	IEEE 802.11ac WiEi (80MHz, MCS0, 90nc duty cycle)		883	+06%
10627	AAB	LIEFE 802 11ac WiFi (80MHz, MCS1, 90pc duty cycle)		0.00	19.0%
10628	AAR	IEEE 802 11ac WiFi (80MHz, MCS2, 00ac duby cycle)		0.00	<u>±9.0%</u>
10620			VVLAN	8.71	±9.6%
10620				8.85	±9.6%
10030		TEEE 802.11ac WIFI (80MHZ, MCS4, 90pc duty cycle)	WLAN	8.72	± 9.6 %
10031		TIEEE 802.11ac WIFI (80MHZ, MCS5, 90pc duty cycle)	WLAN	8.81	± 9.6 %
10632		LIEE SU2.11ac WIFI (SUMHz, MCS6, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10633	AAB	I IEEE 802.11ac WIFI (80MHz, MCS7, 90pc duty cycle)	WLAN	8.83	± 9.6 %
10634	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	WLAN	8.80	± 9.6 %
10635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6 %
10636	AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cvcle)	WLAN	8.83	±9.6%
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	WLAN	8 79	+96%
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90nc duty cycle)	WIAN	8.86	+96%
10639	AAC	IEEE 802.11ac WiFi (160MHz, MCS3, 90nc duty cycle)	WLAN	9 0E	+060/
10640	AAC	IEEE 802 11ac WiFi (160MHz, MCS4, 90pc duty cycle)		0.00	10.0%
10641	AAC	IFEE 802 11ac WiEi (160MHz, MCS5, 90pc duty cycle)		0.98	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
10642				9.00	± 9.6 %
10643				9.06	±9.6%
10040	AAC		WLAN	8.89	±9.6 %
10044		TEEE 002.11ac WIFI (100MHZ, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6 %
10045	AAC	IEEE 802.11ac WIFI (160MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.6 %
10646	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6 %
10647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TOD	11.96	± 9.6 %
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	± 9.6 %
10652	AAD	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	+9.6 %
10653	AAD	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TOD	7.42	+96%
10654	AAD I	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clinning 44%)		8.06	+0.6 %
				0.30	1 0.0 70

10655	AAE	LTE-TDD (OEDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6 %
10658		Pulse Waveform (200Hz 10%)	Test	10.00	±9.6%
10659		Pulse Mayeform (200Hz, 20%)	Test	6.99	+9.6%
10660	ΔΔΔ	Pulse Waveform (200Hz, 40%)	Test	3.98	+9.6%
10661		Pulse Waveform (200Hz, 40%)	Test	2.22	+96%
10662		Pulse Waveform (200Hz, 80%)	Test	0.97	+9.6%
10670		Bluetooth Low Energy	Bluetooth	2.19	+96%
10671		IEEE 802 11av (20MHz, MCS0, 90pc duty cycle)	WI AN	9.10	+96%
10672		LEEE 802 11ax (20MHz, MCS1, 00ac duty cycle)	WIAN	8 57	+96%
10072		LEEE 002.11ax (20MHz, MCS1, 30pc duty cycle)	MI AN	9.79	+06%
10073				9.74	+0.6%
10074		LEEE 002.11ax (20MHz, MCG3, 30pc duty cycle)		0.74	± 0.0 %
10075		LEEE 802.11ax (20MHz, MCS4, 90pc duty cycle)		0.50	±9.0 %
10070				0.17	19.0 %
10077				0.73	±9.0 %
100/8		TEEE 802.11ax (20MHz, MCS7, 90pc duty cycle)		0.70	±9.0 %
10079				0.09	19.0%
10680		LEEE 802.11aX (20MHz, MCS9, 90pc duty cycle)		0.00	±9.0%
10081		IEEE 802.11ax (20MHz, MOS10, 90pc doty cycle)		0.02	19.0 %
10082				0.03	19.0%
10683				0.42	±9.0%
10684		LEEE 802.11ax (20MHz, MCS1, 99pc duty cycle)		0.20	±9.0 %
10680		LIEE 802.11ax (20MHz, MCS2, 99pc duty cycle)		0.00	<u>19.0%</u>
10000		IEEE 802.118X (20MHz, MCS3, 9900 duty cycle)		9.45	+06%
10007		IEEE 802.114X (20MHz, MCS4, 9900 outy cycle)		9.40	+96%
10080				9.55	±9.0 %
10009		EEE 802.11ax (20MHz, MCS0, 99pc daty cycle)		8.00	+06%
10090		IEEE 002.11ax (20MHz, MCS7, 39pc duty cycle)		9.25	+06%
10691		IEEE 802.11ax (20MHz, MCS0, 99pc duty cycle)		8.20	+96%
10603		IEEE 802.11ax (20MHz, MCS3, 35pt duty cycle)		8 25	+96%
10694		IEEE 802.11ax (20MHz, MCS10, 350c duty cycle)	WIAN	8.57	+9.6%
10695		IEEE 802.11ax (20MHz, MCS0, 90nc duty cycle)	WLAN	8.78	± 9.6 %
10696	AAA	IEEE 802.11ax (40MHz, MCS1, 90pc duty cycle)	WLAN	8.91	± 9.6 %
10697	AAA	IEEE 802.11ax (40MHz, MCS2, 90pc duty cycle)	WLAN	8.61	±9.6 %
10698	AAA	IEEE 802.11ax (40MHz, MCS3, 90pc duty cycle)	WLAN	8.89	±9.6%
10699	AAA	IEEE 802.11ax (40MHz, MCS4, 90pc duty cycle)	WLAN	8.82	±9.6%
10700	AAA	IEEE 802.11ax (40MHz, MCS5, 90pc duty cycle)	WLAN	8.73	±9.6%
10701	AAA	IEEE 802.11ax (40MHz, MCS6, 90pc duty cycle)	WLAN	8.86	±9.6%
10702	AAA	IEEE 802.11ax (40MHz, MCS7, 90pc duty cycle)	WLAN	8.70	±9.6%
10703	AAA	IEEE 802.11ax (40MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6 %
10704	AAA	IEEE 802.11ax (40MHz, MCS9, 90pc duty cycle)	WLAN	8.56	±9.6%
10705	AAA	IEEE 802.11ax (40MHz, MCS10, 90pc duty cycle)	WLAN	8.69	±9.6 %
10706	AAA	IEEE 802.11ax (40MHz, MCS11, 90pc duty cycle)	WLAN	8.66	±9.6 %
10707	AAA	IEEE 802.11ax (40MHz, MCS0, 99pc duty cycle)	WLAN	8.32	±9.6 %
10708	AAA	IEEE 802.11ax (40MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6 %
10709	AAA	IEEE 802.11ax (40MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6 %
10710	AAA	IEEE 802.11ax (40MHz, MCS3, 99pc duty cycle)	WLAN	8.29	±9.6 %
10711	ĀĀĀ	IEEE 802.11ax (40MHz, MCS4, 99pc duty cycle)	WLAN	8.39	±9.6 %
10712	AAA	IEEE 802.11ax (40MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.6%
10713	AAA	IEEE 802.11ax (40MHz, MCS6, 99pc duty cycle)	WLAN	8.33	±9.6%
10714	AAA	IEEE 802.11ax (40MHz, MCS7, 99pc duty cycle)	WLAN	8.26	±9.6 %
10715	AAA	IEEE 802.11ax (40MHz, MCS8, 99pc duty cycle)	WLAN	8.45	±9.6 %
10716	AAA	IEEE 802.11ax (40MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.6 %
10717	AAA	IEEE 802.11ax (40MHz, MCS10, 99pc duty cycle)	WLAN	8.48	±9.6%
10718	AAA	IEEE 802.11ax (40MHz, MCS11, 99pc duty cycle)	WLAN	8.24	±9.6 %
10719	AAA	IEEE 802.11ax (80MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6 %
10720	AAA	IEEE 802.11ax (80MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6 %
10721	AAA	IEEE 802.11ax (80MHz, MCS2, 90pc duty cycle)	WLAN	8.76	±9.6 %
10722	AAA	IEEE 802.11ax (80MHz, MCS3, 90pc duty cycle)	WLAN	8.55	±9.6 %
10723	AAA	IEEE 802.11ax (80MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6 %
10724	AAA	IEEE 802.11ax (80MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.6 %
10725	AAA	IEEE 802.11ax (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	± 9.6 %
10726	AAA	IEEE 802.11ax (80MHz, MCS7, 90pc duty cycle)	WLAN	8.72	±9.6 %
10727	AAA	IEEE 802.11ax (80MHz, MCS8, 90pc duty cycle)	WLAN	8.66	± 9.6 %

10728	AAA	IEEE 802.11ax (80MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6 %
10729	AAA	IEEE 802.11ax (80MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6%
10730	AAA	IEEE 802.11ax (80MHz, MCS11, 90pc duty cycle)	WLAN	8.67	±9.6 %
10731	AAA	IEEE 802.11ax (80MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6 %
10732	AAA	IEEE 802.11ax (80MHz, MCS1, 99pc duty cycle)	WLAN	8.46	±9.6%
10733	AAA	IEEE 802.11ax (80MHz, MCS2, 99pc duty cycle)	WLAN	8.40	±9.6 %
10734	AAA	IEEE 802.11ax (80MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9.6%
10735	AAA	IEEE 802.11ax (80MHz, MCS4, 99pc duty cycle)	WLAN	8.33	±9.6%
10736	AAA	IEEE 802.11ax (80MHz, MCS5, 99pc duty cycle)	WLAN	8.27	±9.6 %
10737	AAA	IEEE 802.11ax (80MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.6 %
10738	AAA	IEEE 802.11ax (80MHz, MCS7, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10739	AAA	IEEE 802.11ax (80MHz, MCS8, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10740	AAA	IEEE 802.11ax (80MHz, MCS9, 99pc duty cycle)	WLAN	8.48	± 9.6 %
10741	AAA	IEEE 802.11ax (80MHz, MCS10, 99pc duty cycle)	WLAN	8.40	±9.6 %
10742	AAA	IEEE 802.11ax (80MHz, MCS11, 99pc duty cycle)		8.43	±9.6%
10743	AAA	IEEE 802.11ax (160MHz, MCS0, 90pc duty cycle)	WLAN	8.94	±9.6%
10744	AAA	IEEE 802.11ax (160MHz, MCS1, 90pc duty cycle)	WLAN	9.16	±9.6%
10745	AAA	IEEE 802.11ax (160MHz, MCS2, 90pc duty cycle)	WLAN	8.93	<u>±9.6 %</u>
10746	AAA	IEEE 802.11ax (160MHz, MCS3, 90pc duty cycle)	WLAN	9.11	±9.6%
10747	AAA	IEEE 802.11ax (160MHz, MCS4, 90pc duty cycle)	WLAN	9.04	± 9.6 %
10748	AAA	IEEE 802.11ax (160MHz, MCS5, 90pc duty cycle)	WLAN	8.93	±9.6 %
10749	AAA	IEEE 802.11ax (160MHz, MCS6, 90pc duty cycle)	WLAN	8.90	± 9.6 %
10750	AAA	IEEE 802.11ax (160MHz, MCS7, 90pc duty cycle)	WLAN	8.79	± 9.6 %
10751	AAA	IEEE 802.11ax (160MHz, MCS8, 90pc duty cycle)	WLAN	8.82	± 9.6 %
10752	AAA	IEEE 802.11ax (160MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6%
10753	AAA	IEEE 802.11ax (160MHz, MCS10, 90pc duty cycle)	WLAN	9.00	±9.6%
10754	AAA	IEEE 802.11ax (160MHz, MCS11, 90pc duty cycle)	WLAN	8.94	±9.6%
10755	AAA	IEEE 802.11ax (160MHz, MCS0, 99pc duty cycle)	WLAN	8.64	±9.6%
10756	AAA	IEEE 802.11ax (160MHz, MCS1, 99pc duty cycle)	WLAN	8.77	±9.0%
10757	AAA	LEEE 802.11ax (160MHz, MCS2, 99pc duty cycle)	WLAN	8.77	<u>±9.0%</u>
10758	AAA	LEEE 802.11ax (160MHz, MCS3, 99pc duty cycle)	VYLAN	0.69	<u>19.0%</u>
10759	AAA	IEEE 802.11ax (160MHz, MCS4, 99pc duty cycle)		0.00	19.0%
10760	AAA	IEEE 802.11ax (160MHz, MCS5, 99pc duty cycle)		0.49	13.0 %
10761	AAA	IEEE 802.11ax (160MHz, MCS6, 99pc duty cycle)		0.00	+0.6 %
10762		IEEE 802.11ax (160MHz, MCS7, 99pc duty cycle)		9.49	+060/
10763	AAA	I LEE 802.11ax (160MHz, MCS8, 99pc duty cycle)		9 6.00	+060/
10764		IEEE 802.11ax (160MHz, MCS9, 99pc duty cycle)		9.54	+06%
10765				9 64	+0.6 %
10766		IEEE 802.11ax (160MHz, MCS11, 99pc duty cycle)	VVLAN	0.51	1 2 9.0 %

⁶ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

е 1

Auden

Client

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE4-914_Jun19

Accreditation No.: SCS 0108

S

CALIBRATION CERTIFICATE

Object	DAE4 - SD 000 D0	04 BK - SN: 914	
Calibration procedure(s)	QA CAL-06.v29 Calibration proced	ure for the data acquisition elec	ctronics (DAE)
Calibration date:	June 20, 2019		
This calibration certificate docume The measurements and the uncer All calibrations have been conduc Calibration Equipment used (M&T	ents the traceability to nation tainties with confidence pro ted in the closed laboratory E critical for calibration)	nal standards, which realize the physical ur obability are given on the following pages an facility: environment temperature $(22 \pm 3)^{\circ}$	nits of measurements (SI). nd are part of the certificate. 'C and humidity < 70%.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Sep-18 (No:23488)	Sep-19
Secondary Standards	חן #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001 SE UMS 006 AA 1002	07-Jan-19 (in house check) 07-Jan-19 (in house check)	In house check: Jan-20 In house check: Jan-20
Calibrated by:	Name Dominique Steffen	Function Laboratory Technician	Signature
			nac
Approved by:	Sven Kühn	Deputy Manager	i.v. R uni
			Issued: June 20, 2019
This calibration certificate shall no	ot be reproduced except in I	full without written approval of the laborator	у.

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- C Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle . mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a • result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of . the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery . alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement A/D - Converter Resolution nominal

A/D - Converter Resol	lution nominal			
High Range:	1LSB =	6.1μV ,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement p	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	X	Y	Ζ
High Range	405.193 ± 0.02% (k=2)	405.699 ± 0.02% (k=2)	405.760 ± 0.02% (k=2)
Low Range	3.98453 ± 1.50% (k=2)	4.00097 ± 1.50% (k=2)	3.99621 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	261.5 ° ± 1 °
---	---------------

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	200035.00	-1.00	-0.00
Channel X	+ Input	20004.71	-0.80	-0.00
Channel X	- Input	-20005.16	0.79	-0.00
Channel Y	+ Input	200030.75	-5.16	-0.00
Channel Y	+ Input	20002.24	-3.02	-0.02
Channel Y	- Input	-20005.98	0.27	-0.00
Channel Z	+ Input	200032.63	-3.26	-0.00
Channel Z	+ Input	20001.76	-3.48	-0.02
Channel Z	- Input	-20006.91	-0.57	0.00

Low Range		Reading (µV)	Difference (μV)	Error (%)
Channel X	+ Input	2000.69	-0.28	-0.01
Channel X	+ Input	201.31	0.41	0.20
Channel X	- Input	-198.94	-0.06	0.03
Channel Y	+ Input	2000.98	0.15	0.01
Channel Y	+ Input	199.99	-0.84	-0.42
Channel Y	- Input	-199.52	-0.44	0.22
Channel Z	+ Input	2000.64	-0.22	-0.01
Channel Z	+ Input	199.78	-0.98	-0.49
Channel Z	- Input	-200.77	-1.61	0.81

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-21.20	-22.65
	- 200	24.58	23.02
Channel Y	200	9.50	9.58
	- 200	-10.90	-11.57
Channel Z	200	-3.63	-4.25
	- 200	1.77	1.68

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Υ (μV)	Channel Z (μV)
Channel X	200	-	1.87	-5.13
Channel Y	200	7.93	-	3.64
Channel Z	200	9.85	5.76	_

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15807	16256
Channel Y	15832	16328
Channel Z	15775	16548

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.91	0.03	1.55	0.30
Channel Y	0.22	-1.01	1.09	0.42
Channel Z	-0.43	-1.47	0.94	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

		Asboration with D C <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<>		CNAS	中国认可 国际互认 校准
Add: No.51 Xue Tel: +86-10-6230 E-mail: cttl@chi Client	yuan Road, Haidia)4633-2512 nattl.com	an District, Beijing, 100191, Chin Fax: +86-10-62304633-2504 <u>Http://www.chinattl.cn</u>	a Certificate I	No: Z18-60389	CALIBRATION CNAS L0570
CALIBRATION	SERTIE(ATE			
Object	۵D	AE4 - SN: 1437			i
Calibration Procedure(s)	FF Ci (D	-Z11-002-01 alibration Procedure for DAEx)	the Data Acquisi	tion Electronics	
Calibration date:	0	ctober 15, 2018			
measurements(SI). The r pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us	e certificate. en conducted ed (M&TE cri	tical for calibration)	ry facility: environ	ment temperature((22±3)⁰C and
Primary Standards	ID #	Cal Date(Calibrated by,	Certificate No.)	Scheduled Calib	bration
Process Calibrator 753	1971018	20-Jun-18 (CTTL, N	lo.J18X05034)	June-19	9
<u> </u>	 	· · · · · · · · · · · · · · · · · · ·			
Calibrated by:	Name Yu Zongy	Function /ing SAR Test Eng	ineer	Signature.	Ŝ.
Reviewed by:	Lin Hao	SAR Test Engl	neer	献教	lar-
Approved by:	Qi Diany	uan SAR Project L	eader	2. ŽŽ	
	·			ssued: October 17,	2018
This calibration certificat	e shall not be	reproduced except in full	without written app	proval of the laborat	iory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comHttp://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	X	Y	Z
High Range	404.020 ± 0.15% (k=2)	403.552 ± 0.15% (k=2)	403.969 ± 0.15% (k=2)
Low Range	3.95263 ± 0.7% (k=2)	3.94039 ± 0.7% (k=2)	$3.90670 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system64.5° ± 1 °	onnector Angle to be used in DASY system	64.5°±1°
--	--	----------