11. CONDUCTED EMISSION MEASUREMENT

11.1 LIMITS

Fraguancy range	Limits	(dBµV)
Frequency range	Quasi-peak	Average
$150 \text{kHz} \sim 0.5 \text{MHz}$	66~56	56~46
0.5MHz~5MHz	56	46
5MHz~30MHz	60	50

11.2 TEST PROCEDURES

Procedure of Preliminary Test

For measurement of the disturbance voltage the equipment under test (EUT) is connected to the power supply mains and any other extended network via one or more artificial network(s). An EUT, whether intended to be grounded or not, and which is to be used on a table is configured as follows:

- Either the bottom or the rear of the EUT shall be at a controlled distance of 40 cm from a reference ground plane. This ground plane is normally the wall or floor of a shielded room. It may also be a grounded metal plane of at least 2 m by 2 m. This is physically accomplished as follows:

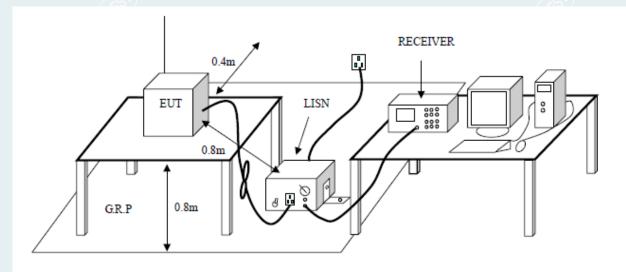
1) Place the EUT on a table of non-conducting material which is at least 80 cm high. Place the EUT so that it is 40 cm from the wall of the shielded room, or

2) place the EUT on a table of non-conducting material which is 40 cm high so that the bottom of the EUT is 40 cm above the ground plane;

- All other conductive surfaces of the EUT shall be at least 80 cm from the reference ground plane;

- The EUT are placed on the floor that one side of the housings is 40 cm from the vertical reference ground plane and other metallic parts;

- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth forming a bundle 30 cm to 40 cm long, hanging approximately in the middle between the ground plane and the table.


- I/O cables that are connected to a peripheral shall be bundled in the centre. The end of the cable may be terminated if required using correct terminating impedance. The total length shall not exceed 1 m.

The test mode(s) described in Item 2.5 were scanned during the preliminary test. After the preliminary scan, we found the test mode described in Item 2.5 producing the highest emission level. The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test. A scan was taken on both power lines, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded.

11.3 TEST SETUP

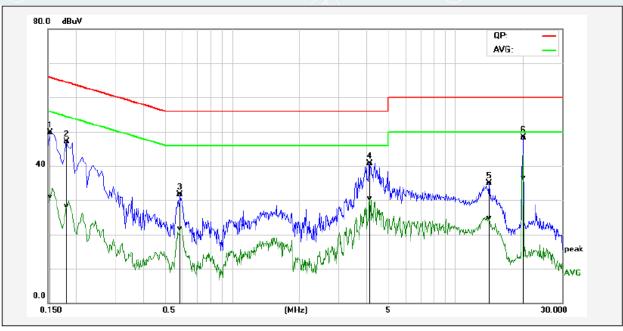
11.4 DATA SAMPLE

Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Factor	Result	Average Result (dBuV)	Limit	Average Limit (dBuV)	Margin	Average Margin (dB)	Remark (Pass/Fail)
X.XXXX	32.69	25.65	11.52	44.21	37.17	65.78	55.79	-21.57	-18.62	Pass

Factor = Insertion loss of LISN + Cable Loss

Result = Quasi-peak Reading/ Average Reading + Factor

Limit = Limit stated in standard

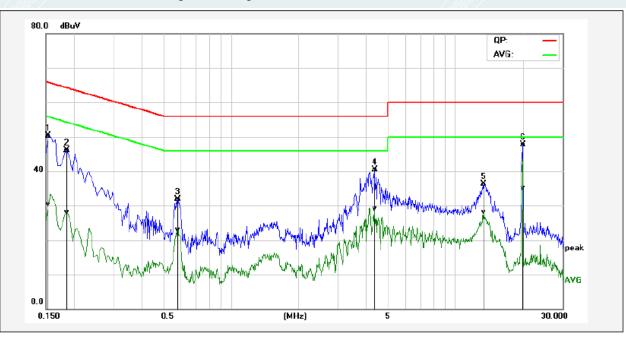

Margin = Result (dBuV) – Limit (dBuV)

11.5 TEST RESULTS

Left earbuds

EUT Name	Wireless Earbuds	Model	E508A
Environmental Conditions	22.5°C/45%RH/101.0kPa	Test Mode	DH5 2480MHz
Tested By	Tang Shenghui	Line	L
Tested Date	2022-10-18	Test Voltage	AC120V/60Hz

(The chart below shows the highest readings taken from the final data.)


No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1539	40.10	21.35	9.61	49.71	30.96	65.78	55.79	-16.07	-24.83	Pass
2	0.1819	37.43	18.80	9.60	47.03	28.40	64.39	54.40	-17.36	-26.00	Pass
3	0.5860	22.06	12.17	9.60	31.66	21.77	56.00	46.00	-24.34	-24.23	Pass
4	4.1540	31.13	20.90	9.66	40.79	30.56	56.00	46.00	-15.21	-15.44	Pass
5	14.2060	25.12	15.03	9.74	34.86	24.77	60.00	50.00	-25.14	-25.23	Pass
6*	20.1940	38.49	26.65	9.86	48.35	36.51	60.00	50.00	-11.65	-13.49	Pass

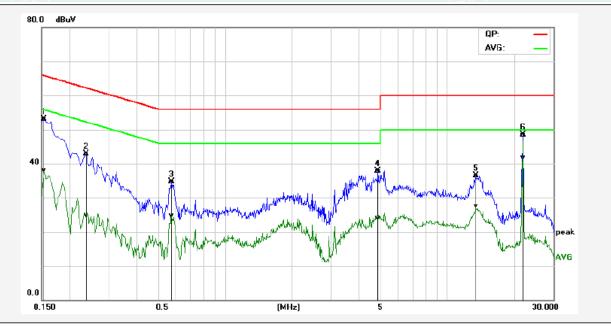
REMARKS: L = Live Line

Pre-scan all mode and recorded the worst case results in this report (TX-High Channel(DH5))

EUT Name	Wireless Earbuds	Model	E508A
Environmental Conditions	22.5°C/45%RH/101.0kPa	Test Mode	DH5 2480MHz
Tested By	Tang Shenghui	Line	N
Tested Date	2022-10-18	Test Voltage	AC120V/60Hz

(The chart below shows the highest readings taken from the final data.)

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1539	40.77	20.62	9.60	50.37	30.22	65.78	55.79	-15.41	-25.57	Pass
2	0.1860	36.57	18.51	9.59	46.16	28.10	64.21	54.21	-18.05	-26.11	Pass
3	0.5820	22.41	13.27	9.59	32.00	22.86	56.00	46.00	-24.00	-23.14	Pass
4	4.3740	30.84	19.45	9.65	40.49	29.10	56.00	46.00	-15.51	-16.90	Pass
5	13.3940	26.43	18.41	9.78	36.21	28.19	60.00	50.00	-23.79	-21.81	Pass
6*	19.9940	37.87	25.30	9.89	47.76	35.19	60.00	50.00	-12.24	-14.81	Pass

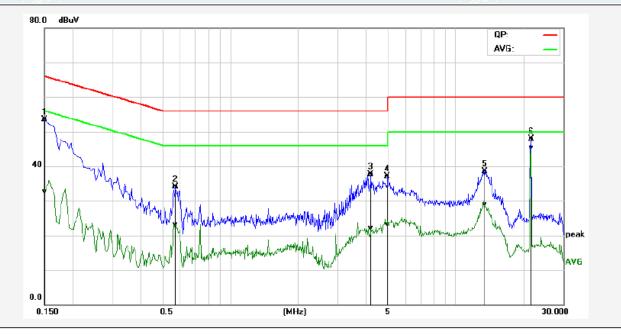

REMARKS: N = Neutral Line.

Pre-scan all mode and recorded the worst case results in this report (TX-High Channel(DH5))

Right earbuds

EUT Name	Wireless Earbuds	Model	E508A
Environmental Conditions	22.5℃/45%RH/101.0kPa	Test Mode	DH5 2441MHz
Tested By	Tang Shenghui	Line	L
Tested Date	2022-10-18	Test Voltage	AC120V/60Hz

(The chart below shows the highest readings taken from the final data.)


No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1539	43.49	28.23	9.61	53.10	37.84	65.78	55.79	-12.68	-17.95	Pass
2	0.2380	33.38	15.39	9.60	42.98	24.99	62.16	52.17	-19.18	-27.18	Pass
3	0.5780	25.06	15.01	9.60	34.66	24.61	56.00	46.00	-21.34	-21.39	Pass
4	4.8780	28.30	14.35	9.66	37.96	24.01	56.00	46.00	-18.04	-21.99	Pass
5	13.4140	26.72	17.70	9.73	36.45	27.43	60.00	50.00	-23.55	-22.57	Pass
6*	22.0180	38.55	31.93	9.87	48.42	41.80	60.00	50.00	-11.58	-8.20	Pass

REMARKS: L = Live Line

Pre-scan all mode and recorded the worst case results in this report (TX- Middle Channel(DH5))

EUT Name	Wireless Earbuds	Model	E508A
Environmental Conditions	22.5℃/45%RH/101.0kPa	Test Mode	DH5 2441MHz
Tested By	Tang Shenghui	Line	N
Tested Date	2022-10-18	Test Voltage	AC120V/60Hz

(The chart below shows the highest readings taken from the final data.)

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1500	43.82	23.07	9.60	53.42	32.67	65.99	56.00	-12.57	-23.33	Pass
2	0.5740	24.54	13.43	9.59	34.13	23.02	56.00	46.00	-21.87	-22.98	Pass
3	4.2100	27.98	12.37	9.65	37.63	22.02	56.00	46.00	-18.37	-23.98	Pass
4	4.9980	27.37	13.66	9.66	37.03	23.32	56.00	46.00	-18.97	-22.68	Pass
5	13.4540	28.74	19.13	9.78	38.52	28.91	60.00	50.00	-21.48	-21.09	Pass
6*	21.6380	38.03	35.42	9.93	47.96	45.35	60.00	50.00	-12.04	-4.65	Pass

REMARKS: N = Neutral Line.

Pre-scan all mode and recorded the worst case results in this report (TX- Middle Channel(DH5))

12. MAXIMUM PEAK OUTPUT POWER

12.1 LIMITS

Regulation 15.247 (b)(1)For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

12.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the power meter and enable the EUT transmit continuously.
- 2) Keep the EUT in transmitting at lowest, middle and highest channel individually. Record the max value.

12.4 TEST RESULTS

Environment: 25.0°C/45% RH/101.0kPa Tested By: Qin Tingting

Left earbuds

DH5

Test Channel	Fundamental Frequency (GHz)	Max Output Power(dBm)	Limit (dBm)	Peak/ Average	Pass/Fail
Lowest	2.402	11.44			Pass
Middle	2.441	11.69	20.97	Peak	Pass
Highest	2.480	11.78			Pass

2DH5

20110					
Test Channel	Fundamental Frequency (GHz)	Max Output Power(dBm)	Limit (dBm)	Peak/ Average	Pass/Fail
Lowest	2.402	11.43	S.S.	2	Pass
Middle	2.441	11.68	20.97	Peak	Pass
Highest	2.480	11.76			Pass

3DH5

Test Channel	Fundamental Frequency (GHz)	Max Output Power(dBm)	Limit (dBm)	Peak/ Average	Pass/Fail
Lowest	2.402	11.41	S.		Pass
Middle	2.441	11.66	20.97	Peak	Pass
Highest	2.480	11.74			Pass

Test result: The unit does meet the FCC requirements.

Voltage: DC 3.8V Date: 2022-10-10

(&

Right earbuds

DH5

Test Channel	Fundamental Frequency (GHz)	Max Output Power(dBm)	Limit (dBm)	Peak/ Average	Pass/Fail
Lowest	2.402	11.52			Pass
Middle	2.441	11.93	20.97	Peak	Pass
Highest	2.480	12.20			Pass

2DH5

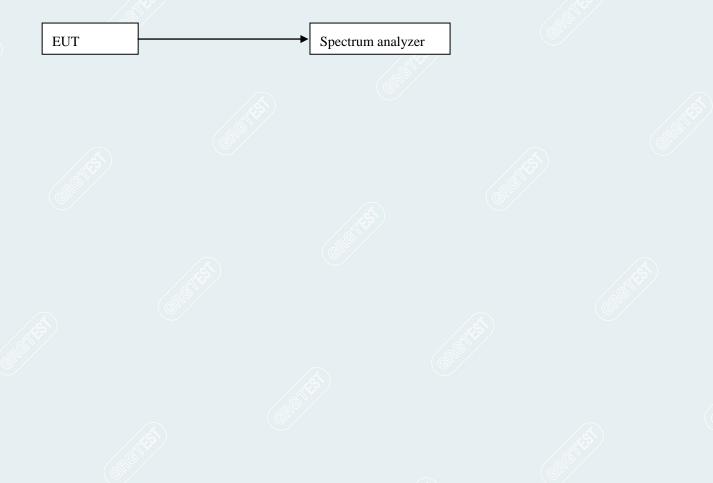
Test Channel	Fundamental Frequency (GHz)	Max Output Power(dBm)	Limit (dBm)	Peak/ Average	Pass/Fail
Lowest	2.402	11.58			Pass
Middle	2.441	11.98	20.97	Peak	Pass
Highest	2.480	12.25	6	.)	Pass

3DH5

Test Channel	Fundamental Frequency (GHz)	Max Output Power(dBm)	Limit (dBm)	Peak/ Average	Pass/Fail
Lowest	2.402	11.51			Pass
Middle	2.441	11.91	20.97	Peak	Pass
Highest	2.480	12.17	Ś	<u></u>	Pass

Test result: The unit does meet the FCC requirements.

13. CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS


13.1 LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB.

13.2 TEST PROCEDURES

Test procedures follow KDB 558074 D01 DTS Measurement Guidance v05r02.

- 1) Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer: RBW =100kHz; VBW =300kHz, Frequency range = 30MHz to 26.5GHz; Sweep = auto; Detector Function = Peak. Trace = Max, hold.
- 3) Measure and record the results in the test report.
- 4) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

13.3 TEST SETUP

13.4 TEST RESULTS

Environment: 25.0°C/45%RH/101.0kPa Tested By: Qin Tingting

Left earbuds

Test result plot as follows:

Band Edges

DH5

CH Low (2.35GHz ${\sim}2.405GHz$)

Ref Le	evel	20.00 dBm 30 dB	Offset 11.99 dE SWT 75.8 us	8 • RBW 100 8 • VBW 300		Mode Au	to FET			
1Pk Vi	вw					Hode Ho				
10 dBm-						M1[1 M2[1			12.35 2.402015 -43.67 2.400000	dB
-10 dBm	D	1 -7.650 dl	3m		_					
-20 dBm	+				-					1
-30 dBm	-				+					4
40 dBm	non-	barren	myound	nnymenn	phi	man	mintren	M3	manus man	6
-50 dBm -60 dBm										
-70 dBm	+				-					
Start 2	.35 G	Hz		69	1 pts				Stop 2.405	GH
Marker										
Туре	Ref		X-value	Y-value		Function	n	Function Result		
M1		1	2.402015 GHz	12.35 d						
M2 M3		1	2.4 GHz 2.39 GHz	-43.67 d			_			
M4	_	1	2.39 GHz 2.35 GHz	-40.18 d						

Date: 10.0CT.2022 10:53:09

Pofle	rum	20.00 dBm	Offset 12.00 dB	DDW 100 ku-			Ę
Att	svei 2	30 dF		VBW 300 kHz		т	
1Pk Vi	ew/	00 00			Mode Adtorn	1	
1				1 1	M1[1]		11.29 _M B
							2.4029700 GH
10 dBm-					M2[1]		-44.30 dB
0 dBm—							2.4000000 6
о авт—							100
-10 dBm		8.710 0	JBm;				
-10 abin							
-20 dBm	-			-			
-30 dBm	-			-		-	
				1 1			
				1 1		100000	
-40 dBm	-		M4			MB	42
man	ANA	heranda	M4	umar	mangard	Malan	mbrill
man	ANA	www.	M4 Warman where	umm	manurit	man	mburlet
-50 ubm	M	www.huh	Ma Mar more token	umm	manna	man	mbrardy
man	M	unn	Ma Manura Contraction	uhuur	manna	Mrtow	mbrendy
-50 dBm	MA	whether	M4 Wer work haven	whenthe	manna	M3 Mr.Turw	mul 1
-50 dBm	MA	whether	M4 War pure to have been	unn	mmunt	Mann	work
-50 dBm -60 dBm -70 dBm	MA		M4 Un portet have			M3 Mr.Jurw	
-50 dBm -60 dBm -70 dBm	MA		M4 Universite	691 pt		M3 Mr.Jurw	5top 2.405 GH:
-50 dBm -60 dBm -70 dBm Start 2 4arker	.35 GI	Hz	winner	691 pt	15		Stop 2.405 GH
-50 dBm -60 dBm -70 dBm Start 2 Iarker Type	MA	Hz Trc	X-value	691 pt			
-50 dBm -60 dBm -70 dBm Start 2 Iarker Type M1	.35 GI	Hz Trc	X-value 2.40297 GHz	691 pt <u>Y-value</u> 11.29 dBm	15		Stop 2.405 GH
-50 dBm -60 dBm -70 dBm Start 2 1arker Type	.35 GI	Hz Trc	X-value	691 pt	15		Stop 2.405 GH

Date: 10.0CT.2022 11:25:48

Spect	rum								T I		
Ref Le	evel	20.00 dB	m Offset 11.65 dB	BRBW 100 kH	z						
Att		30 0	dB SWT 94.8 μs	VBW 300 kH	z Mode	Auto FF	т				
🔵 1 Pk Vi	BW		10 II.								
	1	41			M1[1]				12.18 dBr		
10 dBm		X		_		100000120			80010 GI		
					M	2[1]			44.89 dB		
0 dBm-	-	A				-	- <u>r</u>	2.4	83500 GI		
	-	1)									
-10 dBm		1 -7.820	asm								
		11									
-20 dBm				+ +			-	()			
	. 17	1		1 1							
-30 dBm											
-40 dBm		1					M4				
-40 abr		M2	Mandaland	3		- 17		1000			
-50 dBm		~~~~	manananin	of how were	weberdure	mole	an work when the	provening	rmonan		
-60 dBm	-										
	°										
-70 dBm	+			-			-		-		
Start 2	.47 G	Hz	1	691 p	its			Stop	2.55 GH		
larker											
Type	Ref	Trc	X-value	Y-value		Function		ction Result			
M1		1	2.48001 GHz	12.18 dBn							
M2		1	2.4835 GHz	-44.89 dBn							
M3		1	2.5 GHz 2.532029 GHz	-47.30 dBn -42.48 dBn							

Date: 10.0CT.2022 10:58:34

	evel 2	0.00 dBn			• RBW 100 kHz					
Att		30 de	SWT	94.8 µs (VBW 300 kHz	Mode Au	to FFT			
						M1[1			2.4	11.98 dBr 78050 GH 46.56 dBr 83500 GH
-10 dBm		8.020	IBm							
-20 dBm										
-30 dBn	-	1		-						
-40 dBm	+	M2	wheel	A LAAA = DX	n downer word	1010 BM	malala	. 1.0.0.0	ahe	
-50 dBm		- alloca i			Jon Jane Jane of	and the second	. modeline	marven	p. vorigue	mandre
-60 dBm	-									
-70 dBn	+			-						
Start 2	.47 Gł	lz			691 p	ts			Stop	2.55 GHz
larker	1	- 1				1				
	e Ref Trc X-value			Y-value	Function	1	Fun	ction Result		
M1 M2	-	1		7805 GHz	11.98 dBm -46.56 dBm					
M2 M3		1	2.4	2.5 GHz	-45.86 dBm					
M4		1		2.5 GHz	-43.13 dBm		-			

Date: 10.0CT.2022 11:25:59

2DH5	
CH Low (2.35	GHz ~2.405GHz)

Spectrum	- <u>]</u>							Ę		
Ref Level	20.00 dBm 30 dB			RBW 100 kHz VBW 300 kHz	Mode Auto	FFT				
1Pk View	30 UB	awi 75.	o ha 🖷	VBW 300 KH2	MOUE AULO	FFI				
					M1[1]			12.141dBm		
10 dBm					M2[1]			2.4020150 GF -44.11 dB		
0 dBm								2.4000000 GH		
-10 dBm	D1 -7.890 de	Sm								
-20 dBm										
-30 dBm				+				p 4		
40 dBm						M3				
-50 dBm	menund	mont	Morr	Marcoard	Mollow	-man my	molour	recentry		
-60 dBm										
-70 dBm										
Start 2.35	GHz			691 pt	5			Stop 2.405 GHz		
larker										
Type Ref	Trc	rc X-value		Y-value	Function		Functio	on Result		
M1	1	2.402015 0	GHz	12.11 dBm		1				
M2	1	2.4 0		-44.11 dBm						
M3	1	2.39 0		-47.92 dBm		1				
M4	1	2.35 0	GHZ	-42.76 dBm						

Date: 10.0CT.2022 11:00:35

10 dem 2.404	7.49 dB) 19600 GH
MI[1] 2.404 10 dBm M2[1] 10 dBm 2.400 10 dBm	9600 GH
10 dBm	9600 GH
10 dBm M2[1] -4 0 dBm 0.400 2.400 -10 dBm 01 -12.510 dBm -10 -20 dBm -10 dBm -10 -30 dBm -10 -10 -60 dBm -10 -10	
0 dBm 01 -12.510 dBm	98.114 dB
-10 dBm D1 -12.510 dBm	and well
01 -12.510 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -60 dBm	0000 0
01 -12.510 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -60 dBm	
-20 dBm	
-30 dBm	
-40 dBm	
syntheman and a share and a share a sh	IM
syntheman and a share and a share a sh	ſ
50 dBm	1
-60 dBm	1
	_
-70 dBm	
Start 2.35 GHz 691 pts Stop 2	.405 GH
Marker	
Type Ref Trc X-value Y-value Function Function Result	
M1 1 2.40496 GHz 7.49 dBm	-
M2 1 2.4 GHz -48.04 dBm	
M3 1 2.39 GHz -48.19 dBm M4 1 2.3709638 GHz -44.05 dBm	

Date: 10.0CT.2022 11:31:08

CH High (2.47GHz ~ 2.55GHz)

Spectrum						E ∀
Ref Level			RBW 100 kHz			
Att	30	dB SWT 94.8 μs	VBW 300 kHz	Mode Auto F	FT	
10 dBm	M1			M1[1]		12.08 dBn 2.480010 GH -45.90 dBn
0 dBm						2.483500 GH
-10 dBm	D1 -7.92	0 dBm				
-20 dBm						
-30 dBm						
-40 dBm	M	,	M4			
-50 dBm	La	e monten parment	andruma	moundment	mannendry	manna
-60 dBm						
-70 dBm				-		
Start 2.47	GHz		691 pt:	s		Stop 2.55 GHz
larker						
	Ref Trc X-value		Y-value	Function	Fund	ction Result
M1 M2	1	2.48001 GHz	12.08 dBm -45.90 dBm		-	
M3	1	2.4835 GHz 2.5 GHz	-45.90 dBm			
M4	1	2.504667 GHz	-43.76 dBm			
					and the second second	

Date: 10.0CT.2022 11:09:51

Ref L	evel :	20.00 d	Bm Offset dB SWT		 RBW 100 kHz VBW 300 kHz 		Auto FFT	e		
1Pk Vi	ew	50	00 341	94.0 µ3	1011 300 KHZ	Houe	AULO FF I			
		4				M	-	11.40 dBr 2.473990 GH -47.75 dBr 2.483500 GH		
-10 dBn	D	1 -8.60	0 dBm:				-			
-20 dBn	+	4								
-30 dBn	i	1			+ +			-	-	
-40 dBn	+	M2	5		M4					
-50 dBn	-	he		mangan	howathrener	Hardwing	Marsha	munu	round	Maryone
-60 dBn	-				+ +					
-70 dBn	1						3	-		
Start 2	.47 G	Hz			691 pt	s			Stop	2.55 GHz
larker										
Туре	Ref		X-value		Y-value	Func	tion	Fund	ction Result	
M1		1		99 GHz	11.40 dBm					
M2		1		35 GHz	-47.75 dBm					
M3 M4		1		71 GHz	-49.10 dBm -44.63 dBm					

Date: 10.0CT.2022 11:35:42

Page 64 of 178

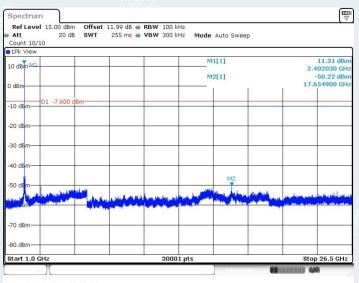
3DH5	
CH Low (2.35GHz	z~2.405GHz)

Spect	rum	1						2		
Ref Le	evel	20.00 dB	m Offset 11.99 dB	RBW 100 kHz				<u>`</u>		
Att		30 d	iB SWT 75.8 μs	VBW 300 kHz	Mode Auto Fl	FT				
1Pk Vi	ew									
					M1[1]			12.00 dBr		
0 dBm								020150 GH		
					M2[1]			-44.75,dBr		
dBm-				_			2.4	000000 GH		
10 dBm		1 -7.940	dBm			-	-			
20 dBm	1-						-			
30 dBm	-+-					_		10		
							M4			
40 dBm	8					M3	T	性		
mould	ma	had at a	munnum	water and a second south	how we have	when when when	nuchasen	1 1		
50 dBm	1	an dan provide.								
60 dBm								1		
70 dBm										
/u ubii							2 P			
Start 2	.35 G	Hz		691 pts			Stop	2.405 GHz		
arker										
	Ref	Trc	X-value	Y-value	Function	Fur	nction Resul	t		
M1		1	2.402015 GHz	12.06 dBm						
M2		1	2.4 GHz	-44.79 dBm						
M3 M4		1	2.39 GHz 2.395913 GHz	-46.84 dBm -42.94 dBm						
1/14		1	2.595913 GHZ	-+2.94 dBm						

Date: 10.0CT.2022 11:11:36

	evel 20.00 dB	m Offset 12.00 dB	RBW 100 kHz			
Att	30 d	iB SWT 75.8 μs	VBW 300 kHz	Mode Auto FF	т	
1Pk Vi	iew		20. 00			
				M1[1]		11.13 dB
10 dBm				An excited with		2.4040850 GM
to abiii				M2[1]		-47.86 dB
0 dBm-			-			2.400000004
1U dBn	D1 -8.870	dBm:	-		-	
-20 dBn	0		-		-	
-30 dBn	n					1
-40 dBn			M4			
		The second strength	V		M3	when link
-50 dBn	1 mar welling	and marker w	marken "	monument	white and	an a
-50 dBn	n	walk manaren	manken	and any many mer	white and	anon-Jump
-50 aBh	n	walk mana arm	marken			al an
-50 abn -60 dBn	n	walk manual and	- hable here to			and replaced
-50 dBn	n					
-50 dBn	n					
-50 dBn -60 dBn -70 dBn	n		691 pt			Stop 2.405 GHz
-50 dBn -60 dBn -70 dBn Start 2	n					
-50 dBn -70 dBn Start 2 Iarker Type	n 2.35 GHz Ref Trc	X-value	691 pt			
-60 dBn -70 dBn -70 dBn Start 2 larker Type M1	n	X-value 2.404085 GHz	691 pt Y-value 11.13 dBm	5		Stop 2.405 GH;
-50 dBn -70 dBn Start 2 Aarker Type	n 2.35 GHz Ref Trc	X-value	691 pt	5		Stop 2.405 GH;

Date: 10.0CT.2022 11:37:28


Ref Lev Att 1Pk Viet 10 dBm-		dBm Off 30 dB SW		 RBW 100 k VBW 300 k 		Auto FF	т		
1Pk Viet 10 dBm—	w	30 dB SW	/T 94.8 µs	• VBW 300 k	Hz Mode	Auto FF	T		
10 dBm—			Ĩ						
	Ă				M	11[1]			12.06 dBr
	A							2.	480010 GH
) dBm—					M	12[1]			-45.34 dB
J ubiii-								2.	483500 GH
-10 dBm-	D1 -7.	940 dBm				-			_
10 0011									
-20 dBm-		_				-			
	10 14								
-30 dBm-		_			<u> </u>	+		_	
	10.00								
40 dBm-		M2 M4		10		+			
multion	me h	When the stands	morrenon	13 Xupertonenin	numme	man	monant	1 mandalenge	interner
-50 dBm-						1			000000
-60 dBm-						1			
-70 dBm-						-			
-/u ubiii-							1.5		
Start 2.4	47 GHz			691	pts	-		Sto	p 2.55 GHz
larker									
Type I	Ref Trc		value	Y-value	Func	tion	Fu	inction Resu	it
M1	1		2.48001 GHz	12.06 dB					
M2	1		2.4835 GHz	-45.34 dB					
M3 M4	1		2.5 GHz .489478 GHz	-47.49 dE -44.12 dE					

Date: 10.0CT.2022 11:22:22

Ref Le	evel 20	.00 dBm	Offset	11.59 dB	RBW 100 kH	z				
Att	AUNU - 193	30 dB	SWT	94.8 µs (VBW 300 kH.	z Mode A	Auto FFT			
1Pk Vi	BW			-						
MI					1 1	M1	[1]			11.88 dBi
10 dBm·		_	-	-	+ +	2.472950 GHz -47.38 dBm				
Myrn	MUMM				M2[1] -4 2.48					
0 dBm—		_								
-10 dBm	D1	-8.120 0	Bm		+					
-20 dBm	-				+ +					
		4			1 1					
-30 dBm								~		
-40 dBm		1					144	-		
io abii		M2	ostalieu	Ma	normalliteringe		AN LA BALL	morne	unversion	
-50 dBm		and they		monum	hap a number	manner		minall		munha
22					1 1					
-60 dBm										
-70 dBm					-					-
, o aon										
Start 2	.47 GH:	z			691 p	its			Stop	2.55 GHz
1arker										
Type	Ref 1	Frc	X-valu	e	Y-value	Functi	on	Fun	ction Result	
M1		1		295 GHz	11.88 dBm					
M2		1		335 GHz	-47.38 dBm					
M3 M4		1	2.52	2.5 GHz	-47.06 dBm -44.46 dBm					

Date: 10.0CT.2022 11:38:24

Spurious Emissions DH5 CH Low Spectrum Ref Level 30.00 dBm Att 30 dB Count 10/10 1Pk View Offset 11.99 dB ● RBW 100 kHz SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] 12.40 dB 2.403 20 dBm 10 dBm· 0 dBm -10 dBm 20 dBm -30 dBm -40 dBm -50 dB -60 dBm Span 1.5 MHz CF 2.402 GHz 691 pts Date: 10.0CT.2022 10:53:17 (₩) Spectrum Ref Level 15.00 dBm Offset 11.99 dB RBW 100 kHz Att 20 dB SWT 1.1 ms VBW 300 kHz Mode Auto FFT Count 10/10 M1[1] -54.79 dB 933.9610 M 10 dBm 0 dBm-01 -7.600 -10 dBm -20 dBn -30 dBn 40 dBn -50 dBn 70 dBm -80 dBm Stop 1.0 GHz Start 30.0 MHz 30001 pt: -Date: 10.0CT.2022 10:53:29

Date: 10.0CT.2022 10:54:08

CH Mid

Ref Level 30.00 dBm Att 30 dB Count 10/10 30 dB		Mode Auto FFT	
1Pk View		M1[1]	12.05 dBr
20 dBm			2.44099780 GH
o dom	MI		
0 dBm			
dBm			
10 dBm			
20 dBm			
30 dBm			
40 dBm			
50 dBm			
60 dBm			
CF 2.441 GHz	691 pts		Span 1.5 MHz

Date: 10.0CT.2022 10:55:43

₽ Spectrum
 Ref Level
 15.00 dBm
 Offset
 11.73 dB
 RBW
 100 kHz

 Att
 20 dB
 SWT
 1.1 ms
 VBW
 300 kHz
 Mode
 Auto FFT
 Count 10/10 ●1Pk Vie M1[1] 54.57 d .4290 M 10 dBm 82 0 dBm-D1 -7.950 -10 dBm -20 dBm -30 dBm 40 dBn -50 dBm -70 dBm -80 dBm Stop 1.0 GHz 30001 pts Start 30.0 MH 100

Date: 10.0CT.2022 10:55:55

Ref Level 15.00 Att 2		1.73 dB 👄 RBV 255 ms 👄 VBV					
Att 2 Count 10/10	U db SWI	255 ms 🖶 VB1	V JUU KHZ M	ode Auto Swe	ер		
1Pk View				M1[1]			34 dB
0 dBm M1				MILLI		2.4411	
				M2[1]		-51.4	
dBm				_	2	16.1861	00 Gł
0 dBm D1 -7.9	ISO dBm				-		
0 dBm							
0 dBm							
0 dBm	-				-		
i0 dEm				MP	-		
AL MARKED BALLAN	and the second second	B. de alleman a state	a. a	With the second states	a min the log	Libert level at able	ont. M
Brit		and the state of the state	Without Party Mar	A Barry and the	de blackback		
'0 dBm					-		
10 dBm							
art 1.0 GHz			30001 pts			Stop 26.	

Date: 10.0CT.2022 10:56:33

CH High Spectrum
 Ref Level
 30.00 dBm
 Offset
 11.65 dB
 RBW
 100 kHz

 Att
 30 dB
 SWT
 18.9 µs
 VBW
 300 kHz
 Mode
 Auto FFT

 Count
 10/10

 </t 12.13 dBr 2.47999780 GH M1[1] 20 dBm 10 dBm 0 dBm--10 dBm -20 dBm--30 dBm -40 dBm -50 dBm -60 dBm CF 2.48 GHz 691 pts Span 1.5 MHz 1.4

Date: 10.0CT.2022 10:58:42

1Pk View		 				
10 dBm			M	1[1]		-55.30 dBn 1.1940 MH
) dBm						
10 dBm D1 -7.8	370 dBm	 				
20 dBm						
30 dBm						
40 dBm						-
50 dBm						M1
	Withh	WWW	With	MAN		
70 dBm						

Date: 10.0CT.2022 10:58:54

Spectrum
 Ref Level
 15.00 dBm
 Offset
 11.65 dB
 RBW
 100 kHz

 Att
 20 dB
 SWT
 255 ms
 VBW
 300 kHz
 Mode
 Auto Sweep
 Count 10/10 1Pk View M1[1] 10 dB 11.76 2.4802 80 GH M2[1] -51.77 dBr 6.094050 GH) dBr -7.870 -10 dE -20 d -30 d 40 d 50 -70 dBm -80 dBm Stop 26.5 GHz Start 1.0 GH 30001 pts iii)

Date: 10.0CT.2022 10:59:33

2DH5

Spectrum				
Ref Level 30.00 dBm Att 30 dB	Offset 11.99 dB 👄 F SWT 18.9 µs 👄 V		Node Auto FFT	
Count 10/10 1Pk View				
			M1[1]	12.22 dBn 2.40199780 GH
20 dBm		Mit		
10 dBm		\sim		
) dBm				
19 dBm				
-20 dBm				
30 dBm				
40 dBm				
50 dBm				
-60 dBm				
CF 2.402 GHz		691 pts		Span 1.5 MHz
Ĭ			Measuring	0

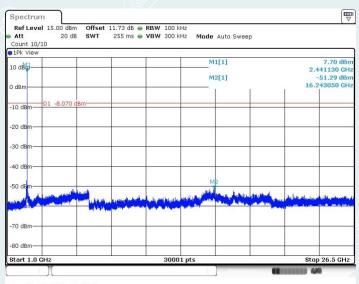
Date: 10.0CT.2022 11:00:43

Spectrum
 Ref Level
 15.00 dBm
 Offset
 11.99 dB
 RBW
 100 kHz

 Att
 20 dB
 SWT
 1.1 ms
 VBW 300 kHz
 Mode
 Auto FFT
 Count 10/10 1Pk View M1[1] -55.10 dB 951.5820 MF 10 dBm 0 dBm D1 -7.780 -10 dBm--20 dBm -30 dBn -40 dBm -50 dBn de huth -70 dBm -80 dBm 30001 pts Stop 1.0 GHz Start 30.0 MHz

Date: 10.0CT.2022 11:00:55

Att 20 0 Count 10/10	dB SWT 2	55 ms 👄 VBW 🗧	Soo king mode y	Auto Sweep		
1Pk View			M1	[1]	7.50	5 dBr
o dất					2.40203	
10-			M2	[1]	-47.65 dBm 3.419100 GHz	
dBm				Ē	3.41910	U GII
0 dBm D1 -7.780) dBm					
		· · · · · · · · · · · · · · · · · · ·		13		
0 dBm						
o dom						
10 dBm						
0 dBm						
M2						
i0 d8m			_			
and a strange south	Added And	and a leader of a second	A STATE AND A ST	Ride of Antonia and Antonia	and the state of the state of the state	hant
Bin.		and the state of t		State of the second		
0 dBm	+					


Date: 10.0CT.2022 11:01:34

Date: 10.0CT.2022 11:04:24

Count 10/10 1Pk View							
.0 dBm			M	1[1]			-55.53 dBr 3.4940 MH
dBm							
10 dBm D1 -8.07	O dBm						
20 dBm							
30 dBm							
40 dBm		7					-
50 dBm							M
hite the second second	MAAN	WWWW	which the	in the second	where the	-	
70 dBm							
80 dBm							

Date: 10.0CT.2022 11:04:36

Date: 10.0CT.2022 11:05:15

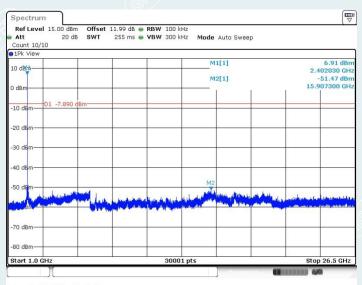
CH High

Att 30 dB SW Count 10/10	Γ 18.9 μs 👄 VBW 300 k	Hz Mode Auto FFT	
1Pk View			
		M1[1]	12.06 dBr 2.48000000 GH
0 dBm			
0 dBm	M		
u dBm			
dBm			
LO dBm			
20 dBm			
30 dBm			
+0 dBm			
i0 dBm			
i0 dBm			
F 2.48 GHz	691	pts	Span 1.5 MHz

Date: 10.0CT.2022 11:10:00

Spectrum
 Ref Level
 15.00 dBm
 Offset
 11.65 dB
 RBW
 100 kHz

 Att
 20 dB
 SWT
 1.1 ms
 VBW 300 kHz
 Mode
 Auto FFT
 Count 10/10 M1[1] -54.90 dB 741.0990 MF 10 dBm 0 dBm D1 -7.940 -10 dBm--20 dBm -30 dBn -40 dBm -50 dBn ia, He 70 dBm -80 dBm 30001 pts Stop 1.0 GHz Start 30.0 MHz


Date: 10.0CT.2022 11:10:12

Att 20 d Count 10/10	ib SWT 255	ms 👄 VBW 300	kHz Mode Auto	Sweep		
1Pk View	1 1	-				
o dB			M1[1]		2.48023	6 dBr 30 GH
			M2[1]		-51.1	4 dBr
dBm				Ē.	15.83673	50 GH
D1 -7.940	dBro					
10 dBm 01 -7.940	dom					
20 dBm						
20 0811						
30 dBm						
IO dBm	-					
			M2			
50 dem	a subs		7	Local Income		
and and a second second	and the second	A. Andread Low Planet	A LAB A PARTY OF THE REAL	Andrew we still your	فواخر المرديج فترقته فتخص	NUMBER
and the second second	A A A A A A A A A A A A A A A A A A A	And the second second				
70 dBm	-					
o asm						
30 dBm						
So donn	1 1					

Date: 10.0CT.2022 11:10:50

									Ē
Spectrun Ref Level	1 30.00 dBm	Offset	11.99 dB 🖷	RBW 100 k	(H7				
Att	30 dB	SWT		VBW 300		a Auto FFT			
Count 10/1 1Pk View	.0								
					P	41[1]		10100	12.11 dBr
20 dBm						-		2.40	199780 GH
10000				N	11				
10 dBm		~	-						
0 dBm-			-	-	-		-		
_									
-10 dBm-									/
-20 dBm			-	0		1.			
-30 dBm									
-30 UBM									
-40 dBm					-	-		+	+
-50 dBm									
SO GDIN						~			
-60 dBm					-		-		-
	HZ	1:16:47		691	pts	Measur		Spi	an 1.5 MHz
ste: 10.00 Spectrum Ref Level	T.2022 1:	Offset	11.99 dB 🖷	RBW 100	кНz	Moasur		Spi	
Spectrum Ref Level Att Count 10/1	T.2022 1: 1 15.00 dBm 20 dB	Offset			кНz	Auto FFT	an III	Spa	
Spectrum Ref Level Att Count 10/1	T.2022 1: 1 15.00 dBm 20 dB	Offset		RBW 100	xHz xHz Mode		nn ₁₁		an 1.5 MHz
Spectrum Ref Level Att Ount 10/1 PIPk View	T.2022 1: 1 15.00 dBm 20 dB	Offset		RBW 100	xHz xHz Mode	Auto FFT			
Ref Level Att Count 10/1) IPk View 10 dBm	T.2022 1: 1 15.00 dBm 20 dB	Offset		RBW 100	xHz xHz Mode				-53,47 dBr
Spectrum Ref Level Att Count 10/1 PIPk View 10 dBm	TT. 2022 1: 1 15.00 dBm 20 dB	Offset SWT		RBW 100	xHz xHz Mode				-53,47 dBr
Spectrum Ref Level Att Count 10/1 PIPk View 10 dBm	T.2022 1: 1 15.00 dBm 20 dB	Offset SWT		RBW 100	xHz xHz Mode				-53,47 dBr
Spectrum Ref Level Att Count 10/1 91Pk View 10 dBm 	TT. 2022 1: 1 15.00 dBm 20 dB	Offset SWT		RBW 100	xHz xHz Mode				-53,47 dBr
Spectrum Ref Level Att Count 10/1 1Pk View 10 dBm 	TT. 2022 1: 1 15.00 dBm 20 dB	Offset SWT		RBW 100	xHz xHz Mode				-53,47 dBr
Spectrum Ref Level Att Count 10/1 1Pk View 10 dBm 	TT. 2022 1: 1 15.00 dBm 20 dB	Offset SWT		RBW 100	xHz xHz Mode				-53,47 dBr
Spectrum Ref Level Att O dBm 0 dBm 10 dBm 20 dBm 30 dBm	TT. 2022 1: 1 15.00 dBm 20 dB	Offset SWT		RBW 100	xHz xHz Mode				-53,47 dBr
Spectrum Ref Level Att Count 10/1 JIPK View 10 dBm -20 dBm -20 dBm -40 dBm	TT. 2022 1: 1 15.00 dBm 20 dB	Offset SWT		RBW 100	xHz xHz Mode				-53,47 dBr
Spectrum Ref Level Att Count 10/1 JIPK View 10 dBm -20 dBm -20 dBm -40 dBm	TT. 2022 1: 1 15.00 dBm 20 dB	Offset SWT		RBW 100	xHz xHz Mode				-53,47 dBr
Spectrum Ref Level Att Count 10/1 JIPK View 10 dBm -20 dBm -20 dBm -40 dBm	TT. 2022 1: 1 15.00 dBm 20 dB	Offset SWT		RBW 100	xHz xHz Mode				-53,47 dBr
Spectrum Ref Level Att Count 10/1 1Pk View 10 dBm 10 dBm 10 dBm 30 dBm 30 dBm 40 dBm 50 dBm	TT. 2022 1: 1 15.00 dBm 20 dB	Offset SWT		RBW 100	xHz xHz Mode				-53,47 dBr
Spectrum Ref Level Att Count 10/1 1Pk View 10 dBm 0 dBm	TT. 2022 1: 1 15.00 dBm 20 dB	Offset SWT		RBW 100	xHz xHz Mode				-53,47 dBr

Date: 10.0CT.2022 11:16:59

Date: 10.0CT.2022 11:17:38

CH Mid

Att 30 dB SW Count 10/10	18.9 µs 👄 VBW 300 kH	Iz Mode Auto FFT		
1Pk View				tt ot do.
70		M1[1]	2.44	11.84 dBr 099780 GH
20 dBm	M			
.0 dBm				
dBm				
10,eBm-				
20 dBm		· · · · · · · · · · · · · · · · · · ·		+
30 dBm				
40 dBm				
50 dBm				
60 dBm				1
CF 2.441 GHz	691	nts	Sn	an 1.5 MHz
Y		Moasurin	CONTRACTOR OF	4

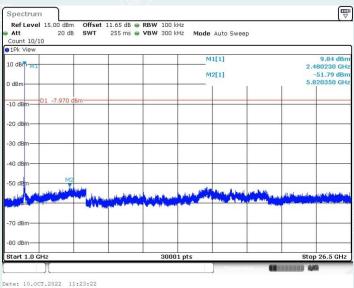
Date: 10.0CT.2022 11:20:37

₽ Spectrum
 Ref Level
 15.00 dBm
 Offset
 11.73 dB
 RBW
 100 kHz

 Att
 20 dB
 SWT
 1.1 ms
 VBW 300 kHz
 Mode
 Auto FFT
 Count 10/10 Pk View M1[1] -55.76 dB 708.7350 MH 10 dBm 0 dBm D1 -8.160 -10 dBm--20 dBm -30 dBn -40 dBm -50 dBn PA HE 70 dBm -80 dBm 30001 pts Stop 1.0 GHz Start 30.0 MHz

Date: 10.0CT.2022 11:20:52

Count 10/10	10-10-00-00 00-00-00-00-00-00-00-00-00-00-00			uto Sweep		
M1			M1[1]		9.37 dBr
0 dBm			100			2.441130 GH
dBm			M2[1]		-51.31 dBi 15.618300 GH
2011						
0 dBm D1 -8.160 dBr	n					_
0 dB <mark>m</mark>		-	·			
0 dBm						
0 dBm						
o ubiii						
o dam		-	M2			_
A DELENSING LINE AND A	🗖		ALL ALL ALLAND	يعرينا المريطا فجراليا	Mar June	the day and had been
			Wanter and	an Anthe such as	And the second second	
0 dBm						
0 dBm						


Date: 10.0CT.2022 11:21:31

Date: 10.0CT.2022 11:22:31

1Pk View							
0 dBm				M	1[1]		54.69 dBr 4.6270 MH
dBm	_						
10 dBm 01 -7.97	0 dBm						
20 dBm	+						
30 dBm							
10 dBm							
50 dBm							M1
		WWW	which the		AAAAAA	MANAN	WWWW
0 dBm							
30 dBm							

Date: 10.0CT.2022 11:22:43

----- The following blanks ------

Right earbuds

Test result plot as follows:

Band Edges

DH5

CH Low (2.35GHz ~2.405GHz)

Ref L	evel	20.00 dBr 30 dI			RBW 100 k VBW 300 k		Mode	Auto F	FT					
●1Pk Vi	ew	0.000												_
10 dBm 0 dBm-								L[1] 2[1]				12. 2.4020 -46. 2.4000	96 0	GH
-10 dBm	D	1 -7.670	dBm										\square	
-20 dBm					_				_		-		H	_
-30 dBn	+					-			-					1
+40 dBm		many	antwan	runhur	menness	m	-hum	mahar	wand	13 Kurnun	munu	urne Mal		6
-60 dBm	+								_			+		
-70 dBm	+							-				-		_
Start 2	.35 G	Hz			691	pts					St	op 2.4	05 G	н
Marker														
Type M1	Ref	Trc 1	2.402015	CUL	Y-value 12.33 de		Funct	ion	2	Fun	ction Re	sult		_
M1 M2		1		GHZ	-46.96 dB									-
M3 M4		1	2.39	GHz	-48.48 de	3m								_

Spectrum Ref Level 20.00 dBm Offset 12.00 dB
 RBW 100 kHz
SWT 75.8 µs
 VBW 300 kHz Mode Auto FFT Att 30 dB ●1Pk Vie M1[1] 11.54 2.40201 10 dBm M2[1] 44. 0 dBm D1 -8.490 -10 dBm--20 dBm -30 dBm M4 M3 Monter M3 -40 dBm -50 dBmwhenh when -60 dBm -70 dBm Start 2.35 691 Sto 405 GH2 larker X-value 2.402015 GHz 2.4 GHz 2.39 GHz 2.3790145 GHz Y-value 11.51 dBm -44.11 dBm -46.59 dBm -41.86 dBm Type | Ref | Trc Function Result Function M1 M2 M3 M4

Date: 12.0CT.2022 09:44:16

Date: 12.0CT.2022 09:16:17

		30 0		94.8 µs r	 RBW 100 kH VBW 300 kH 		FT		
1Pk Vi	iew		52						
	N	11				M1[1]		12.3	
10 dBm	-	<u> </u>				tiof (1		2.48001	
						M2[1]		-47.6	
) dBm–		A	+					2.48330	U GH
		1 -7.680	dBm						
-10 dBn	n	1 -7.000	GDIT	+					
-20 dBn									
20 UBI	1								
-30 dBn	0-11	1			_				
-40 dBn	n U	-	-	-	_		M4	-	
unul		M2	a mangenser	M	mentiner	no mas upany	mannah	million mighting	
-50 dBn	0		9	- www.and					herein
00 001									
				_					
-60 dBn	n								
-60 dBn	n								
-60 dBn -70 dBn	n	Hz			691	ots		Stop 2.55	GHz
-60 dBn -70 dBn Start 2	n n 2.47 Gl	Hz			691	ots		Stop 2.55	GHz
-60 dBn -70 dBn Start 2 Iarker	n		X-valu		691 Y-value	ots	Func	Stop 2.55	GHz
-60 dBn -70 dBn Start 2 Iarker	n			1001 GHz		Function	Func	•	GHz
-60 dBn -70 dBn Start 2 1arker Type M1 M2	n	Trc 1	2.48 2.4	001 GHz 835 GHz	Y-value 12.32 dBr -47.67 dBr	Function	Func	•	GHz
-60 dBn -70 dBn Start 2 Marker Type M1	n	Trc 1	2.48	001 GHz	Y-value 12.32 dBr	Function	Func	•	GHz

CH High (2.47GHz ~ 2.55GHz)

Date: 12.0CT.2022 09:23:52

	evel 20.	00 dBm	Offset 11.59 dB	RBW 100 kHz			
Att	ana	30 dB	SWT 94.8 μs	👄 VBW 300 kHz	Mode Auto F	FT	
∎1Pk Vi	ew						
	M1				M1[1]		11.57 dBi 2.476190 GH
10 dam	no la				M2[1]		-47.61 dBi
AHAA!	11144				mz[1]		2.483500 GH
pid8m+	TTYN I I I						
-10 dBn	D1	-8.430 dB	m				
-10 001							
-20 dBn						17	
-30 dBn	1 b					0	
-40 dBn							
-10 001		M2	mallela N. m. h. h. a	N Shedd and I	LANA MANAN		and manufichanter
-50 dBn	1-	marver		al the and workers	Mal Charles and	manner	monormenous
-60 dBn							
-70 dBn	-						
, , , ,							
Ot ant O	.47 GHz	-		691 pt	ts		Stop 2.55 GHz
Start 2							
	Ref T		X-value	Y-value	Function	Fun	ction Result
1arker		1	2.47619 GHz	11.57 dBm			
Marker Type M1			2.4835 GHz	-47.61 dBm			
Marker Type		1	2.4055 GHz	-45.54 dBm			

Date: 12.0CT.2022 09:45:24