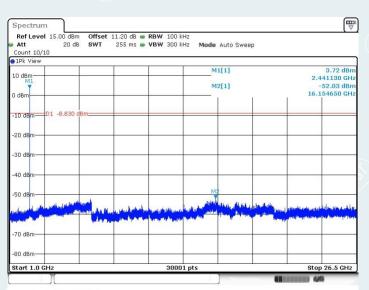
Report No.: E20221011998501-3


CH Mid

Spectrum				
Ref Level 30.00 dBm Att 30 dB	Offset 11.20 dB SWT 18.9 µs	VBW 300 kHz	Mode Auto FFT	
Count 10/10 1Pk View				
			M1[1]	11.17 dBn 2.44115630 GH
20 dBm				2.11110000 011
10 dBm-			N11	
	~			
D dBm				
10 d8m				
20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
CF 2.441 GHz		691 pts		Span 1.5 MHz
ľ			Measuring	(1111111) 4/4

Date: 26.0CT.2022 10:11:46

Ref Level 15.00 dBm Offs Att 20 dB SWT	et 11.20 dB RBW 100 1.1 ms VBW 300			
Count 10/10		NIL MOUS AUCOTT		
1Pk View		M1[1]		-56.26 dB
			ГТ	972.0810 MH
) dBm				
10 dBm D1 -8.830 dBm				
20 dBm				
30 dBm				
40 dBm				_
50 dBm				Mi
RO. HEROIL & Ball Hall Baller & Baller & A	and a second second second			
dadananan man	Manager Street and	descendences	MANANA	WARDER
70 dBm				-
30 dBm				
Start 30.0 MHz)1 pts		Stop 1.0 GH

Date: 26.0CT.2022 10:11:58

Date: 26.0CT.2022 10:12:17

CH High

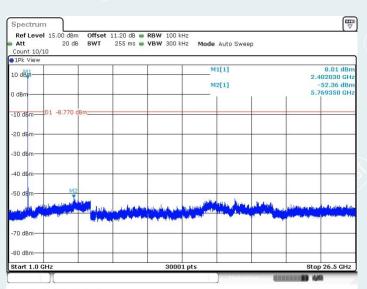
Ref Level 30.00 dB		8 - RBW 100 kHz	Mode Auto FFT	
Count 10/10	ar 2MI 19'A h	s 🥌 VBW 300 KHZ	Mode Auto FFT	
1Pk View				
			M1[1]	11.05 dBi 2.47999780 GH
20 dBm				
		M1		
10 dBm				
) dBm				
dom				
10 d8m				
20 dBm				
30 dBm			· · · · ·	
-30 GBm				
-40 dBm				
-50 dBm	+ +			
-60 dBm				
-ou usin				
CF 2.48 GHz		601		Span 1.5 MHz
GF 2.40 GHZ		691 pt	.5	Span 1.5 MHz

Date: 26.0CT.2022 10:13:13

Ref Level 15.00 Att 2 Count 10/10	dBm Offset 0 dB SWT	11.20 dB 👄 1.1 ms 👄	VBW 100 k VBW 300 k		Auto FFT			
1Pk View								
0 dBm	-			M	1[1]			-55.56 dBn 4.8210 MH
dBm								
10 dBm D1 -8.9	950 dBm		-			-		
20 dBm								
30 dBm								
10 dBm								
50 dBm								M1
o Manhatalanta	the bulk the bulk	-	H. H. H. H. H.	tailate for the	All and all	Autobal	MAN	here here
0 dBm	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	प्राया पर के की हैं। वि	17 17 17 17 1	ى يەركى بىر لەر	a 10 m ² m			
30 dBm	_							
tart 30.0 MHz			3000	1 pts			St	op 1.0 GHz

Date: 26.0CT.2022 10:13:24

Ref Level 15.00 dBm Of Att 20 dB SV	fset 11.20 dB 👄 RBW /T 255 ms 👄 VBW		ep	
Count 10/10 1Pk View				
10 dBm		M1[1]	4.95	
		M2[1]	2.480230	
) dBm			15.868200	
10 dBm D1 -8.950 dBm				_
20 dBm				
30 dBm				
40 dBm				
40 dbm				
50 dBm		M2		
المتعطية فمعام العفي على ال	مرسل المربطانية والعرسان والارد	and any desident of the state of the	in the second state of the state of the state	ph.
and a start of the	a bay a sector ball of a sector	And An and An Andrew Contraction	the state of the s	a topos
70 dBm				
80 dBm				


Date: 26.0CT.2022 10:13:44

Report No.: E20221011998501-3

3DH5 CH Low Spectrum Ref Level 30.00 dBm Att 30 dB Count 10/10 PPk View (₩) Offset 11.20 dB ● RBW 100 kHz SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT 11.23 dBn 2.40215850 GHa M1[1] 20 dBm-10 dBm-0 dBm -10 d8m -20 dBm -30 dBm--40 dBm--50 dBm -60 dBm 691 pts CF 2.402 G Date: 26.0CT.2022 10:14:50

Att 20 dB SWT	11.20 dB RBW 100 1.1 ms VBW 300		
Count 10/10 1Pk View			
10 dBm		M1[1]	-56.57 dB 672.0700 MI
D dBm			
10 dBm01 -8.770 dBm			
20 dBm			
30 dBm			
40 dBm			
50 dBm		M1	
an restain the factor furth and a factor of	-	www.icharthetersteine	
70 dBm			
80 dBm			
Start 30.0 MHz	300	101 pts	Stop 1.0 GH

Date: 26.0CT.2022 10:15:02

Date: 26.0CT.2022 10:15:21

CH Mid

11.31 dB 2.44115850 GF
_

Date: 26.0CT.2022 10:16:16

₩
 Spectrum

 Ref Level
 15.00 dBm
 Offset
 11.20 dB
 RBW
 100 kHz

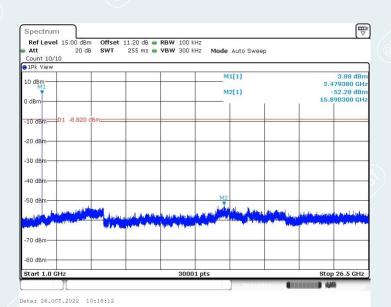
 Att
 20 dB
 SWT
 1.1 ms
 VBW
 300 kHz
 Mode
 Auto FFT
 10/10 -56.23 dBm 899.6250 MHz M1[1] 10 dBn 0 dBm 01 -8.690 -10 dBm--20 dB -30 dB -40 dBr -50 dB -70 dBn -80 dBn 30001 pts Start 30.0 MH Stop 1.0 GHz 140

Date: 26.0CT.2022 10:16:28

Count 10/10	db SWT	255 ms 👄 VE	WY JUU KHZ M	lode Auto Swe	ер		
1Pk View				M1[1]			02 dB
T				M2[1]		2.4411	30 GF 91 dB
) dBm	_			_	Ē Î	15.7628	800 GH
10 dBm 01 -8.6	90 dBm						
20 dBm							
30 dBm							
40 dBm	_	· · · · · ·					
50 dBm				M2			
المستقليلين والملين والم	unite and a start	a law	المحادثة والمحاد	and the first	a haten	م. مريد ميدان مندر م	
and the second second second second	- HAN	Harry Arriterious Inc.	Aurel particular particular			And the second second second	and any other
70 dBm							
/ G GBIII	1						

Date: 26.0CT.2022 10:16:47

Report No.: E20221011998501-3


CH High

Ref Level 30.00 dBm Offset Att 30 dB SWT Count 10/10	11.20 dB 🖷 RBW 100 kH 18.9 µs 🖷 VBW 300 kH		
1Pk View			
		M1[1]	11.18 dBn 2.48015850 GH
:0 dBm			
.0 dBm			
dBm			
10 d8m			
20 dBm			
30 dBm			
40 dBm			
50 dBm			
60 dBm			
CF 2.48 GHz	691 g	ots	Span 1.5 MHz
Y		Mensurino	G

Date: 26.0CT.2022 10:17:41

Auto FF T			-55.93 dB I5.1450 MF
1[1]			
-		-	
	-		+
			1
-	-	M1	+
		L. a baa	والمراجع والمراجع
	AAAAA	MANA	The second s
		-	
		-	+
		un and a second	M2

Date: 26.0CT.2022 10:17:53

----- The following blanks -----

Right earphone

Band Edges

DH5

CH Low (2.35GHz ~2.405GHz)

Att	30	dB SWT 75.8 μs	VBW 300 kHz	Mode Auto F	FT	
⊖1Pk Vi€	BW	1 1	1 1	M1[1]		11.7A1dB
10 dBm-				(Internet		2.402174 G
TO GRM-				M2[1]		-40.20 dE
0 dBm—	_		-			2.400000 G
-10 dBm	D1 -8.260	dBm				
-20 dBm						
-20 ubili						
-30 dBm	i —					14
						142
-40 dBm			-		M3	Nº 1
-50 dBm	manum	many Malertoninghan	margal assorting	menterdance	months welles	humann
-60 dBm			-			
-70 dBm						
Start 2	.35 GHz		691 pts	5		Stop 2.405 GH
Marker						
	Ref Trc	X-value	Y-value	Function	Func	tion Result
Type		2.402174 GHz	11.74 dBm			
M1	1					
	1	2.4 GHz 2.39 GHz	-40.20 dBm -48.60 dBm			

Date: 26.0CT.2022 11:05:13

Spectrun	20.00 dBn	n Offset 11.20 dB	- DDW 100 kUs			ų
Att	30 di		VBW 300 kHz	Mode Auto F	CT	
1Pk View	00 0	o on ioiopo		Mode Autor	1.1	
				M1[1]		11.10 dB
						2.4019360 G
10 dBm				M2[1]		-40.87 (18
0 dBm						2.4000000
U dBm						
-10 d8m	D1 -8.900	dBm:				100
-10 ubiii		1				
-20 dBm						
			1 1			
-30 dBm						
						M2
-40 dBm			M	4		7
When the same	0.0. m. m. a	marine presidente	A	montarm	M3 menn	M. Imanus
-50 dBm-	Nor Verse		- manual -		- manufacture	
-60 dBm						
-70 dBm						
-/U dBm						
Start 2.35	GHz		691 pt:	5		Stop 2.405 GH
Marker						
	f Trc	X-value	Y-value	Function	Functi	on Result
M1 M2	1	2.401936 GHz 2.4 GHz	11.10 dBm -40.87 dBm			
M2 M3	1	2.4 GHZ 2.39 GHZ	-40.87 dBm			
M4	1	2.39 GHz	-45.80 dBm			

Date: 26.0CT.2022 11:23:58

CH High (2.47GHz ~ 2.55GHz)

	20.00 dBm	Offset 11.20 dB	RBW 100 kHz		
Att	30 dB	SWT 94.8 µs	• VBW 300 kHz	Mode Auto F	FT
1Pk View			20 20		
	M1			M1[1]	11.51 d
LO dBm	7		-		2.480130 0
				M2[1]	-48.43 d 2.483500 0
) dBm	1		-		2,483300 0
-10 dBm	D1 -8.490 d	Bm			
TO ODIN	11				
-20 dBm					
-30 dBm	1				
-40 dBm	1	M4			
-50 dBm	/ MM2	advent ownedden	3 were margare	meddy proved	warder and and the margan
-50 aBm					
-60 dBm			_		
-70 dBm					
Start 2.47	GHz		691 pts	8	Stop 2.55 G
larker					
	Trc	X-value	Y-value	Function	Function Result
	1	2.48013 GHz	11.51 dBm		
M1			-48.43 dBm		
	1	2.4835 GHz 2.5 GHz	-49.95 dBm		

Date: 26.0CT.2022 11:13:40

Pof Louol	20.00 dBm	Offset 11.20 dB	BBW 100 kur			
Att	20.00 dBill 30 dB		VBW 300 kHz	Mode Auto F	FT	
1Pk View				Hous Hater		
	M1			M1[1]		11.46 dBn
	X			and the second second		2.480010 GH
AT NUMBER	40			M2[1]		-47.88 dBn
oldani 🕂 🕂	111		-		-	2.483500 GH
olotian	1.					
-10 dBm-	01 -8.540 0	dBm:			-	
-20 dBm					_	
-30 dBm	1					
SO GDIN						
-40 dBm-		M	2	144	_	
	MM2	the but run and and		en mar June	ulumana	mendumbarra
-50 dBm			-			
-60 dBm						
-60 UBIII						
-70 dBm						-
Start 2.47	GHz		691 pts			Stop 2.55 GHz
larker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
Type Kei	1	2.48001 GHz	11.46 dBm			
M1		2.4835 GHz	-47.88 dBm			
	1	2.5 GHz	-46.91 dBm			

Date: 26.0CT.2022 11:27:13

2DH5	
CH Low (2.35GHz	~2.405GHz

Spectrum						7
Ref Level	20.00 dBr	m Offset 11.20 dB (RBW 100 kHz			
Att	30 d	B SWT 75.8 µs 🕯	VBW 300 kHz	Mode Auto Fi	FΤ	
1Pk View						
				M1[1]		11.6,51dBr
10 dBm-						2.4020150 GH
				M2[1]		-40.5 dBr 2.400000 GH
0 dBm			+			2.400000 GH
	1 -8.350	dDec				
-10 dBm—	1 -0.330	ubin				
-20 dBm						
-20 UBIII						
-30 dBm						
						A Star
-40 dBm			-		-	1
A MARIA MILL	he e	man Manus man		and an employed	M3	ashed by
-50 dBm	and the shall	And the sound	a sumaria	and a contraction of the second	anthorna	a stand on
-60 dBm						
-00 ubili						
-70 dBm-						
Start 2.35 (Hz		691 pt	s		Stop 2.405 GHz
Aarker				-		
Type Ref	Trc	X-value	Y-value	Function	Funct	ion Result
M1	1	2.402015 GHz	11.65 dBm			
M2	1	2.4 GHz	-40.57 dBm			
MЗ	1	2.39 GHz	-49.25 dBm			
M4	1	2.3999783 GHz	-41.35 dBm			

Date: 26.0CT.2022 11:15:16

Ref L	evel	20.00 c 30	IBm Offset dB SWT		 RBW 100 kHz VBW 300 kHz 	Mode Auto F	FT	
1Pk Vi	ew							
						M1[1]		11.601dB 2.4021740 GF
LO dBm	+				+	M2[1]		-45.64 dB
						matil		2.400000 G
dBm-								
10 dBm		1 -8.40	0 dBm	_	_			
20 dBm	1			-				
30 dBm	1			-				
40 dBm	_			Wh4				M
men	3			muturen		women annen	M3	
50 dBm	1 mar	man	and the	and month	all marker	- management	munter	monto
60 dBm	1							
70 dBm								
yo ubn								
start 2	35.0	Hz			691 pt	<u> </u>		Stop 2.405 GH
larker	.00 0				051 pc			0000 21100 011
Type	Ref	Trc	X-val	Je I	Y-value	Function	Funct	ion Result
M1		1		174 GHz	11.60 dBm			
M2		1		2.4 GHz	-45.64 dBm			
M3		1	1	2.39 GHz	-48.44 dBm			
		1		957 GHz	-44.88 dBm			

Date: 26.0CT.2022 11:29:00

CH High (2.47GHz ~ 2.55GHz)

Ref Level	20.00 dE	Bm Offset 11.20 dB	RBW 100 kHz			5- -
Att	30	dB SWT 94.8 μs	VBW 300 kHz	Mode Auto Fl	FT	
1Pk View			10 E			
	M1			M1[1]		11.45 dBr
10 dBm	X		_			2.480010 GH
	N.			M2[1]		-48.42 dBr 2.483500 GH
0 dBm	11		-			2.483500 GH
	11					
-10 dBm	01 -8.550	D dBm:				
-20 dBm						
-30 dBm						
-SO GDIN	4					
-40 dBm	1	1014				
Anderson P	M2	M. Martine	3 Marshare		100 1 10 100 10	and marchemer
-50 dBm	(U)	in the and man and the states	and another mountain	Und have proved	marken warender of	manduluner
-60 dBm						
-70 dBm						
·/u ubiii						
Start 2.47 (Hz		691 pts			Stop 2.55 GHz
larker			000 pts			0100 2100 0112
	Trc	X-value	Y-value	Function	Funct	ion Result
M1	1	2.48001 GHz	11.45 dBm		Turrec	
M2	1	2.4835 GHz	-48.42 dBm			
MЗ	1	2.5 GHz	-48.82 dBm			
M4	1	2.487855 GHz	-44.65 dBm			

Date: 26.0CT.2022 11:18:03

Ref Le	evel	20.00 dB 30 (- en - m	
1Pk Vi	014/	30 0	38 SWI 94.8 µs	VBW 300 kHz	Mode Auto F	FT	
M1					M1[1]		11.56 dE
LC dBm							2.473990 G
11117	III.A				M2[1]		-47.42 dE
) dBm-							2.483500 G
10 dBm		1 -8.440	dBm:				
20 dBm							
30 dBm		1		_			
		4					
40 dBm	-	JM2	M	3 14			
		2 m	manuman and and		ment when	mulanumally	Marchandenhan
50 dBm							
60 dBm	-						
70 dBm	i						
tart 2	.47 G	Hz		691 pt	s	- I	Stop 2.55 GH
arker							
Туре	Ref	Trc	X-value	Y-value	Function	Func	tion Result
M1		1	2.47399 GHz	11.56 dBm			
M2		1	2.4835 GHz	-47.42 dBm			
M3		1	2.5 GHz 2.504667 GHz	-46.77 dBm -44.59 dBm			

Date: 26.0CT.2022 11:33:10

3DH5	
CH Low (2.35GHz ~?	2.405GHz

Spectru	n					
	1 20.00 dBr					
Att	30 d	B SWT 75.8 µs (VBW 300 kHz	Mode Auto F	FT	
1Pk View		2				
				M1[1]		11.73 ₁ dBn
10 dBm				LIOT 11		2.4021747 GH: -40.99 dBn
				M2[1]		2.4000000 GH
0 dBm			+ +		- <u> </u>	2.400000 GH.
	01 0 270	dBro				
-10 dBm—	D1 -8.270	ubin				
-20 dBm—						
-20 ubili-						
-30 dBm						
00 0011						4
-40 dBm-						
America		monormenen	1	Maria	M3 data	and the
-50 dBm	montestan	un mar quanting	and	and an completion	and and the second	manufacture a
-60 dBm—						
-70 dBm-						
-/o ubm					- 18	
Start 2.35	GHz		691 pts			Stop 2.405 GHz
Aarker						
Type Re	fTrc	X-value	Y-value	Function	Euno	ction Result
M1	1	2.402174 GHz	11.73 dBm			
M2	1	2.4 GHz	-40.99 dBm			
MЗ	1	2.39 GHz	-49.47 dBm			
M4	1	2.3999783 GHz	-41.09 dBm			

Date: 26.0CT.2022 11:19:32

Spectrum						T I
Ref Level						
Att	30 di	B SWT 75.8 µs (VBW 300 kHz	Mode Auto F	FT	
1Pk View		20				
				M1[1]		11.7点1dB
10 dBm			_			2.4021740 GH
				M2[1]		-39.54 de
0 dBm			-			2.400000 G
-10 dBm —	01 -8.250	dBm		10		
-20 dBm						
-30 dBm						
SO UDIN						Mat
-40 dBm		114				1
menthon al		La. Inner		mannen	M3	amount of the
-50 dBm	-connorm	chanter a comment	the second		consistency .	
-60 dBm						
-70 dBm						
-/o ubiii						
Start 2.35 (GHz		691 pts			Stop 2.405 GHz
larker						
Type Ref	Trc	X-value	Y-value	Function	Funct	ion Result
M1	1	2.402174 GHz	11.75 dBm			
M2	1	2.4 GHz	-39.51 dBm			
M3	1	2.39 GHz	-48.00 dBm			
M4	1	2.3645072 GHz	-44.94 dBm			

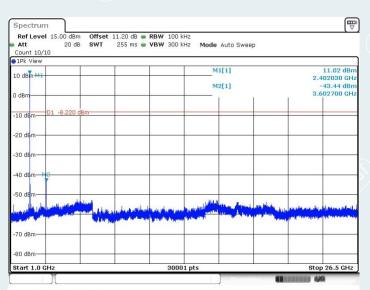
Date: 26.0CT.2022 11:34:46

CH High (2.47GHz ~ 2.55GHz)

	20.00 dBm	Offset 11.20 dB	RBW 100 kHz			
Att	30 dE	в SWT 94.8 µs	VBW 300 kHz	Mode Auto Fi	FΤ	
1Pk View						
	M1			M1[1]		11.58 dB
10 dBm	<u> </u>					2.480130 G
	1			M2[1]		-48.82 dB 2.483500 G
) dBm					Ē	2,483300 G
	D1 -8.420 (10 m				
-10 dBm	01 -0.4200	JDIN			-	
-20 dBm						
-20 UBIII						
-30 dBm	11					
	K 1					
-40 dBm						
-40 ubin	<i>u</i>	- Date				-
	M2	and make up M	3 revolution	and patricka	would be at a la	w Marmelled and
	M2	untrudenning	3 martinen	www.watura	winning	m Malender un
-50 dBm	M2	minumpunn	3 aly Martinenge	warner	winnerwhere	m manuful war
50 dBm	M2	malandorm	3 dependent of the second	www.w	within	m Manual Marca
50 dBm	M2	Multimation	3 January Consumption	warren john hur	within	manuture
-50 dBm	M2	untrudaman	3. Martine and	anne para	windruchie	m Macandulanu
		minina mining	3 alu Mathaumana 691 pts		windruchur	Stop 2.55 GH
50 dBm 60 dBm 70 dBm Start 2.47		Marria Marria			www.cruch.le	
50 dBm 60 dBm 70 dBm 3tart 2.47 larker		X-value	691 pts Y-value			
50 dBm 60 dBm 70 dBm 51 art 2.47 1 arker Type Ref M1	GHz	X-value 2.48013 GHz	691 pts <u>Y-value</u> 11.58 dBm	;		Stop 2.55 GH
-50 dBm -60 dBm -70 dB	GHz	X-value	691 pts Y-value	;		Stop 2.55 GH

Date: 26.0CT.2022 11:22:15

100 I.D.	_					
Spectrum						
Ref Level	20.00 dBr	m Offset 11.20 dB (RBW 100 kHz			
Att	30 d	B SWT 94.8 μs (VBW 300 kHz	Mode Auto F	FT	
1Pk View						
1				M1[1]		11.55 dBr
Ch dBm -h-h				And the second		2.470980 GH
antt	M			M2[1]		-47.18 dBr
) dBm			_			2.483500 GH
10 dBm-	01 -8.450	dBm:				
-20 dBm	-		-		7	
30 dBm	-		-		-	
	1		Sec. 1			
-40 dBm	M2	M	MI			
	Len	munineman	munduran	mour mon	municipan	June management
50 dBm					1	
60 dBm						
70 dBm			_			
/ o ubm						
Start 2.47	SHz		691 pts			Stop 2.55 GHz
larker						
	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.47098 GHz	11.55 dBm			
M2	1	2.4835 GHz	-47.18 dBm			
MЗ	1	2.5 GHz	-48.07 dBm			
M4	1	2.505014 GHz	-44.21 dBm			


Date: 26.0CT.2022 11:39:11

Spurious Emissions DH5 CH Low

Ref Level 30.00 dBm Offset Att 30 dB SWT Count 10/10	11.20 dB • RBW 100 k 18.9 μs • VBW 300 k			
1Pk View		M1[1]		11.78 dBm
22		WILL		15850 GH
20 dBm				
.0 dBm		M1		
o ubiii				
dBm-				
10 dBm				
				/
26 dBm				
30 dBm				
40 dBm				
50 dBm				
60 dBm				
CF 2.402 GHz	691	pts	Spar	1.5 MHz
T .		Measuring		_

Att 20 ount 10/10	dB SWT	1.1 ms 🖶	VBW 300 k	nz Mode	Auto FFT			
LPk View	1 1							55.86 dB
) dBm				M	1[1]			55.86 dB
dBm			-					
D dBm D1 -8.22	0 dBm					5		
) dBm						<u>.</u>		
) dBm								
) dBm			7	-				
) dBm							M1	
		-	-		-	Antonia	MAN	
) dBm	- 19 m 11/10 gt 1			ы ла н н н т		-		
0 dBm								

Date: 26.0CT.2022 11:05:33

Date: 26.0CT.2022 11:05:52

CH Mid

	.20 dB 👄 RBW 100 kH 8.9 µs 👄 VBW 300 kH		
1Pk View			
		M1[1]	11.66 dB 2.44115850 GF
20 dBm			2.1110000 0
10.10		141	
10 dBm-			
0 dBm			
-10 dBm			
28 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
CF 2.441 GHz	691 p	ots	Span 1.5 MHz
		Measuring	444 HILLING

Date: 26.0CT.2022 11:12:18

Report No.: E20221011998501-3

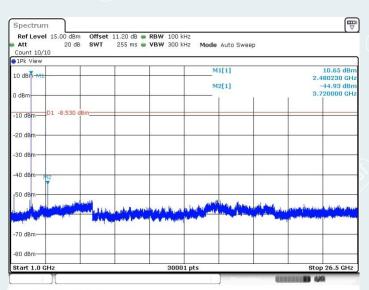
Spectrum	· · · · ·													Ð
Ref Level Att				11.20 0										
Att Count 10/10		20 dB	SWT	1.1 n	ns 😑	VBW	300 ki	HZ M	ode	Auto FFT				
1Pk View	-													
.0 dBm									M	L[1]				55.46 dBr .2940 MH
) dBm		_						-			-			
10 dBm	01 -8.	340 dE	im			-	_		_		-		 _	
20 dBm		+		-					_		-		 _	
30 dBm		+		-									_	
40 dBm		-		-				-	-	1	-		_	
50 dBm		+		-		-	_		_		-		-	MI
de Henrich				NYN	W					WAN	WHAN			My have
70 dBm		-								-	-	-	_	
80 dBm		-		_					_				_	

Date: 26.0CT.2022 11:12:29

Ref Level 15.00 Att	dBm Offset 1 20 dB SWT	1.20 dB RBW 10 255 ms VBW 30			
Count 10/10	20 00 000	235 113 - 1011 30	NO KINZ IMOUE KUTO SWE	eh	
●1Pk View					
10 dBm M1			M1[1]		11.11 dE 2.441130 G
			M2[1]		-42.36 dE
0 dBm					3.661350 G
-10 dBm D1 -8.	340 dBm				
10 0.0.11					
-20 dBm					
-20 0011					
-30 dBm					
SU UDIT					
-40 dBm N2					
wo ubin					
-50 dBm					
-30 ubin	balland		date of a line		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
والملاول الشروم والسويد والم	a support littless	an state Bearth all and a state state state	all designed and the second second	A REAL PROPERTY AND A REAL PROPERTY AND A	tanual a furth ratel
and the state of the	Lange	man further branch the	panet factor from	and the second se	of the second second second second
70 40-	1. The C ()				
-70 dBm					
-80 dBm					

Date: 26.0CT.2022 11:12:49

Report No.: E20221011998501-3


CH High

Att 30 dB SW Count 10/10	T 18.9 µs 🖷 VB	W 300 kHz M	1ode Auto FFT	
1Pk View			M1[1]	11.47 dBr 15850 GH
0 dBm			Nat	
0 dBm				
dBm-				
.0 dBm				
18 dBm				
0 dBm				
0 dBm				
0 dBm				
0 dBm		~		
50 dbill				

Date: 26.0CT.2022 11:13:49

Ref Level 15.00 dBm Off. Att 20 dB SW	set 11.20 dB RBW 100 T 1.1 ms VBW 300		
Count 10/10		KILZ MOUE MULO PPT	
1Pk View		M1[1]	-56.15 dB 936.8070 Mi
) dBm			
10 dBmD1 -8.530 dBm			
20 dBm			
30 dBm			
40 dBm			
		a the set of a start but	M1
70 dBm	and the second	anna anna anna	
80 dBm			
Start 30.0 MHz	200	01 pts	Stop 1.0 GH:

Date: 26.0CT.2022 11:14:00

Date: 26.0CT.2022 11:14:19

2DH5 CH Lov

		11.20 dB 🖷 RBV				
Att Count 10/10	30 dB SWT	18.9 µs 🖷 VBI	V 300 kHz I	Mode Auto FFT		
●1Pk View						
10				M1[1]	2.40	11.67 dB 0200000 GH
20 dBm			M1			
10 dBm			-		_	-
0 dBm	-					
-10 d8m						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-30 UBII						
-60 dBm						
CF 2.402 GHz			691 pts		Sr	an 1.5 MH
The second se				Measuring	Constant of	

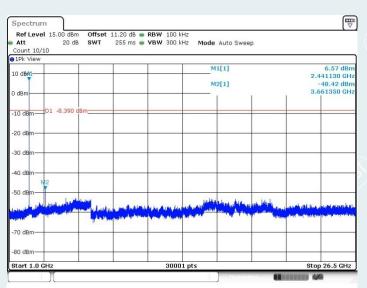
Date: 26.0CT.2022 11:15:24

Ref Level 15.00 dBr Att 20 d Count 10/10		dB • RBW 100 ms • VBW 300			
1Pk View					
10 dBm			M1[1]		-55.98 dBm 464.7560 MHz
) dBm					
-10 dBm D1 -8.330	dBm				
20 dBm				-	
30 dBm					
40 dBm					
50 dBm		M1			
		MAN WHAT	AN A HANNAH	AN WHAT	www.
70 dBm					
	I I				

Date: 26.0CT.2022 11:15:36

Att 20		1.20 dB 👄 RBW 255 ms 👄 VBW		Auto Sweep			
Count 10/10 1Pk View							
			M	1[1]			4.43 dB
			M	2[1]			02030 GI 51.06 dB
) dBm				z[1]	s		02700 GI
10 dBm D1 -8.33	30 dBm-						-
20 dBm-							
20 0611							
30 d6m	_						
40 dBm							
50 dBm M2							
and the second second	A Burks		نائمي	Louis Maria	a de des	CONTRACTOR OF IN	
and and a state of the second state of the	And and the Way In		And the Party of the Party of the	April 1 State Barrier	and the second second	The second s	الديد واستقرره
	ALC: NOT						
70 dBm							
80 dBm							
			30001 pts				26.5 GH

Date: 26.0CT.2022 11:15:55


Report No.: E20221011998501-3

CH Mid

Spectrum Ref Level 30.00 dBm	Offset 11.20 dB	RBW 100 kHz		
Att 30 dB Count 10/10		VBW 300 kHz	Mode Auto FFT	
1Pk View				
			M1[1]	11.61 dBn 2.44100000 GH:
20 dBm		M1		
.0 dBm		\rightarrow	~	
dBm	~~			
10 d8m				
10 dBm				
20 dBm				
30 dBm				
10 dBm				_
50 dBm				
50 dBm				
F 2.441 GHz		691 pts		Span 1.5 MHz
T T			Nexsuring	CONTRACTOR AND

Ref Level 15.00 dB Att 20 d		dB 👄 RBW 100 kH ns 👄 VBW 300 kH			
Count 10/10 1Pk View					
) dBm-			M1[1]	1 1	-54.99 dBi 845.1770 MH
dBm					
0 dBm D1 -8.390	dBm				
0 dBm					
0 dBm					
0 dBm					
0 dBm				M1	
	-	ANN WAL	WHITE WILLIAM	-	
0 dBm					
				1 1	

Date: 26.0CT.2022 11:16:54

Date: 26.0CT.2022 11:17:13

CH High

Ref Level 30.00 dBm Att 30 dB		RBW 100 kHz VBW 300 kHz	Mode Auto FFT	
Count 10/10	000 po 0	IBIT OCO MIL	Mode Addorr	
1Pk View				
			M1[1]	11.40 dB 2.48000000 GF
20 dBm-				2.4600000 Gr
		M1		
10 dBm				
) dBm				
-10 d8m				
20 dBm				
-30 dBm		2		
-40 dBm				
-50 dBm				
SU UDIN				
-60 dBm				
CF 2.48 GHz	1	691 pts		Span 1.5 MH;
		551 pts		

Date: 26.0CT.2022 11:18:11

Att 20 dE Count 10/10	3 SWT 1.1	l ms 👄 VBW 300	kHz Mode Auto FFT	
1Pk View				
.0 dBm			M1[1]	-56.00 dBr 915.5640 MH
) dBm				
10 dBm D1 -8.600 (dBm			
20 dBm				
30 dBm				
40 dBm		7		
50 dBm				 M1
		ALC: NO.	WALLAN WALLAN	
70 dBm	1			
	1		1 1	

Date: 26.0CT.2022 11:18:23

Ref Level 15.00 dBm		dB 🖷 RBW 100			
Att 20 dB Count 10/10	SWT 255	ms 👄 VBW 300	kHz Mode Auto Swe	ер	
1Pk View					
LO dBm			M1[1]		4.75 dB 2.480230 G
Ť			M2[1]		-50.11 dB
) dBm				Ľ I	3.719150 G
-10 dBm D1 -8.600 d	Bm				
20 dBm					
30 dBm					
40 dBm					
50 dBm					
and and a start of the start of	and the second day	R. Haller & at A. A.	and the second second second	a manufacture and	Line and Long Market Bar
a track of the second se	. Alanta and	Harden and States	and the state of t	the second s	which have been a second beaution
70 dBm					
80 dBm					
Start 1.0 GHz			01 pts		Stop 26.5 GH

Date: 26.0CT.2022 11:18:42

Report No.: E20221011998501-3

3DH5 CH Low Spectrum Ref Level 30.00 dBm Att 30 dB Count 10/10 PPk View (₩) Offset 11.20 dB ● RBW 100 kHz SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT 11.77 dBn 2.40216060 GHa M1[1] 20 dBm-10 dBm-0 dBm -10 d8m -20 dBm -30 dBm--40 dBm--50 dBm -60 dBm 691 pts CF 2.402 G 1 5 MU Date: 26.0CT.2022 11:19:40

Spectrum						ſ
Ref Level 15.00 dBm	Offset 11.20 dB 👄 I					
Att 20 dB Count 10/10	SWT 1.1 ms 👄 '	VBW 300 kHz	Mode Auto FFT			
1Pk View						
10 dBm			M1[1]			55.78 dB
			1	r i	898	.2990 MI
0 dBm						
10 dBm D1 -8.230 dB	Im-					
10 dBm 01 -8.230 dB						
-20 dBm						
-30 dBm						
-40 dBm		7		· · · · · ·		
-50 dBm						
		10000			M	
do weber in the state of the	in the ball of the ball of the	A A A A A A A A A	ANDREAM			
	1 m 10 m					
-70 dBm						
-80 dBm						
Start 30.0 MHz		30001 pts			Sto	p 1.0 GH
) (Measure		10000	8

Date: 26.0CT.2022 11:19:52

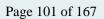
Att 20 dE Count 10/10	3 SWT 25	5 ms 👄 VBW	300 kHz Mod	le Auto Swee	p	
1Pk View						
0 d8m				M1[1]		6.53 dBr 2.402030 GH
				M2[1]		-49.08 dBr
dBm				· [Ê Î	3.602700 GH
10 dBm D1 -8.230 (dBm					
20 dBm						
30 d6m						
10 dBm						
i0 dEm				1		
and the state of the	and a further would	And the second second	March March March	Adding the base	He barren data bi	
0 dBm						
U UBIII						

Date: 26.0CT.2022 11:20:11

CH Mid

			Mode Auto FFT		
Count 10/10					
DIPK VIEW			M1[1]		11.71 dBr
				2.44	116060 GH
20 dBm					
10 dBm			MI		
LO OBM					
) dBm		-			
10 dBm		-			
-20 dBm		-			-
-30 dBm					
40 dBm					
-50 dBm		-			-
-60 dBm					-
CF 2.441 GHz	· ·	691 pts	s i i	Spi	an 1.5 MHz
I IIII			Neauring.	All success of	

Date: 26.0CT.2022 11:20:57

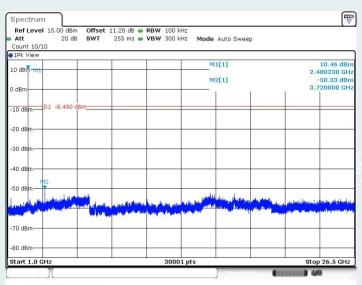

Ref Level				11.20 dB								
Att Count 10/1		dB §	SWT	1.1 ms	VE	W 30	0 kHz	Mode	Auto FFT			
1Pk View	-											
.0 dBm					-			M	1[1]	r	9	-56.23 dB
) dBm		_			+		-			-		
10 dBm - 1	D1 -8.29	90 dBm-			+		-					_
20 dBm		-			-		-				-	
30 dBm					+		+					
40 dBm		-			+		+					
50 dBm		+			+		+			-		M1
n went									NHM			with white
70 dBm												
30 dBm				L			_					_

Date: 26.0CT.2022 11:21:09

Att Count 10/1	20 dB 0	SWT	255 ms 🖷	VBW 300 k	Hz Mode	Auto Sweej	2		
1Pk View			1		м	1[1]			6.38 dB
dBm					M	2[1]		-	41130 GI 41.84 dB 61350 GI
10 dBm	D1 -8.290 df	3m							
20 dBm									
30 dBm									
10 dBm 🕂	2			7	2				
50 dBm —	Lushe an site and	A Ale	Tana		a anta atta	alune, the land	يعد والأربيان	a consultation	a - alamada a etd
	and the second se					And	and the second se	and a second	
70 dBm									
80 dBm								-	

Date: 26.0CT.2022 11:21:28

Report No.: E20221011998501-3



CH High

Spectrum				
Ref Level 30.00 dBm Att 30 dB Count 10/10	Offset 11.20 dB RE SWT 18.9 µs VI		Auto FFT	
1Pk View				
2		M1	[1]	11.51 dBn 2.48015850 GH
0 dBm		M	1	
D dBm			<u> </u>	
dBm				
.0 d8m				
0 dBm				
0 dBm				
0 dBm				
i0 dBm				
i0 dBm				
F 2.48 GHz		691 pts		Span 1.5 MHz
			Nonsulation Ellip	A44

	et 11.20 dB 👄 RBW 100		
Att 20 dB SW1 Count 10/10	1.1 ms 👄 VBW 300	kHz Mode Auto FFT	
1Pk View			
LO dBm-		M1[1]	-55.75 dB 934.5110 M
P2510		I I I	1 1
I dBm			
10 dBm D1 -8.490 dBm			
20 dBm			
30 dBm			
40 dBm			
50 dBm			
			MI
60 deine die het die het die het		Children and Andrews	
70 dBm		a dia mandra ana ang ang ang ang ang ang ang ang an	
80 dBm		-	
Start 30.0 MHz	300	01 pts	Stop 1.0 GH

Date: 26.0CT.2022 11:22:36

Date: 26.0CT.2022 11:22:55

----- The following blanks -----

14. RADIATED SPURIOUS EMISSIONS

14.1 LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required.

Frequency (MHz)	Quasi-peak(µV/m)	Measurement distance(m)	Quasi-peak(dBµV/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	128.5~93.8
0.490-1.705	24000/F(kHz)	30	73.8~63
1.705-30.0	30	30	69.5
30 ~ 88	100	3	40
88~216	150	3	43.5
216 ~ 960	200	3	46
Above 960	500	3	54

NOTE:

- (1) The emission limits for the ranges 9-90kHz and 110-490kHz are based on measurements employing a linear average detector.
- (2) The lower limit shall apply at the transition frequencies.

14.2 TEST PROCEDURES

1) Sequence of testing 9kHz to 30MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0 ° to 360 °) and by rotating the elevation axes (0 ° to 360 °).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

2) Sequence of testing 30MHz to 1GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from 0° to 360 and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1GHz to 18GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from 0° to 360° and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.

--- The EUT was set into operation.

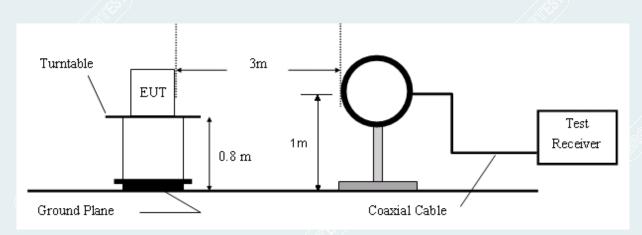
Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

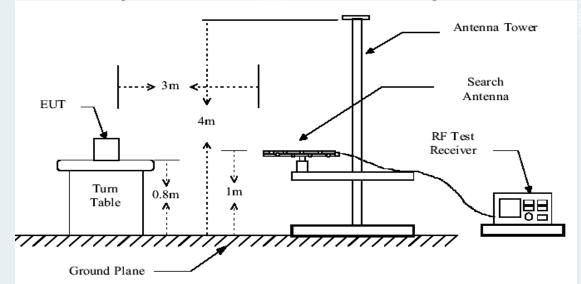
Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector. --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

NOTE:


(a).The frequency from 9kHz to 150kHz, Set RBW=300Hz(for Peak&AVG), RBW=300Hz(for Peak&AVG). the frequency from 150kHz to 30MHz, Set RBW=9kHz, RBW=9kHz, (for QP Detector).
(b).The frequency from 30MHz to 1GHz, Set RBW=120kHz, RBW=300kHz, (for QP Detector).
(c).The frequency above 1GHz, for Peak detector: Set RBW=1MHz, RBW=3MHz.
(d).The frequency above 1GHz, for Avg detector: Set RBW=1MHz, if the EUT is configured to transmit

with duty cycle \geq 98%, set VBW \leq RBW/100 (i.e.,10kHz) but not less than 10 Hz. if the EUT duty cycle is \leq 98%, set VBW \geq 1/T, Where T is defined in section 2.7.


----- The following blanks -----

Page 107 of 167

14.3 TEST SETUP

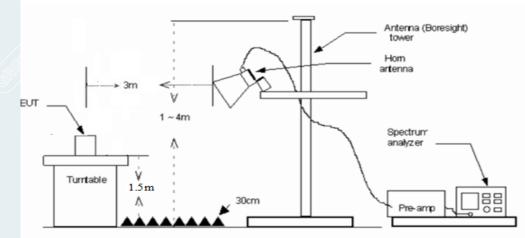
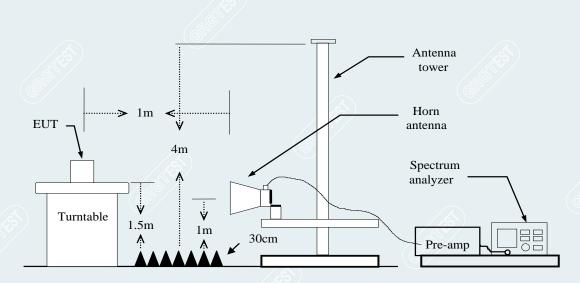



Figure 3. 1GH to 18GHz radiated emissions test configuration

Page 108 of 167

Figure 4. 18GHz to 26.5GHz radiated emissions test configuration

14.4 DATA SAMPLE

30MHz to 1GHz

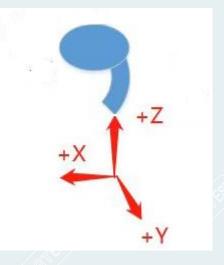
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	37.06	-15.48	21.58	40.00	-18.42	QP	Vertical

1GHz-18GHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	xxx 🔨	65.45	-11.12	54.33	74.00	-19.67	peak	Vertical
XXX	XXX	63.00	-11.12	51.88	54.00	-2.12	AVG	Vertical

Above 18GHz

No.	Frequency	Reading	Factor	Level	Limit	Margin	Remark	Pole
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
XXX	XXX	68.86	57.66	-11.20	83.54	25.88	peak	Vertical
XXX	XXX	68.89	-11.20	57.69	63.54	5.85	AVG	Vertical


Frequency (MHz)	= Emission frequency in MHz	
Ant.Pol. (H/V)	= Antenna polarization	
Reading (dBuV)	= Uncorrected Analyzer / Receiver reading	
Correction Factor (dB/m)	= Antenna factor + Cable loss – Amplifier gain	
Result (dBuV/m)	= Reading (dBuV) + Correction Factor (dB/m)	
Limit (dBuV/m)	= Limit stated in standard	
Margin (dB)	= Remark Result (dBuV/m) – Limit (dBuV/m)	
Peak	= Peak Reading	
QP	= Quasi-peak Reading	
AVG	= Average Reading	

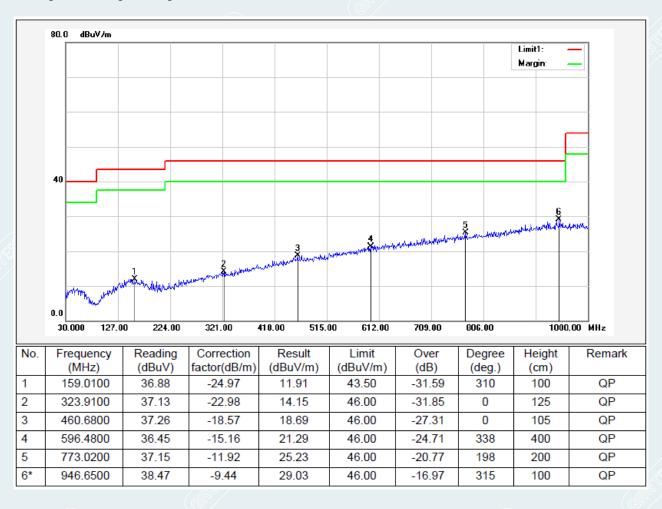
Report No.: E20221011998501-3

Page 109 of 167

14.5 TEST RESULTS

The test are under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the Z position. So the data shown the Z position only.

Below 1GHz:

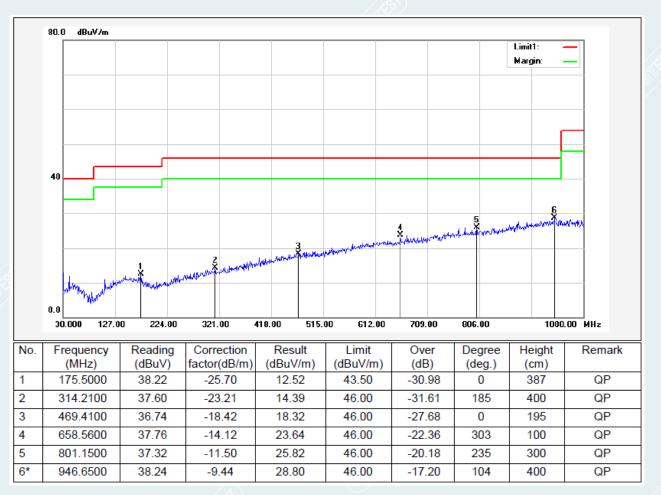

Pre-test all test mode and recorded the worst case BT DH5 2441MHz test results in the report.

----- The following blanks ------

Left earphone

Mode: DH5 Middle Frequency (2441MHz) Environment:26.1°C/51%RH/101.0kPa Test Engineer:Huang Xinlong

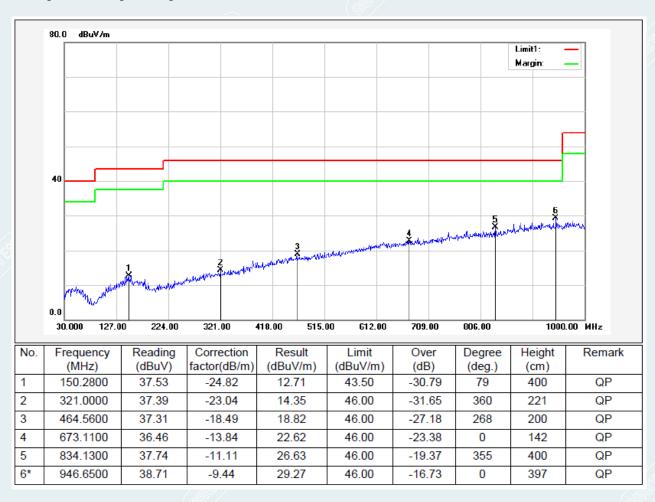
Date: 2022-10-19 Test Voltage:DC 3.85V Probe : Horizontal



(&

Mode: DH5 Middle Frequency (2441MHz) Environment: 26.1°C/51%RH/101.0kPa Test Engineer: Huang Xinlong

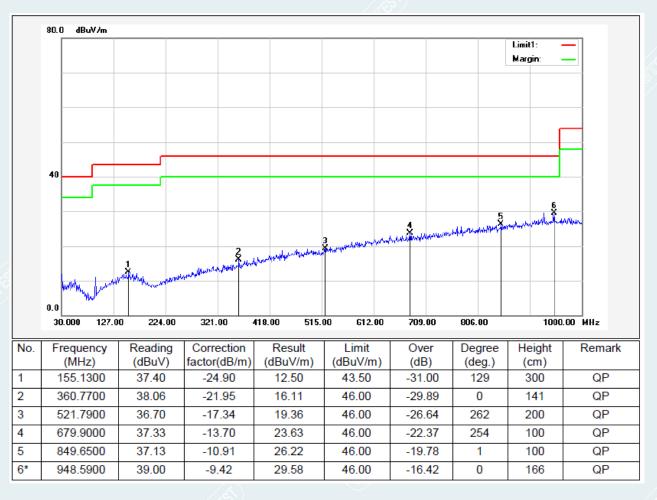
Date: 2022-10-19 Test Voltage: DC 3.85V Probe : Vertical



(&

Right earphone

Mode: DH5 Middle Frequency (2441MHz) Environment: 26.1°C/51%RH/101.0kPa Test Engineer: Huang Xinlong


Date: 2022-10-19 Test Voltage: DC 3.85V Probe : Horizontal

Mode: DH5 Middle Frequency (2441MHz) Environment: 26.1 °C/51% RH/101.0kPa Test Engineer: Huang Xinlong

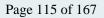
Date: 2022-10-19 Test Voltage: DC 3.85V Probe : Vertical

Remark:

- 1 No emission found between lowest internal used/generated frequency to 30MHz.
- 2 Measuring frequencies from 9kHz to the 1GHz.
- 3 Radiated emissions measured in frequency range from 30MHz to 1GHz were made with an instrument using Peak/Quasi-peak detector mode.
- 4 Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 30MHz to 1GHz was 120kHz.

1GHz~18GHz

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.


Left earphone

Mode: DH5 Lowest Frequency (2402MHz) Environment: 24.5 °C/43% RH/101.0kPa Test Engineer:Zhang Zishan

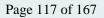
Suspect	ted Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity
1	2844.2305	58.02	41.60	-16.42	74.00	32.40	100	125	Horizontal
2	3236.2795	57.77	40.93	-16.84	74.00	33.07	100	16	Horizontal
3	5053.3817	55.50	44.39	-11.11	74.00	29.61	200	255	Horizontal
4	6114.7643	55.51	46.53	-8.98	74.00	27.47	200	283	Horizontal
5	6746.7183	54.87	48.43	-6.44	74.00	25.57	100	246	Horizontal
6	7397.4247	53.80	51.15	-2.65	74.00	22.85	200	225	Horizontal

AV Final Data List											
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBµV/ m]	AV Limit [dBµV/m]	AV Margin [dB]	Height [cm]	Angle []	Polarity		
<u></u>	7376.9338	-2.65	40.67	38.02	54.00	15.98	111	7.2	Horizontal		

Suspect	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity				
1	1676.3345	60.50	38.44	-22.06	74.00	35.56	200	13	Vertical				
2	2700.4626	59.35	42.09	-17.26	74.00	31.91	200	43	Vertical				
3	3603.8255	59.31	43.81	-15.50	74.00	30.19	100	204	Vertical				
4	4850.8564	56.97	44.09	-12.88	74.00	29.91	200	334	Vertical				
5	5454.6818	56.21	45.04	-11.17	74.00	28.96	100	126	Vertical				
6	6517.9397	53.69	46.75	-6.94	74.00	27.25	100	14	Vertical				

Mode: DH5 Middle Frequency (2441MHz) Environment: 24.5°C/43%RH/101.0kPa Test Engineer:Zhang Zishan

Suspect	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity				
1	1279.0349	60.08	37.68	-22.40	74.00	36.32	100	37	Horizontal				
2	2258.4073	59.50	40.85	-18.65	74.00	33.15	<100	15	Horizontal				
3	2825.7282	58.39	41.52	-16.87	74.00	32.48	100	360	Horizontal				
4	4653.9567	55.97	43.80	-12.17	74.00	30.20	200	344	Horizontal				
5	5925.3657	55.61	46.28	-9.33	74.00	27.72	200	114	Horizontal				
6	6696.087	53.85	47.74	-6.11	74.00	26.26	100	344	Horizontal				


Suspect	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity				
1 0	2261.4077	60.63	41.58	-19.05	74.00	32.42	100	216	Vertical				
2	2343.1679	60.52	41.95	-18.57	74.00	32.05	200	166	Vertical				
3	2952.9941	58.67	41.59	-17.08	74.00	32.41	100	296	Vertical				
4	3661.9577	59.15	42.33	-16.82	74.00	31.67	100	65	Vertical				
5	5055.2569	55.71	44.54	·11.17	74.00	29.46	200	326	Vertical				
6	6561.0701	54.19	47.84	-6.35	74.00	26.16	100	285	Vertical				

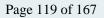
Mode: DH5 Highest Frequency (2480MHz) Environment: 24.5 °C/43% RH/101.0kPa Test Engineer:Zhang Zishan

Suspect	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity				
1	1276.0345	60.96	38.61	-22.35	74.00	35.39	100	36	Horizontal				
2	2950.7438	58.51	41.18	-17.33	74.00	32.82	200	97	Horizontal				
3	3571.9465	57.30	40.92	-16.38	74.00	33.08	200	264	Horizontal				
4	5122.7653	56.36	44.82	-11.54	74.00	29.18	200	43	Horizontal				
5	6609.8262	55.13	48.12	-7.01	74.00	25.88	100	315	Horizontal				
6	7271.7840	53.34	50.00	-3.34	74.00	24.00	200	214	Horizontal				

Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity		
1 0	1390.0488	60.24	38.63	-21.61	74.00	35.37	100	185	Vertical		
2	1723.3404	59.46	37.92	-21.54	74.00	36.08	100	37	Vertical		
3	2296.4121	59.23	40.69	-18.54	74.00	33.31	200	357	Vertical		
4	2986.7483	58.01	41.46	-16.55	74.00	32.54	100	136	Vertical		
5	4650.2063	55.40	43.41	·11.99	74.00	30.59	100	154	Vertical		
6	6564.8206	54.03	47.70	-6.33	74.00	26.30	200	14	Vertical		

Mode: 2DH5 Lowest Frequency (2402MHz) Environment: 24.5 °C/43% RH/101.0kPa Test Engineer:Zhang Zishan

Suspect	Suspected Data List															
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity							
1	1248.7811	60.43	38.48	-21.95	74.00	35.52	200	77	Horizontal							
2	2813.2267	59.89	42.72	-17.17	74.00	31.28	<100	116	Horizontal							
3	3601.9502	57.38	41.52	-15.86	74.00	32.48	200	126	Horizontal							
4	5059.0074	56.27	45.05	-11.22	74.00	28.95	100	254	Horizontal							
5	6189.7737	55.76	47.67	-8.09	74.00	26.33	200	66	Horizontal							
6	7104.8881	53.78	49.54	-4.24	74.00	24.46	100	214	Horizontal							


Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity		
1	1375.5469	60.57	38.82	-21.75	74.00	35.18	200	174	Vertical		
2	3041.2552	58.99	41.83	-17.16	74.00	32.17	100	214	Vertical		
3	3603.8255	59.36	43.86	-15.50	74.00	30.14	200	285	Vertical		
4	4252.6566	57.47	41.95	-15.52	74.00	32.05	100	165	Vertical		
5	4650.2063	56.91	44.92	-11.99	74.00	29.08	200	265	Vertical		
6	6609.8262	54.20	47.81	-6.39	74.00	26.19	100	85	Vertical		

Mode: 2DH5 Middle Frequency (2441MHz) Environment: 24.5 °C/43% RH/101.0kPa Test Engineer:Zhang Zishan

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity	
1	1592.5741	59.85	37.17	-22.68	74.00	36.83	100	155	Horizontal	
2	2218.6523	58.97	40.80	-18.17	74.00	33.20	200	154	Horizontal	
3	2880.2350	59.62	42.22	-17.40	74.00	31.78	100	115	Horizontal	
4	3761.3452	57.04	40.30	-16.74	74.00	33.70	200	0	Horizontal	
5	4560.1950	56.56	43.06	-13.50	74.00	30.94	200	226	Horizontal	
6	6377.2972	55.14	47.60	-7.54	74.00	26.40	200	207	Horizontal	

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity	
1 0	1401.0501	60.49	38.97	-21.52	74.00	35.03	200	155	Vertical	
2	1690.3363	60.05	38.41	-21.64	74.00	35.59	100	204	Vertical	
3	3086.2608	58.52	40.92	-17.60	74.00	33.08	100	325	Vertical	
4	3661.9577	60.37	43.55	-16.82	74.00	30.45	100	325	Vertical	
5	4828.3535	56.93	44.30	-12.63	74.00	29.70	100	156	Vertical	
6	6613.5767	54.92	48.47	-6.45	74.00	25.53	100	16	Vertical	

Mode: 2DH5 Highest Frequency (2480MHz) Environment: 24.5°C/43%RH/101.0kPa Test Engineer:Zhang Zishan

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity	
1	1520.5651	60.58	38.10	-22.48	74.00	35.90	100	311	Horizontal	
2	2235.6545	60.76	42.35	-18.41	74.00	31.65	100	292	Horizontal	
3	2849.7312	58.63	42.34	-16.29	74.00	31.66	200	73	Horizontal	
4	4344.5431	56.96	42.95	-14.01	74.00	31.05	200	205	Horizontal	
5	5057.1321	55.89	44.70	-11.19	74.00	29.30	200	314	Horizontal	
6	7104.8881	53.43	49.19	-4.24	74.00	24.81	200	78	Horizontal	

Suspect	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity			
1	1421.8027	60.16	38.49	-21.67	74.00	35.51	100	96	Vertical			
2.0	2380.9226	60.48	41.64	-18.84	74.00	32.36	100	165	Vertical			
3	3720.0900	59.88	42.63	-17.25	74.00	31.37	200	276	Vertical			
4	4657.7072	56.48	44.29	-12.19	74.00	29.71	200	207	Vertical			
5	5994.7493	55.36	46.54	-8.82	74.00	27.46	100	37	Vertical			
6	6909.8637	53.68	48.55	-5.13	74.00	25.45	200	187	Vertical			

Mode: 3DH5 Lowest Frequency (2402MHz) Environment: 24.5 °C/43% RH/101.0kPa Test Engineer:Zhang Zishan

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity	
1	1278.0348	60.00	37.61	-22.39	74.00	36.39	<100	360	Horizontal	
2	2859.7325	58.60	41.96	-16.64	74.00	32.04	200	192	Horizontal	
3	3219.4024	58.33	41.77	-16.56	74.00	32.23	200	334	Horizontal	
4	4323.9155	56.80	42.54	-14.26	74.00	31.46	100	0	Horizontal	
5	4938.9924	56.37	44.32	-12.05	74.00	29.68	100	157	Horizontal	
6	7007.3759	53.72	48.59	-5.13	74.00	25.41	100	128	Horizontal	

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle []	Polarity	
(1)	1429.3037	60.35	38.63	-21.72	74.00	35.37	100	203	Vertical	
2	2966.7458	58.87	42.00	-16.87	74.00	32.00	100	154	Vertical	
3	3603.8255	60.20	44.70	-15.50	74.00	29.30	100	345	Vertical	
4	4644.5806	55.97	43.86	-12.11	74.00	30.14	100	345	Vertical	
5	6576.072	53.93	47.63	-6.30	74.00	26.37	100	345	Vertical	