

FCC - TEST REPORT

Report Number	: 68.950.19.3048.01 Date of Issue: February 14, 2019
Model	: C301ANA
Product Type	: OnePlus Warp Charge 30 Wireless Charger
Brand name	: ONEPLUS
Applicant	: OnePlus Technology (Shenzhen) Co., Ltd.
Address	: 18C02, 18C03, 18C04 and 18C05, Shum Yip Terra Building, Binhe
	: Avenue North, Futian District, Shenzhen P.R.China
Manufacturer	: OnePlus Technology (Shenzhen) Co., Ltd.
Address	: 18C02, 18C03, 18C04 and 18C05, Shum Yip Terra Building, Binhe
	: Avenue North, Futian District, Shenzhen P.R.China
Test Result	n Positive o Negative
Total pages including Appendices	: 18

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch are no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1	Table of Contents						
2	Details about the Test Laboratory						
3	Description of the Equipment Under Test						
4	Summary of Test Standards						
5	Summary of Test Results6						
6	General Remarks						
7	Test Setups						
8	Technical Requirement						
8	.1 Conducted Emission Test						
8	.2 20 dB Bandwidth						
8	8.3 Radiated Emission Test						
9	Test Equipment List						
10	System Measurement Uncertainty18						

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052 P.R. China

Telephone:86 755 8828 6998Fax:86 755 828 5299

FCC Registration 514049 No.:

3 Description of the Equipment Under Test

Product:	OnePlus Warp Charge 30 Wireless Charger				
Model no.:	C301ANA				
FCC ID:	2ABZ2-C301ANA				
Rating:	Input:100-240V ~ 50/60Hz 1.2A; Output: 30W(max)				
RF Transmission Frequency:	110-145KHz				
Antenna Type:	Integrated coil antenna				
Antenna gain:	0dBi				
Description of the EUT:	The Equipment Under Test (EUT) is a wireless charger which operated at 110-145KHz.				

4 Summary of Test Standards

Test Standards				
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES			
10-1-2019 Edition	Subpart C - Intentional Radiators			

All the test methods were according to ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements							
FCC Part 15 Subpart C		-					
Test Condition		Pages	Test	Test Result			
		T ages	Site	Pass	Fail	N/A	
§15.207	Conducted emission AC power port	10	Site 1				
	20dB bandwidth	15	Site 1	\boxtimes			
§15.205	205 Restricted bands of operation		Site 1	\boxtimes			
§15.209	Radiated emission	18 Site 1		\boxtimes			
§15.203	Antenna requirement	See r	note 1	\boxtimes			

Note 1: The EUT uses an Integrated coil antenna, which gain is 0dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) complies with Section 15.207, 15.209, 15.205 of the FCC Part 15, Subpart C rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

- n Performed
- O Not Performed

The Equipment under Test

- n Fulfills the general approval requirements.
- O Does not fulfill the general approval requirements.

Sample Received Date:	December 28, 2019
Testing Start Date:	December 28, 2019
Testing End Date:	January 20, 2020

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

John Shi

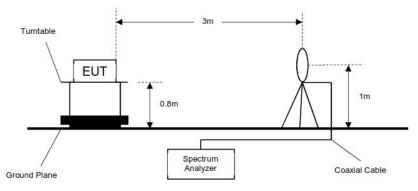
John Zhi Project Manager

Prepared by:

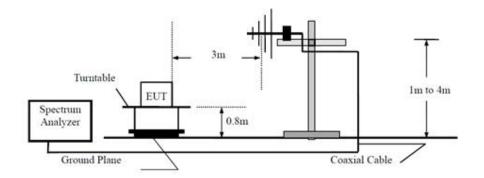
tree them

Tested by:

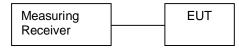
SUD


Moon Xiong Project Engineer

Tree Zhan Test Engineer


7 Test Setups

7.1 Radiated test setups


Below 30MHz

30MHz-1GHz

7.2 Conducted RF test setups

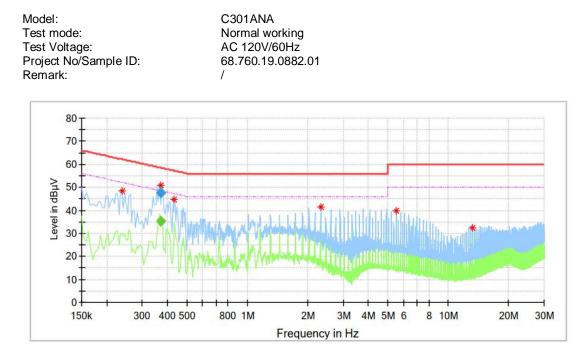
8 Technical Requirement

8.1 Conducted Emission Test

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit


According to §15.207, conducted emissions limit as below:

Frequency	QP Limit	AV Limit
MHz	dBµV	dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

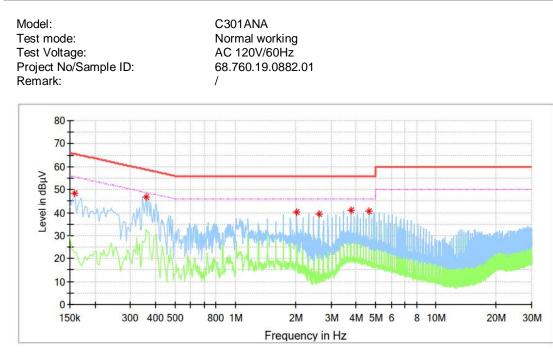
*Decreasing linearly with logarithm of the frequency

Conducted Emission

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.238000	48.23		62.17	13.94	L1	9.5
0.369500	50.85		58.41	7.56	L1	9.5
0.434000	44.65		57.18	12.53	L1	9.5
2.318000	41.52		56.00	14.48	L1	9.6
5.506000	39.84		60.00	20.16	L1	9.7
13.182000	32.53		60.00	27.47	L1	9.7

Final_Result


Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.369500		35.45	48.51	13.06	L1	9.5
0.369500	47.40		58.51	11.11	L1	9.5

Remark:

Level=Reading Level + Correction Factor Correction Factor=Cable Loss + LISN Factor (The Reading Level is recorded by software which is not shown in the sheet)

Conducted Emission

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.158000	48.29		65.57	17.28	Ν	9.5
0.358000	46.81		58.78	11.96	Ν	9.6
2.026000	40.06		56.00	15.94	Ν	9.6
2.606000	39.39		56.00	16.61	Ν	9.6
3.766000	41.09		56.00	14.91	Ν	9.6
4.634000	40.65		56.00	15.35	Ν	9.7

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)

Remark:

Level=Reading Level + Correction Factor Correction Factor=Cable Loss + LISN Factor (The Reading Level is recorded by software which is not shown in the sheet)

8.2 20 dB Bandwidth

Test Method

1. Use the following spectrum analyzer settings:

RBW=200Hz, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 20 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 20 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

			Limit [kHz]					
			No Limit					
Test re	esult							
	Frequency	20dB bandwidth	Result		Result			
	KHz	KHz	F∟ (KHz)	F _н (KHz)				
-	110KHz	3.52	108.24		Pass			
	145KHz	7.53		149.052	Pass			

The fundamental frequency is outside the restricted bands of 15.205 section.

8.3 Radiated Emission Test

Test Method

1: The EUT was place on a turn table which is 0.8m above ground for below 1GHz at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

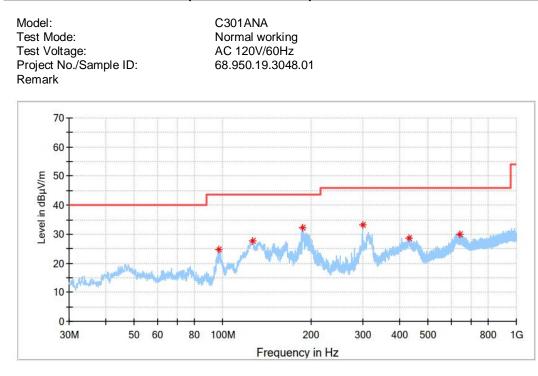
Limit

the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency MHz	Field Strength µV/m	Field Strength dBµV/m	Detector	Measurement distance meters
0.009-0.490	2400/F(kHz)	48.5-13.8	QP	300
0.490-1.705	24000/F(kHz)	33.8-23.0	QP	30
1.705-30	30	29.5	QP	30
30-88	100	40	QP	3
88-216	150	43.5	QP	3
216-960	200	46	QP	3
960-1000	500	54	QP	3
Above 1000	500	54	AV	3
Above 1000	5000	74	PK	3

Note 1: Limit 3m(dBµV/m)=Limit 300m(dBµV/m)+40Log(300m/3m) (Below 30MHz) Note 2: Limit 3m(dBµV/m)=Limit 30m(dBµV/m)+40Log(30m/3m) (Below 30MHz)

Radiated emissions test (9KHz-30MHz)


Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBµV/m		dBµV/m		dBµV/m	(dB)	
	0.433575	77.46	Н	93.8	QP	16.34	20	Pass
	0.722125	67.06	Н	93.8	QP	26.74	20	Pass
	1.010675	59.69	Н	93.8	QP	34.11	20	Pass
9KHz-	Other frequency		Н	93.8	QP			Pass
30MHz	0.433575	71.72	V	93.8	QP	22.08	20	Pass
	0.722125	61.38	V	93.8	QP	32.42	20	Pass
	1.010675	54.13	V	93.8	QP	39.67	20	Pass
	Other frequency		V	93.8	QP			Pass

Remark:

- (1) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
- (3) All tested frequencies comply for the strictest limit (93.8dBµV/m). so the test result can considered as Pass.

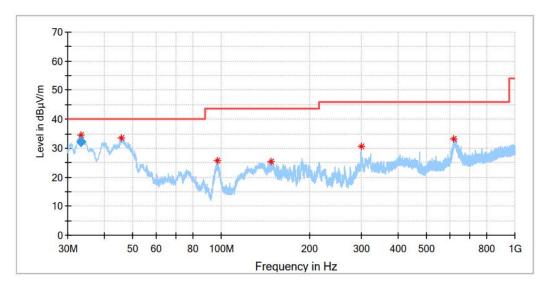
Radiated emissions test (30MHz-1000MHz)

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
97.354375	24.63	43.50	18.87	200.0	Н	0.0	16
126.515000	27.66	43.50	15.84	200.0	Н	0.0	13
186.958125	32.15	43.50	11.35	100.0	Н	331.0	15
299.660000	33.09	46.00	12.91	100.0	Н	95.0	19
430.428125	28.81	46.00	17.19	100.0	Н	134.0	22
641.463750	29.94	46.00	16.06	100.0	н	0.0	26

Remark:

Level=Reading Level + Correction Factor


Correction Factor=Antenna Factor + Cable Loss

(The Reading Level is recorded by software which is not shown in the sheet)

C301ANA Normal working AC 120V/60Hz 68.950.19.3048.01

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
33.152500	34.62	40.00	5.38	100.0	V	0.0	14
45.701875	33.63	40.00	6.37	100.0	v	308.0	18
97.111875	25.71	43.50	17.79	100.0	V	109.0	16
147.551875	25.55	43.50	17.95	100.0	V	292.0	12
299.599375	30.73	46.00	15.27	200.0	V	108.0	19
620.366250	33.19	46.00	12.81	100.0	V	0.0	26

Final_Result

Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
33.152500	32.13	40.00	7.87	100.0	v	0.0	14

Remark:

Level=Reading Level + Correction Factor

Correction Factor=Antenna Factor + Cable Loss

(The Reading Level is recorded by software which is not shown in the sheet)

9 Test Equipment List

Radiated Emission Test							
DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE		
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14-002	101269	2020-6-28		
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	68-4-80-14-002	707	2020-8-20		
Horn Antenna	Rohde & Schwarz	HF907	68-4-80-14-005	102294	2020-6-22		
Loop Antenna	Rohde & Schwarz	HFH2-Z2	68-4-80-14-006	100398	2020-7-7		
Pre-amplifier	Rohde & Schwarz	SCU 18	68-4-29-14-001	102230	2020-6-28		
Signal Generator	Rohde & Schwarz	SMY01	68-4-48-16-001	839369/005	2020-6-28		
Attenuator	Agilent	8491A	68-4-81-16-001	MY39264334	2020-6-28		
3m Semi-anechoic chamber	TDK	9X6X6	68-4-90-14-001		2020-7-7		
Test software	Rohde & Schwarz	EMC32	68-4-90-14-001- A10	Version9.15.00	N/A		

List of Test Instruments

Conducted Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	EQUIPMENT ID	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	68-4-74-14-001	101782	2020-6-28
LISN	Rohde & Schwarz	ENV4200	8-4-87-14-001	100249	2020-6-28
LISN	Rohde & Schwarz	ENV432	68-4-87-16-001	101318	2020-7-19
LISN	Rohde & Schwarz	ENV216	68-4-87-14-002	100326	2020-6-28
ISN	Rohde & Schwarz	ENY81	68-4-87-14-003	100177	2020-6-28
ISN	Rohde & Schwarz	ENY81-CA6	68-4-87-14-004	101664	2020-6-28
High Voltage Probe	Rohde & Schwarz	TK9420(VT9 420)	68-4-27-14-001	9420-584	2020-6-24
RF Current Probe	Rohde & Schwarz	EZ-17	68-4-27-14-002	100816	2020-7-2
Attenuator	Shanghai Huaxiang	TS2-26-3	68-4-81-16-003	080928189	2020-6-28
Test software	Rohde & Schwarz	EMC32	68-4-90-14-003- A10	Version9.15.00	N/A

10 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Conducted Emission 150kHz-30MHz (for test using AMN ENV432 or ENV4200)	3.21dB			
Uncertainty for Radiated Emission in 3m chamber 9KHz-30MHz	4.76dB			
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 5.12dB Vertical: 5.10dB			