

A.6. Contention Based Protocol

Measurement Limit and Method:

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band must employ a contention-based protocol.
Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62 dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel (in which incumbent signal is transmitted) and stay off the incumbent channel as long as detected radio frequency power is equal to or greater than the threshold $(-62 \mathrm{dBm}) 1$. The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain.
To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel. For example, an 802.11 device that plans to transmit a 40 MHz - wide signal (on a primary 20 MHz channel and a secondary 20 MHz channel) must detect energy throughout the entire 40 MHz channel. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty.
The measurement is made according to KDB 987594.
EUT does NOT use channel puncturing for incumbent avoidance. The EUT use bandwidth reduction for incumbent avoidance. An example figure 1, take the UNII-5 band 320 MHz channel:
Working channel: 5975 MHz (primary channel)
Bandwidth: 320 MHz

11:35:48 28.11.2023
Figure 1

Injected signal 10MHz AWGN:
lower: 5950 MHz ;
middle: 6105 MHz ;
upper: 6260MHz
For the lower edge
A 10 MHz AWGN signal (center frequency is 5950 MHz) is injected, the EUT state on frequency domain is shown in figure 2, the bandwidth reduce to 40 MHz (the primary channel is 5950 MHz), and the other channel stop the data transmissions:
Mark1: primary channel
Mark2: AWGN signal center frequency

11:38:04 28.11.2023

Figure 2
For the middle:
A 10 MHz AWGN signal (center frequency is 6105 MHz) is injected, the EUT state on frequency domain is shown in figure 3, DUT stop data transmissions on all channel:
Mark1: primary channel
Mark2: AWGN signal center frequency

11:39:05 28.11.2023

Figure 3
For the upper edge
A 10 MHz AWGN signal (center frequency is 6260 MHz) is injected, the EUT state on frequency domain is shown in figure 4 ,the bandwidth reduce to 160 MHz (the primary channel is 5950 MHz), and the other channel stop the data transmissions :
Mark1: primary channel
Mark2: AWGN signal center frequency

TTL

No.23T04Z80206-08

11:40:54 28.11.2023
Figure 4

Measurement Results:

Note: The test evaluated the minimum antenna gain, which is reflected in the Ant Gain column.

Band	$\begin{gathered} \mathrm{BW} \\ \text { (MHz) } \end{gathered}$	Fre. (MHz)	Incumbent Freq (MHz)	AWGN Signal Level (at Antenna Port) (dBm)	Incumbent Signal Level (Refer to OdBi Antenna) (dBm)	Ant Gain (dBi)	Detection Rate(\%)	Threshold Level(dB m)
UNII Band 5	20	6135	$\begin{gathered} 6135 \\ \mathrm{fc} 1=\mathrm{fc} 2 \end{gathered}$		-64	-2.5	90	-62
					Cease transmission			
					-67	-2.5	<90	-62
					Minimal transmission			
					-87.5	-2.5	0	-62
					Normal transmission			
	320	6105	5950	-66.5	-64	-2.5	90	-62

©Copyright. All rights reserved by CTTL.
Page 180 of 692

No.23T04Z80206-08

320 UNII Band 5/6/7	320	6425	6270 Lower Edge		-66	-2.5	90	-62
					Cease transmission			
					-68.4	-2.5	<90	-62
					Minimal transmission			
					-87.5	-2.5	0	-62
					Normal transmission			
					-62.5	-3.9	100	-62
					Cease transmission			
			6425		-63	-3.9	<90	-62
			$\mathrm{fc} 1=\mathrm{fc} 2$		Minimal transmission			
					-86.1	-3.9	0	-62
					Normal transmission			
			6580 Upper Edge		-63.9	-3.5	100	-62
					Cease transmission			
					-66.9	-3.5	<90	-62
					Minimal transmission			
					-86.5	-3.5	0	-62
					Normal transmission			
Band	$\begin{gathered} \text { BW } \\ \text { (MHz) } \end{gathered}$	$\begin{aligned} & \text { Fre. } \\ & \text { (MHz) } \end{aligned}$	Incumbent Freq (MHz)	AWGN Signal Level (at Antenna Port) (dBm)	Incumbent Signal Level (Refer to OdBi Antenna) (dBm)	Ant Gain (dBi)	Detection Rate(\%)	Threshold Level(dB m)
UNII Band 7	20	6855	$\begin{gathered} 6855 \\ \mathrm{fc} 1=\mathrm{fc} 2 \end{gathered}$		-63.5	-3.5	100	-62
					Cease transmission			
					-66.5	-3.5	<90	-62
					Minimal transmission			
				-90	-86.5	-3.5	0	-62

					Normal transmission			
320 UNII Band 7(8)	320	6745	6590 Lower Edge		-63.4	-3.5	90	-62
					Cease transmission			
					-65	-3.5	<90	-62
					Minimal transmission			
					-86.5	-3.5	0	-62
					Normal transmission			
			$\begin{gathered} 6745 \\ \text { fc1 }=\text { fc2 } \end{gathered}$		-63.5	-3.5	100	-62
					Cease transmission			
					-65	-3.5	<90	-62
					Minimal transmission			
					-86.5	-3.5	0	-62
					Normal transmission			
			6900 Upper Edge		-64.5	-3.4	90	-62
					Cease transmission			
					-68	-3.4	<90	-62
					Minimal transmission			
					-86.6	-3.4	0	-62
					Normal transmission			
Band	$\begin{aligned} & \text { BW } \\ & \text { (MHz) } \end{aligned}$	Fre. (MHz)	Incumbent Freq (MHz)	AWGN Signal Level (at Antenna Port) (dBm)	Incumbent Signal Level (Refer to 0 dBi Antenna) (dBm)	Ant Gain (dBi)	Detection Rate(\%)	Threshold Level(dB m)
	20	7015	$\begin{gathered} 7015 \\ \text { fc1 }=\text { fc2 } \end{gathered}$	-67	-63.6	-3.4	100	-62
					Cease transmission			
				-70	-66.6	-3.4	<90	-62
					Minimal transmission			

Note: Incumbent signal level $(\mathrm{dBm})=$ AWGN Signal power Level (dBm)-Antenna Gain (dBi),
The EUT encounters the incumbent signal that its power level is less than or equal to the detection threshold $(-62 \mathrm{dBm})$ with reference to 0 dBi antenna gain. Path loss is negligible (0dB).

EUT support bandwidth reduction mechanism.
Conclusion: PASS
Test graphs as below:

Mode	AWGN Signal Level	ceased transmission
802.1be-EHT20-7015MHz	See test graph	See test graph
802.11 be-EHT320-6105MHz(middle)	See test graph	See test graph

$T T L$

10:36:57 14.11.2023
Contention Based Protocol 802.11be-EHT20 (ch7015MHz-AWGN Signal Level)

15:42:25 19.10.2023
Contention Based Protocol 802.11be-EHT20 (ch7015MHz-ceased transmission)

TTL

10:30:47 14.11.2023
Contention Based Protocol 802.11be-EHT320 (ch6105MHz-middle-AWGN Signal Level)

11:26:28 11.10.2023
Contention Based Protocol 802.11be-EHT320 (ch6105MHz-middle-ceased transmission)

A.7. In-Band Emissions

Measurement Limit and Method:

1. Take nominal bandwidth as reference channel bandwidth provided that 26 dB emission bandwidth is always larger than nominal bandwidth
2. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:
a) Set the span to encompass the entire 26 dB EBW of the signal.
b) Set RBW = same RBW used for 26 dB EBW measurement.
c) Set VBW $\geqslant 3 \times$ RBW
d) Number of points in sweep $\geqslant[2 X$ span / RBW $]$.
e) Sweep time = auto.
f) Detector = RMS (i.e., power averaging)
g) Trace average at least 100 traces in power averaging (rms) mode.
h) Use the peak search function on the instrument to find the peak of the spectrum.
3. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:
a. Suppressed by 20 dB at 1 MHz outside of the channel edge. (The channel edge is defined as the $26-\mathrm{dB}$ point on either side of the carrier center frequency.)
b. Suppressed by 28 dB at one channel bandwidth from the channel center.
c. Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.
4. Adjust the span to encompass the entire mask as necessary.
5. Clear trace.
6. Trace average at least 100 traces in power averaging (rms) mode.
7. Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask.

Generic Emission Mask
The measurement is made according to KDB 987594.
Measurement Results:

Test Mode	Antenna	Channel	Result	Limit	Verdict
11A-MIMO	Ant9	5955	See test graph	See test graph	PASS
	Ant15	5955	See test graph	See test graph	PASS
	Ant9	6175	See test graph	See test graph	PASS
	Ant15	6175	See test graph	See test graph	PASS
	Ant9	6415	See test graph	See test graph	PASS
	Ant15	6415	See test graph	See test graph	PASS
	Ant9	6435	See test graph	See test graph	PASS
	Ant15	6435	See test graph	See test graph	PASS
	Ant9	6475	See test graph	See test graph	PASS
	Ant15	6475	See test graph	See test graph	PASS
	Ant9	6515	See test graph	See test graph	PASS
	Ant15	6515	See test graph	See test graph	PASS
	Ant9	6535	See test graph	See test graph	PASS
	Ant15	6535	See test graph	See test graph	PASS
	Ant9	6695	See test graph	See test graph	PASS
	Ant15	6695	See test graph	See test graph	PASS
	Ant9	6855	See test graph	See test graph	PASS
	Ant15	6855	See test graph	See test graph	PASS
	Ant9	6875	See test graph	See test graph	PASS
	Ant15	6875	See test graph	See test graph	PASS

No.23T04Z80206-08

	Ant9	6895	See test graph	See test graph	PASS
	Ant15	6895	See test graph	See test graph	PASS
	Ant9	6995	See test graph	See test graph	PASS
	Ant15	6995	See test graph	See test graph	PASS
	Ant9	7115	See test graph	See test graph	PASS
	Ant15	7115	See test graph	See test graph	PASS
11AX160MIMO full RU	Ant9	6025	See test graph	See test graph	PASS
	Ant15	6025	See test graph	See test graph	PASS
	Ant9	6185	See test graph	See test graph	PASS
	Ant15	6185	See test graph	See test graph	PASS
	Ant9	6345	See test graph	See test graph	PASS
	Ant15	6345	See test graph	See test graph	PASS
	Ant9	6505	See test graph	See test graph	PASS
	Ant15	6505	See test graph	See test graph	PASS
	Ant9	6665	See test graph	See test graph	PASS
	Ant15	6665	See test graph	See test graph	PASS
	Ant9	6825	See test graph	See test graph	PASS
	Ant15	6825	See test graph	See test graph	PASS
	Ant9	6985	See test graph	See test graph	PASS
	Ant15	6985	See test graph	See test graph	PASS
11BE20MIMO full RU	Ant9	5955	See test graph	See test graph	PASS
	Ant15	5955	See test graph	See test graph	PASS
	Ant9	6175	See test graph	See test graph	PASS
	Ant15	6175	See test graph	See test graph	PASS
	Ant9	6415	See test graph	See test graph	PASS
	Ant15	6415	See test graph	See test graph	PASS
	Ant9	6435	See test graph	See test graph	PASS
	Ant15	6435	See test graph	See test graph	PASS
	Ant9	6475	See test graph	See test graph	PASS
	Ant15	6475	See test graph	See test graph	PASS
	Ant9	6515	See test graph	See test graph	PASS
	Ant15	6515	See test graph	See test graph	PASS
	Ant9	6535	See test graph	See test graph	PASS
	Ant15	6535	See test graph	See test graph	PASS
	Ant9	6695	See test graph	See test graph	PASS
	Ant15	6695	See test graph	See test graph	PASS
	Ant9	6855	See test graph	See test graph	PASS
	Ant15	6855	See test graph	See test graph	PASS
	Ant9	6875	See test graph	See test graph	PASS
	Ant15	6875	See test graph	See test graph	PASS
	Ant9	6895	See test graph	See test graph	PASS
	Ant15	6895	See test graph	See test graph	PASS

No.23T04Z80206-08

	Ant9	6995	See test graph	See test graph	PASS
	Ant15	6995	See test graph	See test graph	PASS
	Ant9	7115	See test graph	See test graph	PASS
	Ant15	7115	See test graph	See test graph	PASS
11BE40MIMO full RU	Ant9	5965	See test graph	See test graph	PASS
	Ant15	5965	See test graph	See test graph	PASS
	Ant9	6165	See test graph	See test graph	PASS
	Ant15	6165	See test graph	See test graph	PASS
	Ant9	6405	See test graph	See test graph	PASS
	Ant15	6405	See test graph	See test graph	PASS
	Ant9	6445	See test graph	See test graph	PASS
	Ant15	6445	See test graph	See test graph	PASS
	Ant9	6485	See test graph	See test graph	PASS
	Ant15	6485	See test graph	See test graph	PASS
	Ant9	6525	See test graph	See test graph	PASS
	Ant15	6525	See test graph	See test graph	PASS
	Ant9	6565	See test graph	See test graph	PASS
	Ant15	6565	See test graph	See test graph	PASS
	Ant9	6685	See test graph	See test graph	PASS
	Ant15	6685	See test graph	See test graph	PASS
	Ant9	6845	See test graph	See test graph	PASS
	Ant15	6845	See test graph	See test graph	PASS
	Ant9	6885	See test graph	See test graph	PASS
	Ant15	6885	See test graph	See test graph	PASS
	Ant9	6925	See test graph	See test graph	PASS
	Ant15	6925	See test graph	See test graph	PASS
	Ant9	6965	See test graph	See test graph	PASS
	Ant15	6965	See test graph	See test graph	PASS
	Ant9	7085	See test graph	See test graph	PASS
	Ant15	7085	See test graph	See test graph	PASS
11BE80MIMO full RU	Ant9	5985	See test graph	See test graph	PASS
	Ant15	5985	See test graph	See test graph	PASS
	Ant9	6145	See test graph	See test graph	PASS
	Ant15	6145	See test graph	See test graph	PASS
	Ant9	6385	See test graph	See test graph	PASS
	Ant15	6385	See test graph	See test graph	PASS
	Ant9	6465	See test graph	See test graph	PASS
	Ant15	6465	See test graph	See test graph	PASS
	Ant9	6545	See test graph	See test graph	PASS
	Ant15	6545	See test graph	See test graph	PASS
	Ant9	6625	See test graph	See test graph	PASS
	Ant15	6625	See test graph	See test graph	PASS

No.23T04Z80206-08

	Ant9	6705	See test graph	See test graph	PASS
	Ant15	6705	See test graph	See test graph	PASS
	Ant9	6785	See test graph	See test graph	PASS
	Ant15	6785	See test graph	See test graph	PASS
	Ant9	6865	See test graph	See test graph	PASS
	Ant15	6865	See test graph	See test graph	PASS
	Ant9	6945	See test graph	See test graph	PASS
	Ant15	6945	See test graph	See test graph	PASS
	Ant9	7025	See test graph	See test graph	PASS
	Ant15	7025	See test graph	See test graph	PASS
11BE320MIMO full RU	Ant9	6105	See test graph	See test graph	PASS
	Ant15	6105	See test graph	See test graph	PASS
	Ant9	6265	See test graph	See test graph	PASS
	Ant15	6265	See test graph	See test graph	PASS
	Ant9	6425	See test graph	See test graph	PASS
	Ant15	6425	See test graph	See test graph	PASS
	Ant9	6585	See test graph	See test graph	PASS
	Ant15	6585	See test graph	See test graph	PASS
	Ant9	6745	See test graph	See test graph	PASS
	Ant15	6745	See test graph	See test graph	PASS
	Ant9	6905	See test graph	See test graph	PASS
	Ant15	6905	See test graph	See test graph	PASS

$T T L$

Test Graphs

