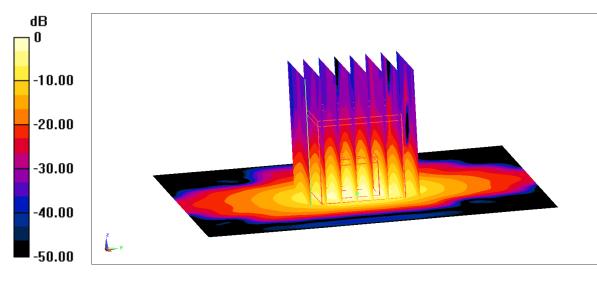

Date: 2023/11/16 Electronics: DAE4 Sn1331 Medium: H700-6000M Medium parameters used: f = 5600 MHz; σ = 5.251 S/m; ϵ_r = 36.39; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 5600 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7517 ConvF(4.91, 4.55, 4.63)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.1 W/kg

Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.84 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 36.2 W/kg SAR(1 g) = 8.3 W/kg; SAR(10 g) = 2.42 W/kg Maximum value of SAR (measured) = 19.8 W/kg

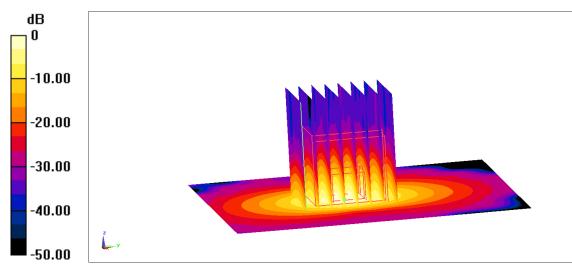

0 dB = 19.8 W/kg = 12.97 dBW/kg

Date: 2023/10/26 Electronics: DAE4 Sn1556 Medium: H700-6000M Medium parameters used: f = 5750 MHz; σ = 5.368 S/m; ϵ_r = 35.39; ρ = 1000 kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7464 ConvF(4.92, 4.92, 4.92)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.8 W/kg

Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.21 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 35.8 W/kg SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 19.1 W/kg

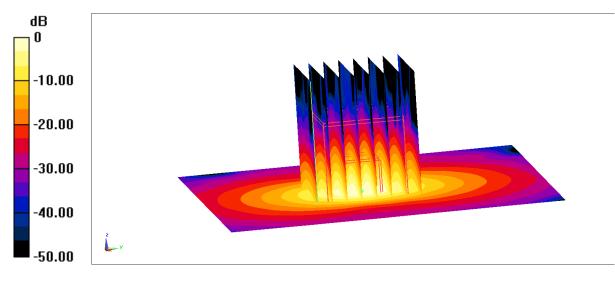

0 dB = 19.1 W/kg = 12.81 dBW/kg

Date: 2023/10/27 Electronics: DAE4 Sn1556 Medium: H700-6000M Medium parameters used: f = 5750 MHz; σ = 5.450 S/m; ϵ_r = 34.36; ρ = 1000 kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7464 ConvF(4.92, 4.92, 4.92)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.8 W/kg

Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.71 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 35 W/kg SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 19.6 W/kg

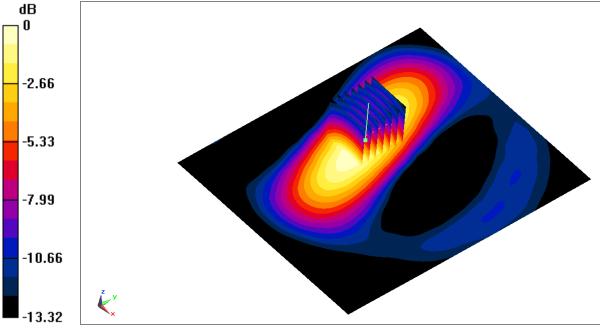

0 dB = 19.6 W/kg = 12.92 dBW/kg

Date: 2023/11/16 Electronics: DAE4 Sn1331 Medium: H700-6000M Medium parameters used: f = 5750 MHz; σ = 5.428 S/m; ϵ_r = 36.08; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7517 ConvF(5.16, 4.72, 4.83)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.5 W/kg

Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.12 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 37 W/kg SAR(1 g) = 8 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 19.6 W/kg



0 dB = 19.6 W/kg = 12.92 dBW/kg

Date: 2023/11/18 Electronics: DAE4 Sn1588 Medium: H650-7000M Medium parameters used: f = 13 MHz; σ = 0.771 S/m; ϵ r = 52.72; ρ = 1000 kg/m3 Ambient Temperature: 23.30C Liquid Temperature: 22.50C Communication System: UID 0, CW (0) Frequency: 13 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN3846 ConvF(17.76, 17.76, 17.76)

Area Scan (101x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.845 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 7.010 V/m; Power Drift = 0.47 dB Peak SAR (extrapolated) = 1.10 W/kg SAR(1 g) = 0.616 W/kg; SAR(10 g) = 0.375 W/kg Maximum value of SAR (measured) = 0.834 W/kg

 $0 \, dB = 0.834 \, W/kg = -0.79 \, dBW/kg$

Device Under Test Properties Name, Manufacturer Dimensions [mm] IMEI DUT Type Device, 20.0 x 20.0 x 8.0 Phone Exposure Conditions Position, Test Distance [mm] Frequency [MHz], Channel Number Conversion Factor TSL Conductivity [S/m] Phantom Section, TSL Group, UID TSL Permittivity Band Flat, -Validation band EDGE TOP, 5.00 CW, 0---6500.0, 6500 5.15 6.29 35.19 Hardware Setup TSL, Measured Date Probe, Calibration Date DAE, Calibration Date Phantom Twin-SAM V4.0 (30deg probe tilt) - 1456 H650-7000M EX3DV4 - SN3846, 2023-05-31 DAE4 Sn1331, 2023-09-14 Scans Setup Measurement Results Area Scan Zoom Scan Area Scan Zoom Scan 22.0 x 22.0 x 22.0 2023-10-28, 07:32 Grid Extents [mm] 51.0 x 51.0 Date 2023-10-28, 07:28 Grid Steps [mm] 8.5 x 8.5 3.4 x 3.4 x 1.4 psSAR1g [W/Kg] 3.16 29.0 Sensor Surface [mm] 3.0 1.4 psSAR10g [W/Kg] 0.714 5.47 wer Drift [dB] 0.01 -0.01

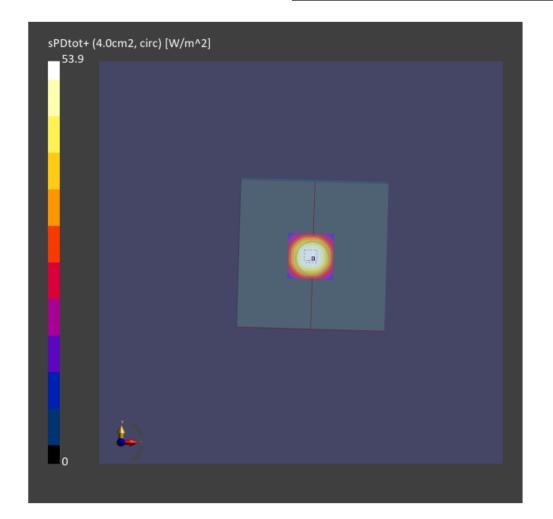
Graded Grid	No	Yes	Power Drift [dB]
Grading Ratio	n/a	1.4	Power Scaling
MAIA	N/A	N/A	Scaling Factor [dB]
Surface Detection	Mother Scan	All points	TSL Correction
Scan Method	Measured	Measured	
	Interpolated SAR [dB(185	W/kg)]	

F

-20

Mother Scan	All points	TSL Correction	No correction	No correction
Measured	Measured			
olated SAR [dB(185W/kg)]				
		18		

Disabled

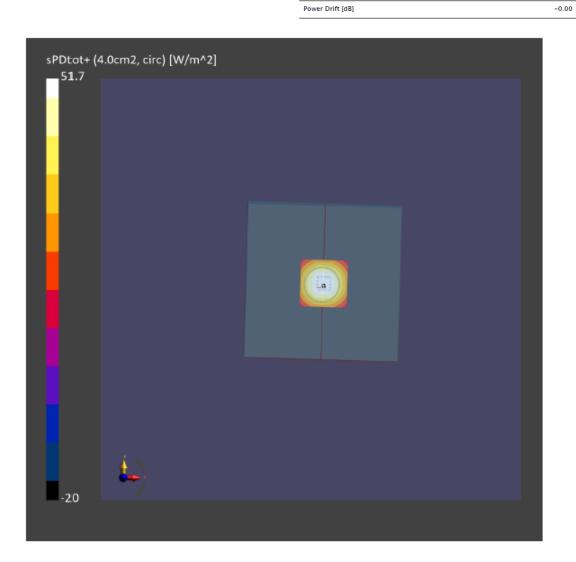

Disabled

10 GHz

Model, Manufacturer		I.	Dimensions [mm]			IMEI	DUT Type
Device,		1	100.0 x 100.0 x 180.	0			Laptop
Exposure Conditio	ons						
Phantom Section	Position, Test Distan	ce [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G	FRONT, 2.00		Validation band	CW, 10881-AA	E 10000.0, 10000		1.0
Hardware Setup							
Phantom	Medium	Probe, Calibra	tion Date			DAE, Calibratio	n Date
mmWave - xxxx	Air -	EUmmWV4 - S	5N9492_F1-55GHz, 2	2023-06-19		DAE4 Sn1331,	2023-09-14
Scans Setup				Meas	urement Results		
Scan Type			5G Scan	Scan	Туре		5G Scar
Grid Extents [mm]			25.0 x 25.0	Date			2023-11-19, 07:28
Grid Steps [lambda]	0.0680884	8581238543 x 0.06	5808848581238543	Avg.	Area [cm2]		4.00
Sensor Surface [mm]			2.0	psPD	n+ [W/m ²]		53.7
MAIA			N/A	psPD	tot+ [W/m ²]		53.9
					mod+ [W/m ²]		54.1

E_{max} [V/m] Power Drift [dB] 150

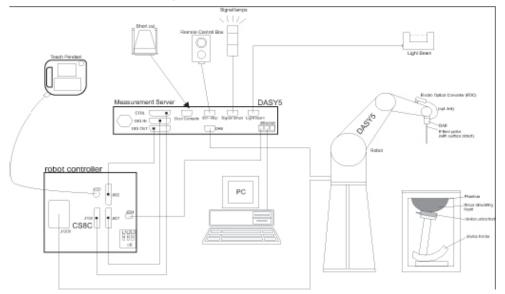
-0.03


10 GHz

Device Under Tes	t Properties					
Model, Manufacturer	r		Dimensions [mm]		IMEI	DUT Type
Device,			100.0 x 100.0 x 180	0.0		Laptop
Exposure Conditi	ons					
Phantom Section	Position, Test Distan	ce [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G	FRONT, 2.00		Validation band	CW, 10881-AAE	10000.0, 10000	1.0
Hardware Setup						
Phantom	Medium	Probe, Ca	libration Date		DAE, Calibra	tion Date
mmWave - xxxx	Air -	EUmmWV	4 - SN9492_F1-55GHz,	2023-06-19	DAE4 Sn133	1, 2023-09-14
Scans Setup				Measur	ement Results	
Scan Type			5G Sca	n Scan Ty	pe	5G Scan
Grid Extents [mm]			25.0 x 25.0	D Date		2023-11-28, 06:58
Grid Steps [lambda]	0.06808848	581238543 x	0.0680884858123854	3 Avg. Are	ea [cm2]	4.00
Sensor Surface [mm]	I		2.0	0 psPDn+	[W/m ²]	51.5
MAIA			N//	A psPDtot	+ [W/m ²]	51.7

psPDmod+ [W/m²]

E_{max} [V/m]


51.9 147

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy5 or DASY6 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 or DASY6 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 or DASY6 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
± 0.2 dB(30 MHz	to 4 GHz) for ES3DV3
DynamicRange:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:SAF	R Dosimetry Testing
	Compliance tests of mobile phones
	Dosimetry in strong gradient fields
Picture C.3E-fiel	d Probe

Picture C.2Near-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or

other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\ell = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. <Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C7-1: Device Holder

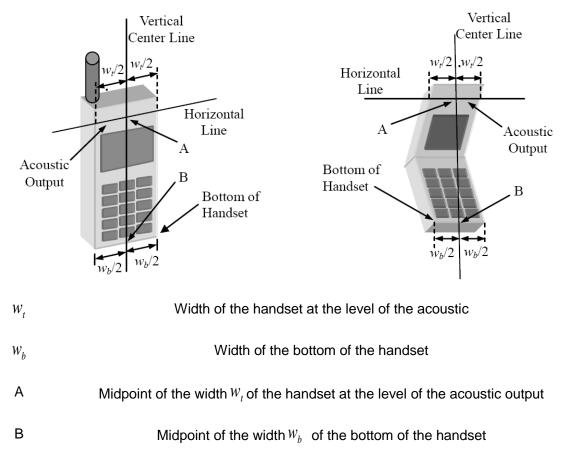
Picture C.7-2: Laptop Extension Kit

C.4.5 Phantom

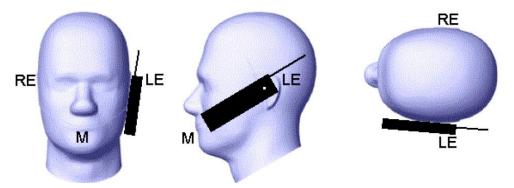
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

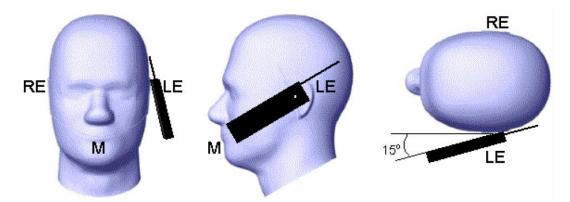
Shell Thickness:2±0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special



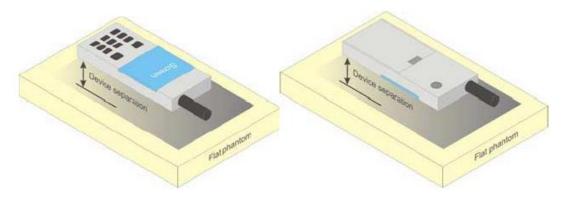
Picture C.8: SAM Twin Phantom


ANNEX D Position of the wireless device in relation to the phantom

D.1 General considerations


This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

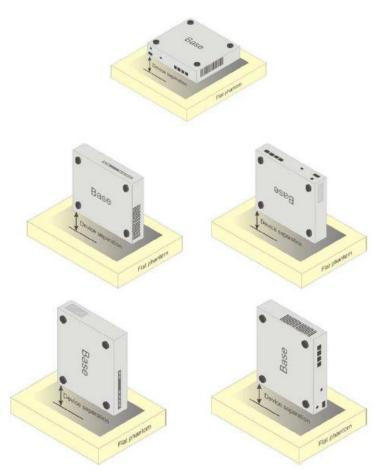
Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset


Picture D.2 Cheek position of the wireless device on the left side of SAM

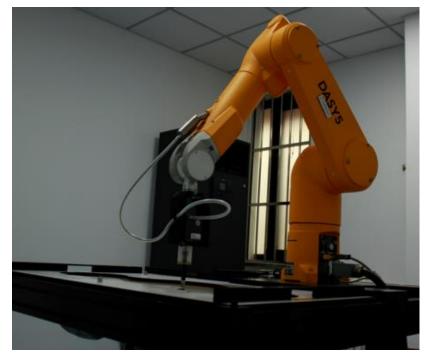
Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.



Picture D.4Test positions for body-worn devices


D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

		Compositi		1133461	-quivalei	it matter		
Frequency	835Hea	835Bod	1900	1900	2450	2450	5800	5800
(MHz)	d	у	Head	Body	Head	Body	Head	Body
Ingredients (% by	v weight)							
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53
Sugar	56.0	45.0	١	١	١	١	١	١
Salt	1.45	1.4	0.306	0.13	0.06	0.18	١	١
Preventol	0.1	0.1	١	١	١	١	١	١
Cellulose	1.0	1.0	١	١	١	١	١	١
Glycol Monobutyl	١	١	44.452	29.96	41.15	27.22	١	١
Diethylenglycol monohexylethe r	١	١	١	١	١	١	17.24	17.24
Triton X-100	١	١	١	١	١	١	17.24	17.24
Dielectric	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7	ε=35.3	ε=48.2
Parameters	ε=41.5 σ=0.90	ε=55.2 σ=0.97	σ=1.4	σ=1.5	σ=1.8	σ=1.9	σ=5.2	σ=6.0
Target Value	0-0.90	0-0.97	0	2	0	5	7	0
· · · ·					_			

TableE.1: Composition of the Tissue Equivalent Matter

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
7517	Head 13MHz	February 24,2023	13MHz	ОК
7517	Head 64MHz	February 24,2023	64MHz	ОК
7517	Head 150MHz	February 24,2023	150MHz	ОК
7517	Head 300MHz	February 24,2023	300MHz	ОК
7517	Head 450MHz	February 24,2023	450MHz	ОК
7517	Head 750MHz	February 24,2023	750MHz	ОК
7517	Head 835MHz	February 24,2023	835MHz	ОК
7517	Head 900MHz	February 24,2023	900MHz	ОК
7517	Head 1450MHz	February 24,2023	1450MHz	ОК
7517	Head 1750MHz	February 25,2023	1750MHz	ОК
7517	Head 1810MHz	February 25,2023	1810MHz	ОК
7517	Head 1900MHz	February 25,2023	1900MHz	ОК
7517	Head 2000MHz	February 25,2023	2000MHz	ОК
7517	Head 2100MHz	February 25,2023	2100MHz	ОК
7517	Head 2300MHz	February 25,2023	2300MHz	ОК
7517	Head 2450MHz	February 25,2023	2450MHz	ОК
7517	Head 2600MHz	February 25,2023	2600MHz	ОК
7517	Head 3300MHz	February 26,2023	3300MHz	ОК
7517	Head 3500MHz	February 26,2023	3500MHz	ОК
7517	Head 3700MHz	February 26,2023	3700MHz	ОК
7517	Head 3900MHz	February 26,2023	3900MHz	OK
7517	Head 4100MHz	February 26,2023	4100MHz	OK
7517	Head 4200MHz	February 26,2023	4200MHz	ОК
7517	Head 4400MHz	February 26,2023	4400MHz	OK
7517	Head 4600MHz	February 26,2023	4600MHz	OK
7517	Head 4800MHz	February 26,2023	4800MHz	ОК
7517	Head 4950MHz	February 26,2023	4950MHz	ОК
7517	Head 5200MHz	February 27,2023	5200MHz	ОК
7517	Head 5250MHz	February 27,2023	5250MHz	ОК
7517	Head 5300MHz	February 27,2023	5300MHz	ОК
7517	Head 5500MHz	February 27,2023	5500MHz	ОК
7517	Head 5600MHz	February 27,2023	5600MHz	ОК
7517	Head 5750MHz	February 27,2023	5750MHz	ОК
7517	Head 5800MHz	February 27,2023	5800MHz	ОК
7517	Head 6500MHz	February 27,2023	6500MHz	ОК
7517	Head 7000MHz	February 27,2023	7000MHz	ОК

 Table F.1: System Validation for 7517

		c i .z. Oystein vana		
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
7673	Head 750MHz	July.27,2023	750 MHz	OK
7673	Head 900MHz	July.27,2023	900 MHz	OK
7673	Head 1750MHz	July.27,2023	1750 MHz	OK
7673	Head 1900MHz	July.27,2023	1900 MHz	OK
7673	Head 2000MHz	July.27,2023	2000 MHz	OK
7673	Head 2300MHz	July.27,2023	2300 MHz	OK
7673	Head 2450MHz	July.27,2023	2450 MHz	OK
7673	Head 2600MHz	July.27,2023	2600 MHz	OK
7673	Head 3300MHz	July.27,2023	3300 MHz	OK
7673	Head 3500MHz	July.27,2023	3500 MHz	OK
7673	Head 3700MHz	July.27,2023	3700 MHz	OK
7673	Head 3900MHz	July.27,2023	3900 MHz	OK
7673	Head 4100MHz	July.27,2023	4100 MHz	OK
7673	Head 4200MHz	July.27,2023	4200 MHz	OK
7673	Head 4400MHz	July.27,2023	4400 MHz	OK
7673	Head 4600MHz	July.27,2023	4600 MHz	OK
7673	Head 4800MHz	July.27,2023	4800 MHz	OK
7673	Head 4950MHz	July.27,2023	4950 MHz	OK
7673	Head 5250MHz	July.27,2023	5250 MHz	OK
7673	Head 5600MHz	July.27,2023	5600 MHz	OK
7673	Head 5750MHz	July.27,2023	5750 MHz	OK

Table F.2: System Validation for 7673

Table F.3: System Validation for 7464

Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
7464	Head 750MHz	February.20,2023	750 MHz	OK
7464	Head 900MHz	February.20,2023	900 MHz	OK
7464	Head 1450MHz	February.20,2023	1450 MHz	OK
7464	Head 1750MHz	February.20,2023	1750 MHz	OK
7464	Head 1900MHz	February.20,2023	1900 MHz	OK
7464	Head 2100MHz	February.20,2023	2100 MHz	OK
7464	Head 2300MHz	February.21,2023	2300 MHz	OK
7464	Head 2450MHz	February.21,2023	2450 MHz	OK
7464	Head 2600MHz	February.21,2023	2600 MHz	OK
7464	Head 3300MHz	February.21,2023	3300 MHz	OK
7464	Head 3500MHz	February.21,2023	3500 MHz	OK
7464	Head 3700MHz	February.21,2023	3700 MHz	OK
7464	Head 3900MHz	February.21,2023	3900 MHz	OK
7464	Head 4100MHz	February.22,2023	4100 MHz	OK
7464	Head 4200MHz	February.22,2023	4200 MHz	OK
7464	Head 4400MHz	February.22,2023	4400 MHz	OK
7464	Head 4600MHz	February.22,2023	4600 MHz	OK
7464	Head 4800MHz	February.22,2023	4800 MHz	OK
7464	Head 4950MHz	February.22,2023	4950 MHz	OK
7464	Head 5250MHz	February.23,2023	5250 MHz	OK
7464	Head 5600MHz	February.23,2023	5600 MHz	OK
7464	Head 5750MHz	February.23,2023	5750 MHz	OK

		c 1.4. Oystein valia		
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
3617	Head 750MHz	June.10,2023	750 MHz	OK
3617	Head 900MHz	June.10,2023	900 MHz	OK
3617	Head 1450MHz	June.12,2023	1450 MHz	OK
3617	Head 1750MHz	June.12,2023	1750 MHz	OK
3617	Head 1900MHz	June.12,2023	1900 MHz	OK
3617	Head 2000MHz	June.14,2023	2000 MHz	OK
3617	Head 2300MHz	June.14,2023	2300 MHz	OK
3617	Head 2450MHz	June.14,2023	2450 MHz	OK
3617	Head 2600MHz	June.14,2023	2600 MHz	OK
3617	Head 3300MHz	June.15,2023	3300 MHz	OK
3617	Head 3500MHz	June.15,2023	3500 MHz	OK
3617	Head 3700MHz	June.15,2023	3700 MHz	OK
3617	Head 3900MHz	June.17,2023	3900 MHz	OK
3617	Head 4100MHz	June.17,2023	4100 MHz	OK
3617	Head 4200MHz	June.19,2023	4200 MHz	OK
3617	Head 4400MHz	June.19,2023	4400 MHz	OK
3617	Head 4600MHz	June.19,2023	4600 MHz	OK
3617	Head 4800MHz	June.20,2023	4800 MHz	OK
3617	Head 4950MHz	June.20,2023	4950 MHz	OK
3617	Head 5250MHz	June.20,2023	5250 MHz	OK
3617	Head 5600MHz	June.20,2023	5600 MHz	OK
3617	Head 5750MHz	June.20,2023	5750 MHz	OK

Table F.4: System Validation for 3617

	Table	e F.5: System valida		
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
3846	Head 13MHz	July 03,2023	13MHz	ОК
3846	Head 64MHz	July 03,2023	64MHz	ОК
3846	Head 150MHz	July 04,2023	150MHz	ОК
3846	Head 300MHz	July 04,2023	300MHz	ОК
3846	Head 450MHz	July 04,2023	450MHz	ОК
3846	Head 750MHz	July 05,2023	750MHz	ОК
3846	Head 835MHz	July 05,2023	835MHz	ОК
3846	Head 900MHz	July 06,2023	900MHz	ОК
3846	Head 1450MHz	July 06,2023	1450MHz	ОК
3846	Head 1640MHz	July 06,2023	1640MHz	ОК
3846	Head 1750MHz	July 07,2023	1750MHz	ОК
3846	Head 1810MHz	July 07,2023	1810MHz	ОК
3846	Head 1900MHz	July 07,2023	1900MHz	ОК
3846	Head 2000MHz	July 07,2023	2000MHz	ОК
3846	Head 2100MHz	July 08,2023	2100MHz	ОК
3846	Head 2300MHz	July 08,2023	2300MHz	ОК
3846	Head 2450MHz	July 08,2023	2450MHz	OK
3846	Head 2600MHz	July 08,2023	2600MHz	ОК
3846	Head 3300MHz	July 09,2023	3300MHz	ОК
3846	Head 3500MHz	July 09,2023	3500MHz	ОК
3846	Head 3700MHz	July 09,2023	3700MHz	ОК
3846	Head 3900MHz	July 11,2023	3900MHz	ОК
3846	Head 4100MHz	July 11,2023	4100MHz	ОК
3846	Head 4200MHz	July 11,2023	4200MHz	ОК
3846	Head 4400MHz	July 12,2023	4400MHz	ОК
3846	Head 4600MHz	July 12,2023	4600MHz	ОК
3846	Head 4800MHz	July 12,2023	4800MHz	ОК
3846	Head 4950MHz	July 12,2023	4950MHz	ОК
3846	Head 5200MHz	July 13,2023	5200MHz	ОК
3846	Head 5250MHz	July 13,2023	5250MHz	ОК
3846	Head 5300MHz	July 13,2023	5300MHz	ОК
3846	Head 5500MHz	July 13,2023	5500MHz	OK
3846	Head 5600MHz	July 15,2023	5600MHz	OK
3846	Head 5750MHz	July 15,2023	5750MHz	ОК
3846	Head 5800MHz	July 15,2023	5800MHz	ОК

Table F.5: System Validation for 3846

ANNEX G PROBE CALIBRATION CERTIFICATE

Probe 7673 Calibration Certificate

Add: No.52 HuaYuanBei Ro Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn Client	http://www.caict.ac.cr	"aduluba"	CALIBRATION CNAS L0570 J23Z60316
CALIBRATION CI	ERTIFICATE		
Dbject	EX3DV4 -	SN : 7673	
Calibration Procedure(s)	FF-Z11-00 Calibration	4-02 n Procedures for Dosimetric E-field Probes	S
Calibration date:	July 24, 20	023	
		pratory facility: environment temperature(22±3)°C a	
constant and the			led Calibration
Primary Standards	ID # Ca	al Date(Calibrated by, Certificate No.) Schedul	led Calibration
Primary Standards Power Meter NRP2	ID # Ca 101919	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435)	led Calibration Jun-24 Jun-24
Primary Standards	ID # Ca	al Date(Calibrated by, Certificate No.) Schedul	Jun-24
Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # Ca 101919 101547	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435)	Jun-24 Jun-24
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	ID # Ca 101919 101547 101548	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435)	Jun-24 Jun-24 Jun-24
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator	ID # Ca 101919 101547 101548 18N50W-10dB	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 19-Jan-23(CTTL, No.J23X00212)	Jun-24 Jun-24 Jun-24 Jan-25
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator	ID # Ca 101919 101547 101548 18N50W-10dB 18N50W-20dB	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211)	Jun-24 Jun-24 Jun-24 Jan-25 Jan-25 May-24 Jan-24
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 Reference Probe EX3DV4 DAE4	ID # Ca 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 7517 SN 1555	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 27-Jan-23(SPEAG, No.EX-7517_Jan23) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22)	Jun-24 Jun-24 Jun-24 Jan-25 Jan-25 May-24 Jan-24 Aug-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 Reference Probe EX3DV4 DAE4 Secondary Standards	ID # Ca 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 7517 SN 1555 ID #	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X005435) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 27-Jan-23(SPEAG, No.EX-7517_Jan23) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.)	Jun-24 Jun-24 Jun-24 Jan-25 Jan-25 May-24 Jan-24 Jan-24 Aug-23 Scheduled Calibration
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A	ID # Ca 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 7517 SN 1555 ID # 6201052605	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X005435) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 27-Jan-23(SPEAG, No.EX-7517_Jan23) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 12-Jun-23(CTTL, No.J23X05434)	Jun-24 Jun-24 Jun-24 Jan-25 Jan-25 May-24 Jan-24 Jan-24 Scheduled Calibration Jun-24
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C	ID # Ca 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 7517 SN 1555 ID # 6201052605 MY46110673 SN 2605	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X005435) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 27-Jan-23(SPEAG, No.EX-7517_Jan23) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 12-Jun-23(CTTL, No.J23X005434) 10-Jan-23(CTTL, No.J23X00104) 10-Jan-23(CTTL, No.J23X00104)	Jun-24 Jun-24 Jun-24 Jan-25 Jan-25 May-24 Jan-24 Aug-23 Scheduled Calibration Jun-24 Jan-24
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference Probe EX3DV4 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator	ID # Ca 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 7517 SN 1555 ID # 6201052605 MY46110673 BT0520	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X005435) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 27-Jan-23(SPEAG, No.EX-7517_Jan23) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 12-Jun-23(CTTL, No.J23X05434) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061)	Jun-24 Jun-24 Jun-24 Jan-25 Jan-25 May-24 Jan-24 Aug-23 Scheduled Calibration Jun-24 Jan-24 May-25
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C	ID # Ca 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 7517 SN 1555 ID # 6201052605 MY46110673 SN 2605	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X005435) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 27-Jan-23(SPEAG, No.EX-7517_Jan23) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 12-Jun-23(CTTL, No.J23X005434) 10-Jan-23(CTTL, No.J23X00104) 10-Jan-23(CTTL, No.J23X00104)	Jun-24 Jun-24 Jun-24 Jan-25 Jan-25 May-24 Jan-24 Aug-23 Scheduled Calibration Jun-24 Jan-24 Jan-24 May-25 May-25
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference Probe EX3DV4 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator Reference 20dBAttenuator Reference 20dBAttenuator	ID # Ca 101919 101547 101548 18N50W-10dB 18N50W-20dB 18N50W-20dB SN 3846 SN 7517 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267 SN 1040 SN 1040	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X005435) 12-Jun-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 27-Jan-23(SPEAG, No.EX-7517_Jan23) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 12-Jun-23(CTTL, No.J23X005434) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061) 11-May-23(CTTL, No.J23X04062)	Jun-24 Jun-24 Jun-24 Jan-25 Jan-25 May-24 Jan-24 Aug-23 Scheduled Calibration Jun-24 Jan-24 May-25 May-25 Jan23) Jan-24
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator Reference 20dBAttenuator Reference 20dBAttenuator	ID # Ca 101919 101547 101548 18N50W-10dB 18N50W-20dB 18N50W-20dB SN 3846 SN 7517 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267 SN 1040 SN 1040	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 27-Jan-23(SPEAG, No.EX-7517_Jan23) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 12-Jun-23(CTTL, No.J23X00104) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061) 11-May-23(CTTL, No.J23X04062) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_ 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_	Jun-24 Jun-24 Jun-24 Jan-25 Jan-25 May-24 Jan-24 Aug-23 Scheduled Calibration Jun-24 Jan-24 May-25 May-25 Jan23) Jan-24
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5	ID # Ca 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 7517 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267 SN 1040	al Date(Calibrated by, Certificate No.) Schedul 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X05435) 12-Jun-23(CTTL, No.J23X005435) 12-Jun-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 31-May-23(SPEAG, No.EX-3846_May23) 27-Jan-23(SPEAG, No.EX-7517_Jan23) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 12-Jun-23(CTTL, No.J23X00104) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061) 11-May-23(CTTL, No.J23X04062) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_ Function Signati	Jun-24 Jun-24 Jun-24 Jan-25 Jan-25 May-24 Jan-24 Aug-23 Scheduled Calibration Jun-24 Jan-24 May-25 May-25 Jan23) Jan-24

Certificate No: J23Z60316

Page 1 of 9

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point crest factor (1/duty cycle) of the RF signal CF modulation dependent linearization parameters A,B,C,D Polarization Φ Φ rotation around probe axis θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i Polarization θ

θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
 phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:J23Z60316

Page 2 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7673

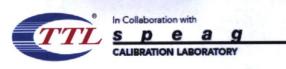
Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.62	0.63	0.60	±10.0%
DCP(mV) ^B	111.4	112.4	110.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	c	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	cw	X	0.0	0.0	1.0	0.00	214.3	±2.2%
		Y	0.0	0.0	1.0		219.2	
		Z	0.0	0.0	1.0		207.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.


^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:J23Z60316

Page 3 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7673

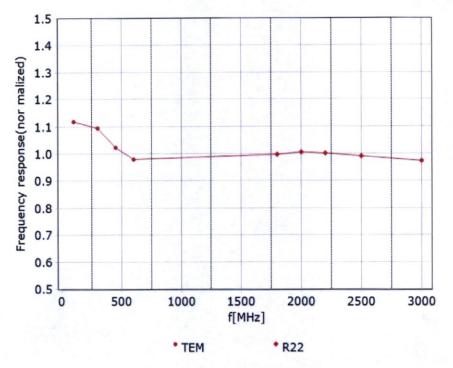
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.50	10.50	10.50	0.18	1.24	±12.7%
900	41.5	0.97	10.12	10.12	10.12	0.17	1.34	±12.7%
1750	40.1	1.37	8.46	8.46	8.46	0.30	0.92	±12.7%
1900	40.0	1.40	8.20	8.20	8.20	0.30	0.90	±12.7%
2100	39.8	1.49	8.15	8.15	8.15	0.24	1.06	±12.7%
2300	39.5	1.67	7.90	7.90	7.90	0.60	0.68	±12.7%
2450	39.2	1.80	7.65	7.65	7.65	0.66	0.68	±12.7%
2600	39.0	1.96	7.45	7.45	7.45	0.65	0.68	±12.7%
3300	38.2	2.71	6.98	6.98	6.98	0.44	0.92	±13.9%
3500	37.9	2.91	6.78	6.78	6.78	0.41	1.04	±13.9%
3700	37.7	3.12	6.63	6.63	6.63	0.39	1.04	±13.9%
3900	37.5	3.32	6.51	6.51	6.51	0.30	1.52	±13.9%
4100	37.2	3.53	6.45	6.45	6.45	0.30	1.40	±13.9%
4200	37.1	3.63	6.35	6.35	6.35	0.30	1.52	±13.9%
4400	36.9	3.84	6.25	6.25	6.25	0.30	1.52	±13.9%
4600	36.7	4.04	6.14	6.14	6.14	0.35	1.42	±13.9%
4800	36.4	4.25	6.05	6.05	6.05	0.35	1.52	±13.9%
4950	36.3	4.40	5.71	5.71	5.71	0.35	1.55	±13.9%
5250	35.9	4.71	5.19	5.19	5.19	0.35	1.55	±13.9%
5600	35.5	5.07	4.69	4.69	4.69	0.40	1.52	±13.9%
5750	35.4	5.22	4.79	4.79	4.79	0.40	1.52	±13.9%

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No:J23Z60316

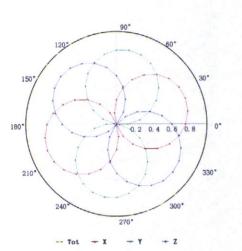
Page 4 of 9

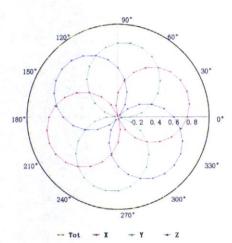
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

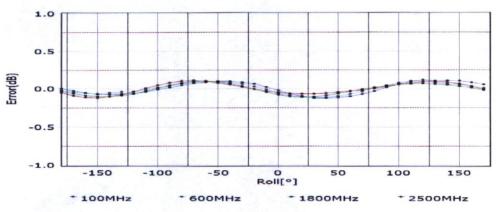
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:J23Z60316

Page 5 of 9

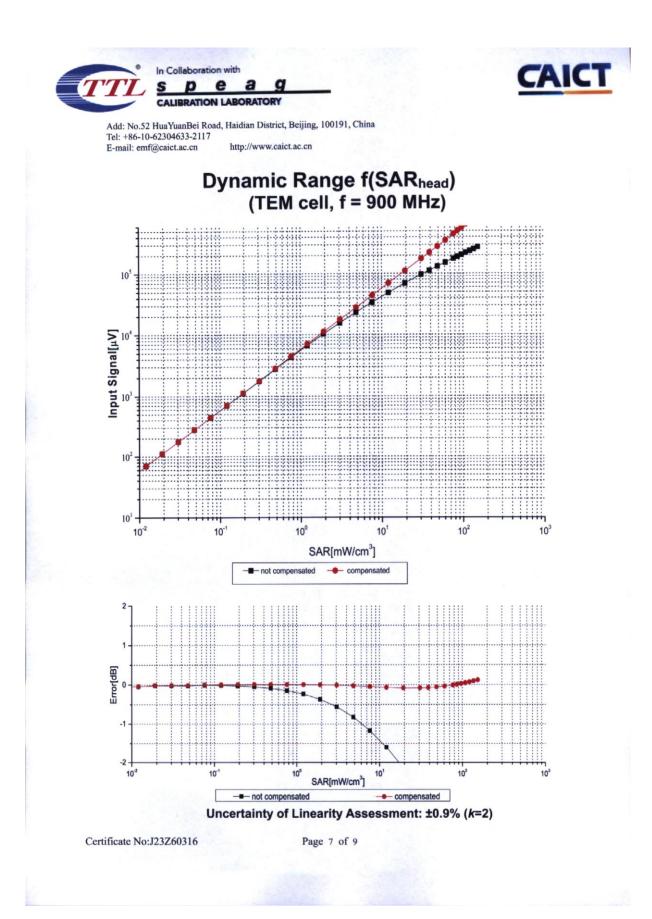


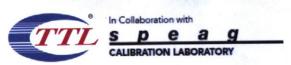



Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

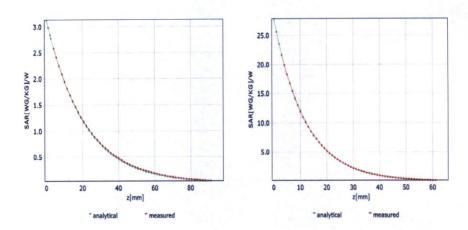


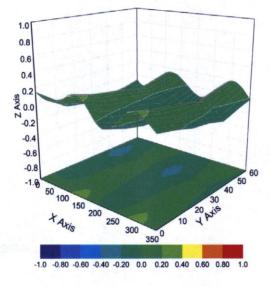


Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:J23Z60316

Page 6 of 9




Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:J23Z60316

Page 8 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7673

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	146.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:J23Z60316

Page 9 of 9

Probe 7517 Calibration Certificate

alibration Laboratory chmid & Partner ngineering AG eughausstrasse 43, 8004 Zuri			 Schweizerischer Kalibrierdien: Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
credited by the Swiss Accredited by the Swiss Accreditation Servinitiateral Agreement for the	vice is one of the signator	ries to the EA	Accreditation No.: SCS 0108
ient CTTL (Auder	1)	Certificate No	EX-7517_Jan23
CALIBRATION C	ERTIFICATE		
Object	EX3DV4 - SN:75	i17	
Calibration procedure(s)	QA CAL-25.v8	QA CAL-12.v10, QA CAL-14.v edure for dosimetric E-field prob	
Calibration date	January 27, 202	3	
Calibration Equipment used (atory facility: environment temperature (22	
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249 Oct2	
DCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct2	
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	10-Oct-22 (No. DAE4-660_Oct22)	Oct-23
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24
Cocondany Standarda	ID	Charle Data (in house)	Cabadulad Obash
Secondary Standards Power meter E4419B	ID SN: GB41293874	Check Date (in house)	Scheduled Check
Power sensor E4419B	SN: GB41293874 SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087 SN: 000110210	06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700		In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	In house check: Jun-24 In house check: Oct-24
	Name	Function	Signature
Calibrated by	Jeton Kastrati		
Approved by	Sven Kühn	Technical Manager	-le Stor
			Issued: February 03, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization <i>∂</i>	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

- Calibration is Performed According to the Following Standards:
- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP
 does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 - SN:7517

Parameters of Probe: EX3DV4 - SN:7517

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm (µV/(V/m) ²) A	0.48	0.51	0.54	±10.1%
DCP (mV) ^B	96.0	95.0	97.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max UncE k = 2
0	CW	X	0.00	0.00	1.00	0.00	114.5	±2.4%	±4.7%
		Y	0.00	0.00	1.00		120.2		
		Z	0.00	0.00	1.00		143.2		
10352	Pulse Waveform (200Hz, 10%)	X	5.12	73.33	13.52	10.00	60.0	±3.1%	±9.6%
		Y	2.09	63.63	8.90		60.0		
		Z	20.00	88.14	18.44	1	60.0	1	
10353	Pulse Waveform (200Hz, 20%)	X	20.00	86.91	16.39	6.99	80.0	±2.1%	±9.6%
		Y	1.23	62.23	7.44		80.0		
		Z	20.00	89.91	17.98	1	80.0	1	
10354 Pulse Wave	Pulse Waveform (200Hz, 40%)	X	20.00	87.17	15.04	3.98	95.0	±1.3%	±9.6%
		Y	0.67	61.60	6.49		95.0		
		Z	20.00	93.97	18.38		95.0		
10355 Pu	Pulse Waveform (200Hz, 60%)	X	20.00	84.43	12.64	2.22	120.0	±1.1%	±9.6%
		Y	0.59	63.73	7.01		120.0		
		Z	20.00	96.54	18.21	1	120.0		
10387	QPSK Waveform, 1 MHz	X	1.54	67.24	14.89	1.00	150.0	±3.0%	±9.6%
		Y	1.46	66.17	14.39		150.0		
		Z	1.41	65.65	14.01	1	150.0		
10388	QPSK Waveform, 10 MHz	X	2.05	67.83	15.64	0.00	150.0	±1.1%	±9.6%
		Y	1.94	66.59	15.05		150.0		
		Z	1.90	66.31	14.84		150.0		
10396	64-QAM Waveform, 100 kHz	X	2.64	69.92	18.57	3.01	150.0	±1.4%	±9.6%
		Y	2.12	65.93	16.62		150.0		
		Z	2.10	65.89	16.87		150.0		
10399	64-QAM Waveform, 40 MHz	X	3.38	67.04	15.73	0.00	150.0	±2.1%	±9.6%
		Y	3.30	66.42	15.40		150.0		20.070
		Z	3.27	66.26	15.31		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.67	65.69	15.56	0.00	150.0	±3.8%	±9.6%
		Y	4.57	65.30	15.32		150.0		
		Z	4.57	65.21	15.29		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 to 7). B Linearization parameter uncertainty for maximum specified field strength. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

January 27, 2023

EX3DV4 - SN:7517

Parameters of Probe: EX3DV4 - SN:7517

Sensor Model Parameters

	C1 fF	C2 fF	и V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	33.3	248.62	35.47	6.24	0.08	5.04	1.01	0.20	1.01
У	31.4	232.68	35.06	9.43	0.00	4.97	0.38	0.21	1.00
Z	32.2	242.61	36.05	6.15	0.00	5.05	0.00	0.25	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	17.5°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-7517_Jan23

Page 4 of 23

Parameters of Probe: EX3DV4 - SN:7517

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
13	55.0	0.75	18.20	18.20	18.20	0.00	1.25	±13.3%
64	54.2	0.75	13.30	13.30	13.30	0.00	1.25	±13.3%
150	52.3	0.76	12.22	12.22	12.22	0.00	1.25	±13.3%
300	45.3	0.87	11.41	11.41	11.41	0.09	1.00	±13.3%
450	43.5	0.87	10.53	10.53	10.53	0.16	1.30	±13.3%
750	41.9	0.89	9.39	8.81	9.17	0.40	1.27	±12.0%
835	41.5	0.90	9.84	8.48	8.98	0.39	1.27	±12.0%
900	41.5	0.97	9.36	9.08	9.25	0.40	1.27	±12.0%
1450	40.5	1.20	8.28	7.60	7.84	0.40	1.27	±12.0%
1640	40.2	1.31	8.28	7.42	7.59	0.40	1.27	±12.0%
1750	40.1	1.37	8.43	7.84	8.08	0.28	1.27	±12.0%
1810	40.0	1.40	8.42	7.76	8.00	0.29	1.27	±12.0%
1900	40.0	1.40	8.34	7.75	7.97	0.29	1.27	±12.0%
2000	40.0	1.40	8.05	7.46	7.73	0.29	1.27	±12.0%
2100	39.8	1.49	8.20	7.54	7.85	0.30	1.27	±12.0%
2300	39.5	1.67	7.92	7.31	7.58	0.30	1.27	±12.0%
2450	39.2	1.80	7.75	7.16	7.37	0.30	1.27	±12.0%
2600	39.0	1.96	7.75	7.17	7.36	0.30	1.27	±12.0%
3300	38.2	2.71	6.84	6.29	6.48	0.33	1.27	±14.0%
3500	37.9	2.91	6.90	6.34	6.53	0.34	1.27	±14.0%
3700	37.7	3.12	6.74	6.21	6.39	0.34	1.27	±14.0%
3900	37.5	3.32	6.67	6.12	6.31	0.36	1.27	±14.0%
4100	37.2	3.53	6.66	6.11	6.31	0.37	1.27	±14.0%
4200	37.1	3.63	6.71	6.12	6.35	0.36	1.27	±14.0%
4400	36.9	3.84	6.49	5.93	6.14	0.37	1.27	±14.0%
4600	36.7	4.04	6.60	6.01	6.24	0.37	1.27	±14.0%
4800	36.4	4.25	6.74	6.12	6.35	0.38	1.27	±14.0%
4950	36.3	4.40	5.97	5.43	5.58	0.43	1.36	±14.0%

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is $\pm 10, 25, 40, 50$ and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL with deviations of up to $\pm 10\%$. If TSL with deviations from the target of less than $\pm 5\%$ are used, the calibration uncertainties are 11.1% for 3-6 GHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.