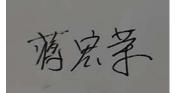
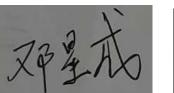
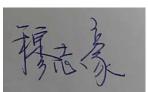
Antenna Gain test report

FCC ID: 2ABZ2-AA550


Equipment: Mobile Phone


Brand Name: ONEPLUS


Model Name: CPH2583

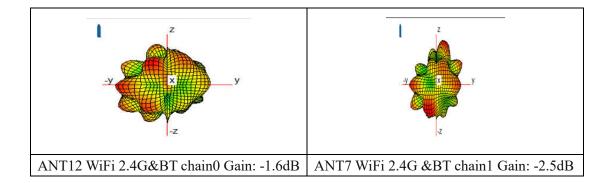
Manufacturer: OnePlus Technology (Shenzhen) Co., Ltd. 18C02, 18C03, 18C04, and 18C05, Shum Yip Terra Building, Binhe Avenue North, Futian District, Shenzhen, Guangdong, P.R. China

Issue Date: August 24, 2023

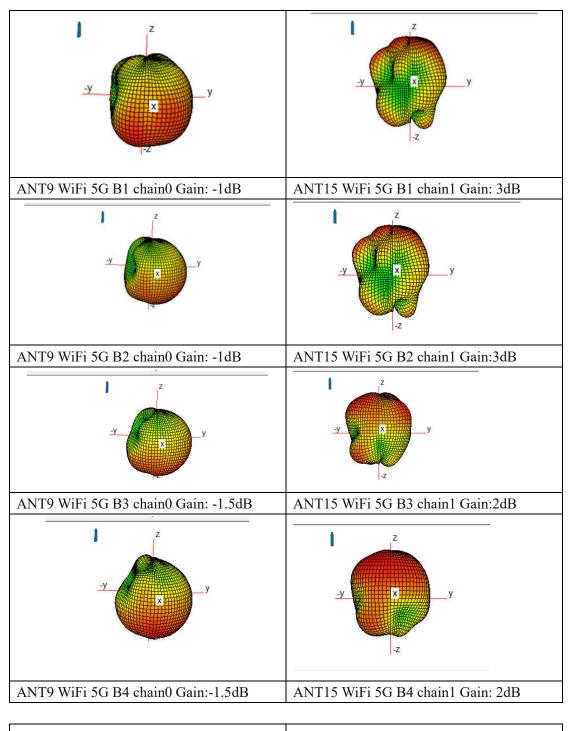
Project Engineer: Jim JiangDate:2023/8/24Checked by: Stephen DengDate:2023/8/24Approved by: Shine MuDate:2023/8/24

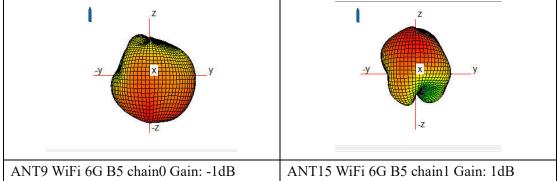
Antenna Gain (dBi)		Ant 7	Ant 12	Antenna Type	Antenna	Manufact
					model name	urer
2.4G WiFi	2412~2462MHz	-2.5	-1.6	IFA(Inverted F Antenna)	AA550	OnePlus
BT	2402~2480MHz	-2.5	-1.6	IFA(Inverted F Antenna)	AA550	OnePlus
Antenna Gain (dBi)		Ant 9	Ant 15	Antenna Type	AA550	OnePlus
5G WiFi	5150~5250 MHz	-1	3	IFA(Inverted F Antenna)	AA550	OnePlus
	5250~5350 MHz	-1	3	IFA(Inverted F Antenna)	AA550	OnePlus
	5470~5725 MHz	-1.5	2	IFA(Inverted F Antenna)	AA550	OnePlus
	5725~5850 MHz	-1.5	2	IFA(Inverted F Antenna)	AA550	OnePlus
6G WiFi	5925-6425 MHz	-1	1	IFA(Inverted F Antenna)	AA550	OnePlus
	6425-6525 MHz	-2	-2.8	IFA(Inverted F Antenna)	AA550	OnePlus
	6525-6875 MHz	-2	-2	IFA(Inverted F Antenna)	AA550	OnePlus
	6875-7125 MHz	-0.5	0	IFA(Inverted F Antenna)	AA550	OnePlus
NFC	13.56MHz	1	/	FPC(Flexible Printed Circuit)	AA550	OnePlus
				25mm x 50mm		
WPT	110-148.5KHz	/	/	Loop	AA550	OnePlus
				45mm x 45mm		

Antenna Gain and Antenna Type specification:

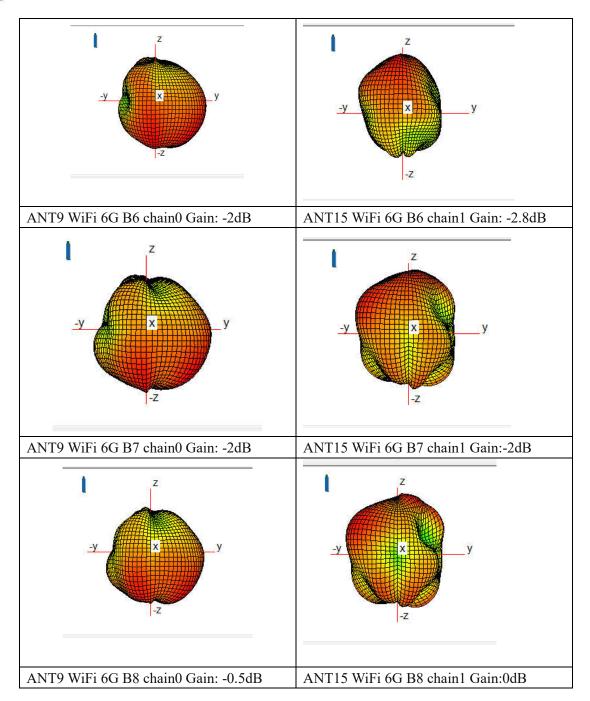

Table1 Antenna Gain and Antenna Type specification

Note: Antenna gain was measured in the anechoic chamber, 3D scan was


exercised, and the highest numbers are reported in this document.


Accoring to Test standard: IEEE Std 149-2021, we measure antenna gain .

Antenna Radiation Pattern:



ONEPLUS Test Report

ONEPLUS Test Report

List of Test and Measurement Instruments

TEST EQUIPMENT

NO.	Equipment	Manufacturer	Model No.	Cal.data	Cal.due
1	GTS RayZone-2800	General Test	SN636692864	2023/06/14	2024/06/14
2	Network Analyzer 5071C	Kesight	MY4690575	2023/06/10	2024/06/10
3.	MaxSign Libra Test softwave	General Test	Version-1.1.16	NA	NA

I. Measurement Setup:

A. Reflection Coefficient Measurement:

Instrument: Network Analyzer (Kesight E5071C). Setup:

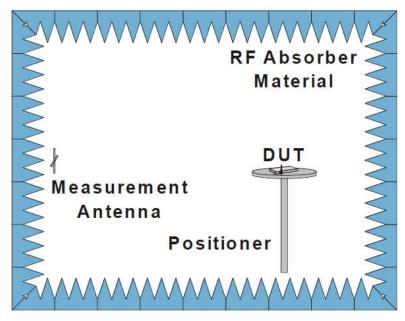
1. Calibrate the Network Analyzer by one port calibration using Kesight 85093C Electronic calibration module .

2. Connect the antenna under test to the Network Analyzer.

3. Measure the S11(reflection coefficient),Return Loss....

B. Pattern Measurement:

A Fully Anechoic Chamber is used to simulate free-space conditions.


A Fully Anechoic Chamber is a shielded room lined with RF/microwave absorber on

all walls, ceiling, and floor.

RF/microwave absorber reduces reflections from the inner walls of the shield.

Absorber performance depends on the depth and design of the absorber and the angle of incidence of the field.

Normal incidence is best, shallower angles are worse.

