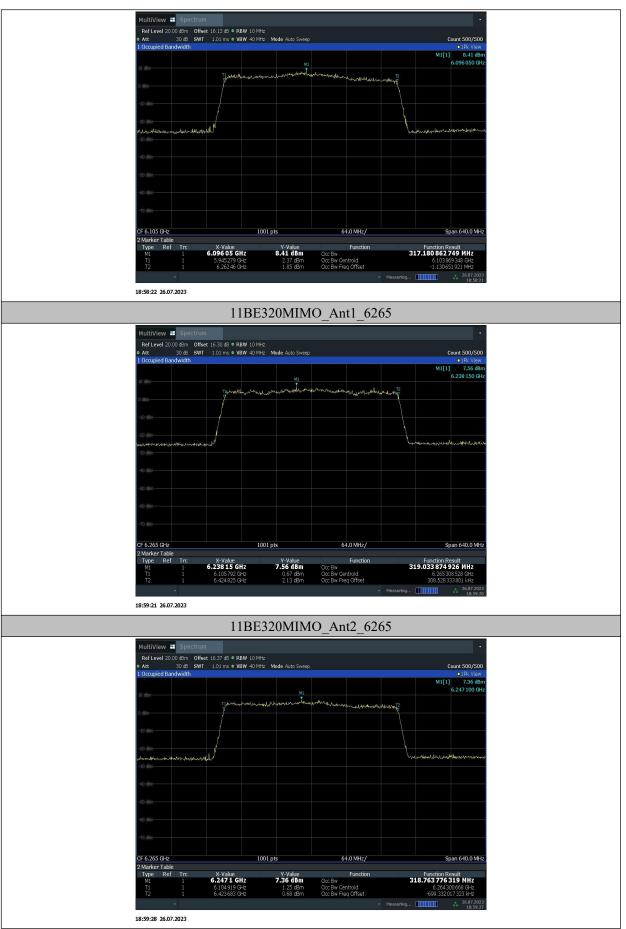
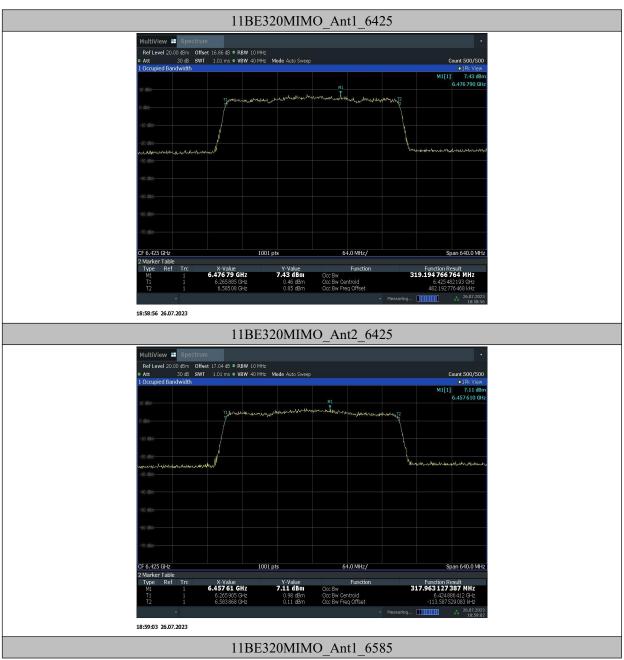
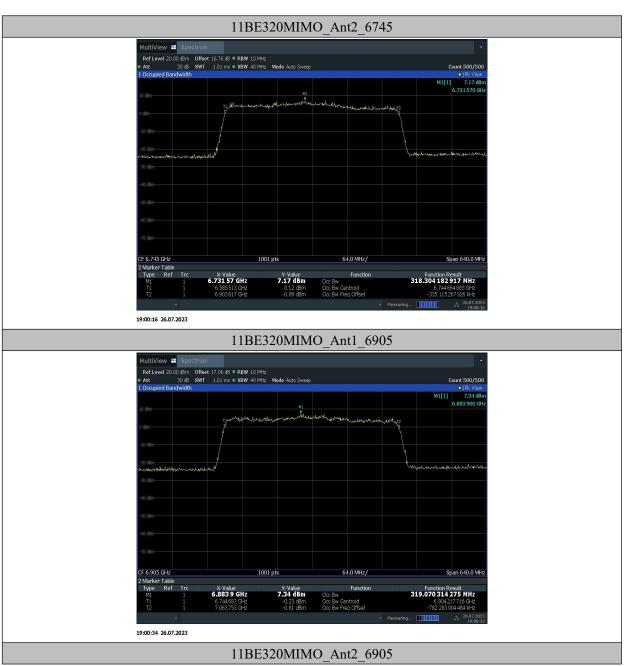


©Copyright. All rights reserved by CTTL.





©Copyright. All rights reserved by CTTL.



©Copyright. All rights reserved by CTTL.

A.6. Contention Based Protocol

Measurement Limit and Method:

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band must employ a contention-based protocol.

Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel (in which incumbent signal is transmitted) and stay off the incumbent channel as long as detected radio frequency power is equal to or greater than the threshold (-62 dBm)1. The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain.

To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel. For example, an 802.11 device that plans to transmit a 40 MHz- wide signal (on a primary 20 MHz channel and a secondary 20 MHz channel) must detect energy throughout the entire 40 MHz channel. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty.

The measurement is made according to KDB 987594.

EUT does NOT use channel puncturing for incumbent avoidance. The EUT use bandwidth reduction for incumbent avoidance. An example figure 1, take the UNII-5 band 320 MHz channel: Working channel: 5975MHz (primary channel)

Bandwidth: 320MHz

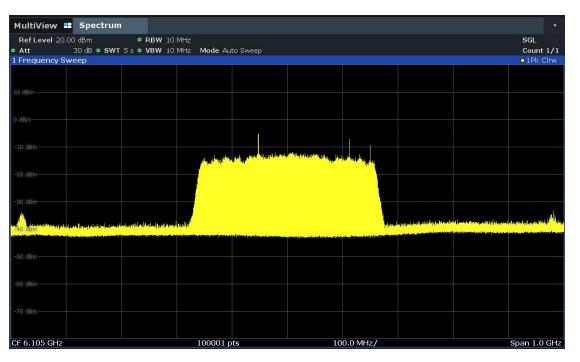


Figure 1

Injected signal 10MHz AWGN:

lower: 5950MHz;

middle: 6105MHz;

upper: 6260MHz

For the lower edge

A 10 MHz AWGN signal (center frequency is 5950MHz) is injected, the EUT state on frequency domain is shown in figure 2, the bandwidth reduce to 40MHz (the primary channel is 5975MHz), and the other channel stop the data transmissions:

Mark1: primary channel

Mark2: AWGN signal center frequency

Ref Level 2	Spectrur	• RBW							
Att		T 15 s • VBW		Auto Sweep					
Frequency									• 1Pk Clrw
								M2[1]	-37.77 dBn
								5.9 M1[1]	50 000 00 GH -6.53 dBn
									975 000 00 GH
			MI						
			— <u> </u>						
20 dBm									
				1					
E.F. in Cardination		tilles to on that set it is not	M2	In an I have a second to a second			a set to a set of the set of the set	ala ministra proto andro la	
40 dBm	and the state of the state of the		and the second second second				A DESCRIPTION OF THE OWNER OWNER OF THE OWNER		
50 dBm									
F 6.105 GH			100001		10	0.0 MHz/			Span 1.0 GH

For the middle:

A 10 MHz AWGN signal (center frequency is 6105MHz) is injected, the EUT state on frequency domain is shown in figure 3, DUT stop data transmissions on all channel:

Mark1: primary channel

Mark2: AWGN signal center frequency

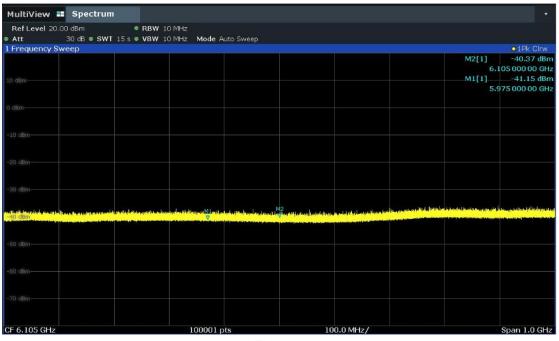


Figure 3

For the upper edge

A 10 MHz AWGN signal (center frequency is 6260MHz) is injected, the EUT state on frequency domain is shown in figure 4,the bandwidth reduce to 160MHz (the primary channel is 5975MHz), and the other channel stop the data transmissions :

Mark1: primary channel

Mark2: AWGN signal center frequency

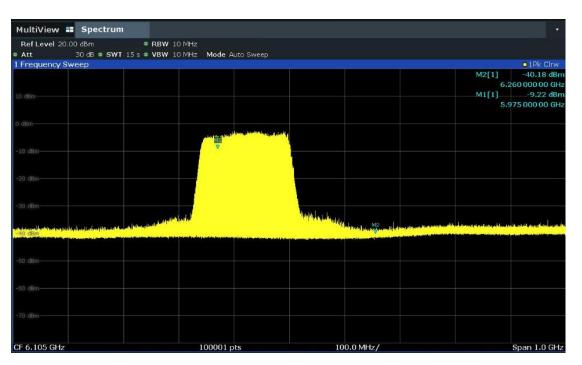


Figure 4

Measurement Results:

supported

Band	BW (MHz)	Fre. (MHz)	Incumbent Freq (MHz)	AWGN Signal Level (at Antenna Port) (dBm)	Incumbent Signal Level (Refer to 0dBi Antenna) (dBm)	Detection Rate(%)	Threshold Level(dB m)				
		0 6135	20 6135					-67	-62.5 Cea	100 ise transmissi	-62 on
UNII Band 5	20			6135 fc1 = fc2	-67.5	-63 Minii	<90 mal transmiss	-62 ion			
						-90	-85.5 Norr	0 nal transmiss	-62 ion		

Page 147 of 581

			-80.5	-76	90	-62		
				Cea	ise transmissi	on		
			96 F	-82	<90	-62		
			-00.0	Mini	Minimal transmission			
		Luge		-85.5	0	-62		
			-90	Norr	nal transmiss	ion		
				-73	100	-62		
			-77.5	Cea	ise transmissi	on		
		6105		-79	<90	-62		
320	6105	fc1 = fc2	-83.5	Mini	mal transmiss	ion		
				-85.5	0	-62		
			-90	Normal transmission				
				-73	100	-62		
			-77.5	Cea	ise transmissi	on		
		6260		-79	<90	-62		
		Upper Edge	-83.5	Mini	mal transmiss	ion		
			2490	0		-85.5	0	-62
			-90	Normal transmission				
BW (MHz)	Fre. (MHz)	Incumbent Freq (MHz)	AWGN Signal Level (at Antenna Port) (dBm)	Incumbent Signal Level (Refer to 0dBi Antenna) (dBm)	Detection Rate(%)	Threshold Level(dB m)		
				-62.2	90	-62		
			-66.7	Cease transmission				
UNII		6455		-62.5	<90	-62		
20	6455	fc1 = fc2	-67	Mini	Minimal transmission			
6				-85.5	0	-62		
		-90	Norr	nal transmissi	I			
	(MHz)	BW Fre. (MHz) (MHz)	320 6105 fc1 = fc2 fc1 = fc2 6260 Upper 6260 Upper Edge BW Fre. Incumbent (MHz) Incumbent Freq 20 6455 6455	320 5950 Lower Edge -86.5 6105 -90 6105 -77.5 6105 -83.5 6105 -90 6105 -77.5 6260 -90 0 -90 1	 A Pre- A Pre- A Pre- 	$ \begin{array}{c c c c c } & -80.5 & & & & & & & & & & & & & & & & & & &$		

				-90		mal transmissi	I		
			101 - 102		-85.5	0	-62		
Band 7	20	6855	fc1 = fc2	-69.5		mal transmiss	I		
UNII			6855		-65	<90	-62		
				-69	Cease transmission				
					-64.5	100	-62		
				(dBm)	(dBm)				
Band	BW (MHz)	Fre. (MHz)	Incumbent Freq (MHz)	AWGN Signal Level (at Antenna Port)	Incumbent Signal Level (Refer to 0dBi Antenna)	Detection Rate(%)	Threshold Level(dB m)		
				-90	-85.5 Norr	0 mal transmissi	-62 ion		
			Upper Edge	ge		mal transmiss			
				-67.5	-63	<90	-62		
			6580			ase transmissi			
				-66.7	-62.2	100	-62		
					Nori	mal transmiss	ion		
				-90	-85.5	0	-62		
Band 5/6/7	520	0423	fc1 = fc2	-76.5	Mini	mal transmiss	ion		
UNII	320	6425	6425	-78.5	-74	<90	-62		
320	320			-77.5	Cea	ase transmissi	on		
			Lower Edge		-73	90	-62		
				-90	Nori	mal transmissi	ion		
								-85.5	0
			6270	-80.5	Mini	mal transmiss	ion		
			0070		-76	<90	-62		
				-79.5	Cea	ase transmissi	on		
					-75	90	-62		

	ĺ		1	1	1		1		
				70 5	-66	90	-62		
				-70.5	Cea	se transmissi	on		
			6590		-66.4	<90	-62		
			Lower Edge	-70.9	Mini	mal transmiss	ion		
					-85.5	0	-62		
				-90	Nori	nal transmissi	ion		
					-62.5	100	-62		
320				-67	Cea	Cease transmission			
	UNII		6745		-63.5	<90	-62		
Band	320	6745	fc1 = fc2	-68	Minimal transmission				
7(8)	7(8)				-85.5	0	-62		
				-90	Normal transmission				
					-72	90	-62		
			0000	-76.5	Cea	ase transmissi	ssion		
			6900		-73	<90	-62		
			Upper Edge	-77.5	-77.5 Minii		ion		
				-90	-85.5	0	-62		
					Normal transmission				
Band	BW (MHz)	Fre. (MHz)	Incumbent Freq (MHz)	AWGN Signal Level (at Antenna Port) (dBm)	Incumbent Signal Level (Refer to 0dBi Antenna) (dBm)	Detection Rate(%)	Threshold Level(dB m)		
					-62.1	100	-62		
				-66.6	Cease transmission				
UNII		7045	7015	07 F	-63	<90	-62		
Band 8	20	7015	fc1 = fc2	-67.5	Mini	mal transmiss	ion		
					-85.5	0	-62		
			-90		Nori	mal transmiss	ion		

				1						
					-66	90	-62			
				-70.5	Cea	Cease transmission				
			6590		-66.4	<90	-62			
320		Lower Edge		Minir	nal transmiss	ion				
			-90	-85.5	0	-62				
				Normal transmission						
			-67	-62.5	100	-62				
				Cea	se transmissi	on				
UNII		6745	6745 fc1 = fc2	-68	-63.5	<90	-62			
Band	320				Minir	nal transmiss	ion			
8(7)					-85.5	0	-62			
				-90	Normal transmission					
					-72	90	-62			
				-76.5	Cea	Cease transmission				
			6900		-73	<90	-62			
			Upper Edge	-77.5	Minimal transmission					
					-85.5	0	-62			
				-90				-90	Norr	nal transmiss

Note: Incumbent signal level (dBm) = AWGN Signal power Level (dBm)-Antenna Gain (dBi),

The EUT encounters the incumbent signal that its power level is less than or equal to the detection

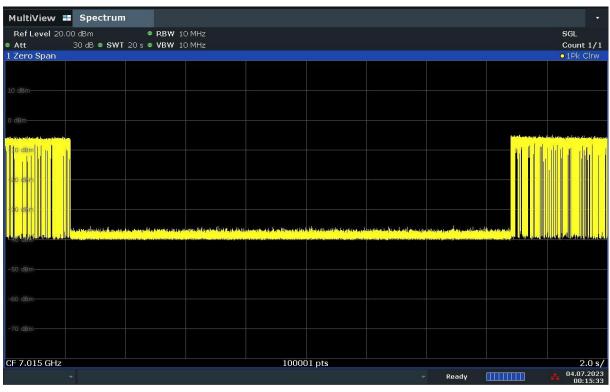
threshold (-62dBm) with reference to 0dBi antenna gain. Path loss is negligible (0dB).

EUT support bandwidth reduction mechanism.

Conclusion: PASS

Test graphs as below:

Mode	AWGN Signal Level	ceased transmission
802.1be-EHT20-7015MHz	See test graph	See test graph
802.11be-EHT320-6105MHz(middle)	See test graph	See test graph



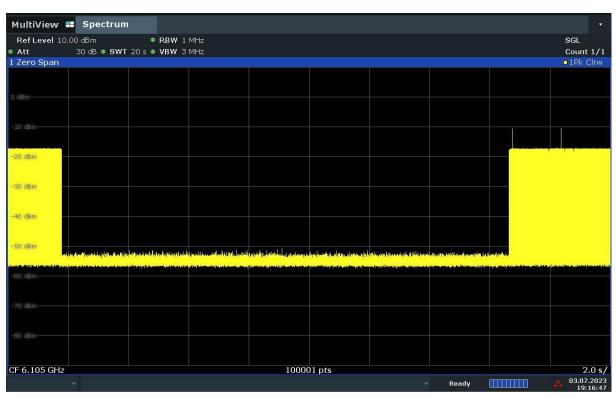
Ref Level -20.00 dBm	● RBW	1 MH →				SGL
	SWT 30.1 ms = VBW 3		Auto Curren			
ACLR	SWI SULINS - VEW		: Auto Sweep			Count 100/10 • 1Rm Ave
AGER			1			
0 d8m						
			T#1			
0 dBm						
				energia de la compani de deservo		
a in the first of the state of the					And the second second	
The second state in the second state descent in the later, but the	and the second state of th				Note that a single second second	
- 7.015 GHz		30001 pt		3.0 MHz/		Span 30.0 M
Result Summary			None			
Channel	Bandwidth		Offset	Power		
Tx1 (Ref) Tx Total	10.000 MHz			-66.62 dBi -66.62 dBi	n	
and roten						. 04.07.20

00:24:13 04.07.2023

Contention Based Protocol 802.11be-EHT20 (ch7015MHz-AWGN Signal Level)

00:15:34 04.07.2023

Contention Based Protocol 802.11be-EHT20 (ch7015MHz-ceased transmission)



Ref Level -30.00 dBm	trum • RBW	1 0/04-					SGL
			0				Count 100/10
ACLR	SWT 30.1 ms • VBW 3		Auto Sweep				• 1Rm Av
AGEN					_		
			T*1				
			1.0.00				
0 d8m							
			يلون ۾ ٿار اڪر بيني ڪارون _{جو} ويون _ڪ ر پيڪري ٿي جو ڪري	And the state of the			
					-		
00 dBm							
F 6.105 GHz		30001 pts		3.0 MHz/			Span 30.0 M
Result Summary		00001 pt3	None	010 111127			oparrooro
Channel	Bandwidth		Offset	Powe	er		
Tx1 (Ref)	10.000 MHz			-77.54	dBm		
Tx Total				-77.54	dBm		

20:25:15 03.07.2023

Contention Based Protocol 802.11be-EHT320 (ch6105MHz-middle-AWGN Signal Level)

19:16:48 03.07.2023

Contention Based Protocol 802.11be-EHT320 (ch6105MHz-middle-ceased transmission)

A.7. In-Band Emissions

Measurement Limit and Method:

1. Take nominal bandwidth as reference channel bandwidth provided that 26 dB emission bandwidth is always larger than nominal bandwidth

2. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:

- a) Set the span to encompass the entire 26 dB EBW of the signal.
- b) Set RBW = same RBW used for 26 dB EBW measurement.
- c) Set VBW \geq 3 X RBW
- d) Number of points in sweep \geq [2 X span / RBW].
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging)
- g) Trace average at least 100 traces in power averaging (rms) mode.

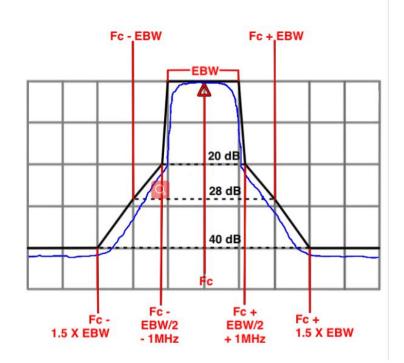
h) Use the peak search function on the instrument to find the peak of the spectrum.

3. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:

a. Suppressed by 20 dB at 1 MHz outside of the channel edge. (The channel edge is defined as the 26-dB point on either side of the carrier center frequency.)

b. Suppressed by 28 dB at one channel bandwidth from the channel center.

c. Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.


4. Adjust the span to encompass the entire mask as necessary.

- 5. Clear trace.
- 6. Trace average at least 100 traces in power averaging (rms) mode.
- 7. Adjust the reference level as necessary so that the crest of the channel touches the top of the

emission mask.

Generic Emission Mask

The measurement is made according to KDB 987594.

Measurement Results:

TestMode	Antenna	Channel	Result	Limit	Verdict
	Ant2	5955	See test graph	See test graph	PASS
	Ant2	6175	See test graph	See test graph	PASS
	Ant2	6415	See test graph	See test graph	PASS
	Ant2	6435	See test graph	See test graph	PASS
	Ant2	6475	See test graph	See test graph	PASS
	Ant2	6515	See test graph	See test graph	PASS
802.11a	Ant2	6535	See test graph	See test graph	PASS
	Ant2	6695	See test graph	See test graph	PASS
	Ant2	6855	See test graph	See test graph	PASS
	Ant2	6875	See test graph	See test graph	PASS
	Ant2	6895	See test graph	See test graph	PASS
	Ant2	6995	See test graph	See test graph	PASS
	Ant2	7115	See test graph	See test graph	PASS
	Ant1	5955	See test graph	See test graph	PASS
	Ant2	5955	See test graph	See test graph	PASS
	Ant1	6175	See test graph	See test graph	PASS
802.11be-EHT20 MIMO	Ant2	6175	See test graph	See test graph	PASS
	Ant1	6415	See test graph	See test graph	PASS
	Ant2	6415	See test graph	See test graph	PASS
	Ant1	6435	See test graph	See test graph	PASS

©Copyright. All rights reserved by CTTL.

Page 155 of 581

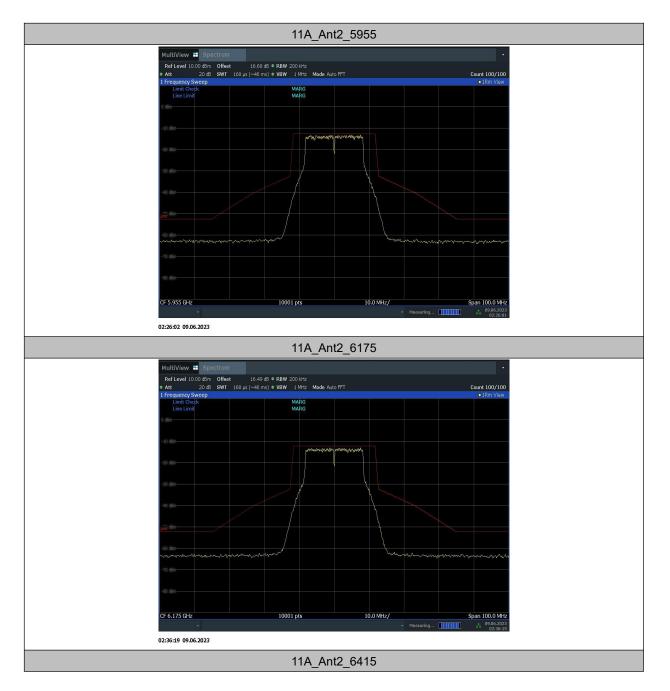
		1		1	·
	Ant2	6435	See test graph	See test graph	PASS
	Ant1	6475	See test graph	See test graph	PASS
	Ant2	6475	See test graph	See test graph	PASS
	Ant1	6515	See test graph	See test graph	PASS
	Ant2	6515	See test graph	See test graph	PASS
	Ant1	6535	See test graph	See test graph	PASS
	Ant2	6535	See test graph	See test graph	PASS
	Ant1	6695	See test graph	See test graph	PASS
	Ant2	6695	See test graph	See test graph	PASS
	Ant1	6855	See test graph	See test graph	PASS
	Ant2	6855	See test graph	See test graph	PASS
	Ant1	6875	See test graph	See test graph	PASS
	Ant2	6875	See test graph	See test graph	PASS
	Ant1	6895	See test graph	See test graph	PASS
	Ant2	6895	See test graph	See test graph	PASS
	Ant1	6995	See test graph	See test graph	PASS
	Ant2	6995	See test graph	See test graph	PASS
	Ant1	7115	See test graph	See test graph	PASS
	Ant2	7115	See test graph	See test graph	PASS
	Ant1	5965	See test graph	See test graph	PASS
	Ant2	5965	See test graph	See test graph	PASS
	Ant1	6165	See test graph	See test graph	PASS
	Ant2	6165	See test graph	See test graph	PASS
	Ant1	6405	See test graph	See test graph	PASS
	Ant2	6405	See test graph	See test graph	PASS
	Ant1	6445	See test graph	See test graph	PASS
	Ant2	6445	See test graph	See test graph	PASS
	Ant1	6485	See test graph	See test graph	PASS
	Ant2	6485	See test graph	See test graph	PASS
	Ant1	6525	See test graph	See test graph	PASS
802.11be-EHT40	Ant2	6525	See test graph	See test graph	PASS
MIMO	Ant1	6565	See test graph	See test graph	PASS
	Ant2	6565	See test graph	See test graph	PASS
	Ant1	6685	See test graph	See test graph	PASS
	Ant2	6685	See test graph	See test graph	PASS
	Ant1	6845	See test graph	See test graph	PASS
	Ant2	6845	See test graph	See test graph	PASS
	Ant1	6885	See test graph	See test graph	PASS
	Ant2	6885	See test graph	See test graph	PASS
	Ant1	6925	See test graph	See test graph	PASS
	Ant2	6925	See test graph	See test graph	PASS
	Ant1	6965	See test graph	See test graph	PASS
	Ant2	6965	See test graph	See test graph	PASS
	1	-	- 5 1	. <u> </u>	1

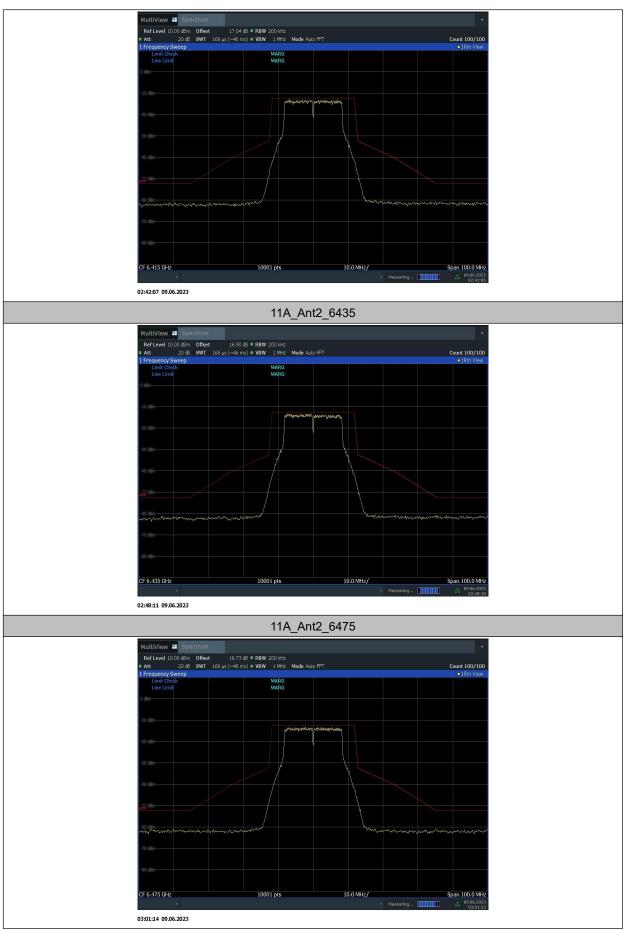
©Copyright. All rights reserved by CTTL.

Page 156 of 581

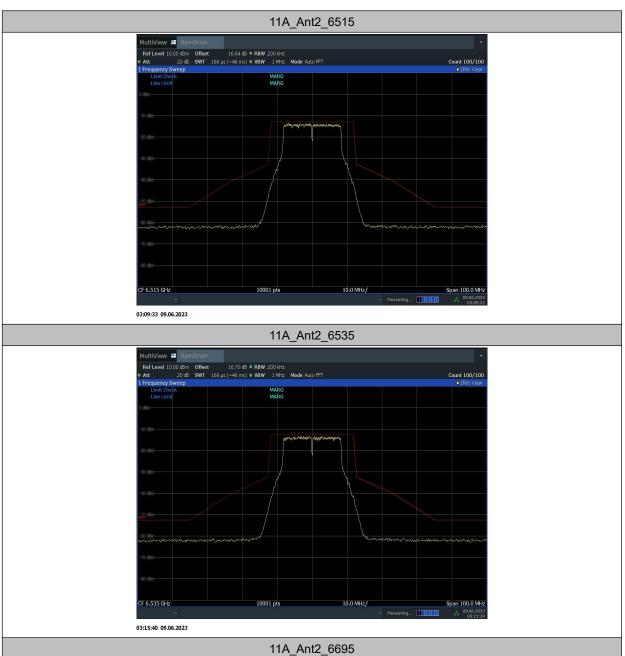
	Ant1	7085	See test graph	See test graph	PASS
-	Ant2	7085	See test graph	See test graph	PASS
	Ant1	5985	See test graph	See test graph	PASS
	Ant2	5985	See test graph	See test graph	PASS
-	Ant1	6145	See test graph	See test graph	PASS
-	Ant2	6145	See test graph	See test graph	PASS
-	Ant1	6385	See test graph	See test graph	PASS
-	Ant2	6385	See test graph	See test graph	PASS
_	Ant1	6465	See test graph	See test graph	PASS
_	Ant2	6465	See test graph	See test graph	PASS
_	Ant1	6545	See test graph	See test graph	PASS
_	Ant2	6545	See test graph	See test graph	PASS
802.11be-EHT80	Ant1	6625	See test graph	See test graph	PASS
MIMO	Ant2	6625	See test graph	See test graph	PASS
	Ant1	6705	See test graph	See test graph	PASS
-	Ant2	6705	See test graph	See test graph	PASS
_	Ant1	6785	See test graph	See test graph	PASS
_	Ant2	6785	See test graph	See test graph	PASS
	Ant1	6865	See test graph	See test graph	PASS
	Ant2	6865	See test graph	See test graph	PASS
	Ant1	6945	See test graph	See test graph	PASS
	Ant2	6945	See test graph	See test graph	PASS
	Ant1	7025	See test graph	See test graph	PASS
	Ant2	7025	See test graph	See test graph	PASS
	Ant1	6025	See test graph	See test graph	PASS
-	Ant2	6025	See test graph	See test graph	PASS
-	Ant1	6185	See test graph	See test graph	PASS
-	Ant2	6185	See test graph	See test graph	PASS
-	Ant1	6345	See test graph	See test graph	PASS
-	Ant2	6345	See test graph	See test graph	PASS
802.11be-EHT160	Ant1	6505	See test graph	See test graph	PASS
MIMO	Ant2	6505	See test graph	See test graph	PASS
-	Ant1	6665	See test graph	See test graph	PASS
-	Ant2	6665	See test graph	See test graph	PASS
-	Ant1	6825	See test graph	See test graph	PASS
-	Ant2	6825	See test graph	See test graph	PASS
-	Ant1	6985	See test graph	See test graph	PASS
-	Ant2	6985	See test graph	See test graph	PASS
	Ant1	6105	See test graph	See test graph	PASS
	Ant2	6105	See test graph	See test graph	PASS
802.11be-EHT320	Ant1	6265	See test graph	See test graph	PASS
MIMO	Ant2	6265	See test graph	See test graph	PASS
-	Ant1	6425	See test graph	See test graph	PASS

©Copyright. All rights reserved by CTTL.


Page 157 of 581


	Ant2	6425	See test graph	See test graph	PASS
	Ant1	6585	See test graph	See test graph	PASS
	Ant2	6585	See test graph	See test graph	PASS
	Ant1	6745	See test graph	See test graph	PASS
	Ant2	6745	See test graph	See test graph	PASS
	Ant1	6905	See test graph	See test graph	PASS
	Ant2	6905	See test graph	See test graph	PASS

Note: Ant1 of the result table and result graph corresponds to ant7 of the EUT, ant2 of the result table and result graph corresponds to ant10 of the EUT.



©Copyright. All rights reserved by CTTL.

