DASY5 Validation Report for Head TSL

Date: 25.01.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1262

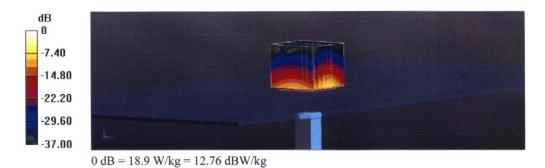
Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.65$ S/m; $\epsilon_r = 35.6$; $\rho = 1000$ kg/m³

Medium parameters used: f = 5250 MHz, $\sigma = 4.05 \text{ S/m}$; $\varepsilon_r = 35.6$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5600 MHz; $\sigma = 5.03 \text{ S/m}$; $\varepsilon_r = 35.4$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5750 MHz; $\sigma = 5.15 \text{ S/m}$; $\varepsilon_r = 35.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.34 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 70.8% Maximum value of SAR (measured) = 18.1 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.17 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 67.9% Maximum value of SAR (measured) = 18.9 W/kg

Certificate No: D5GHzV2-1262 Jan23


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.05 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.1% Maximum value of SAR (measured) = 18.4 W/kg

Certificate No: D5GHzV2-1262_Jan23

Impedance Measurement Plot for Head TSL

6.5G Dipole Calibration Certificate

	, Switzerland		Servizio svizzero di taratura
ccredited by the Swiss Accreditati he Swiss Accreditation Service Iultilateral Agreement for the re-	is one of the signatorie	es to the EA	Accreditation No.: SCS 0108
Client CTTL-BJ (Aude	n)	Certificate N	lo: D6.5GHzV2-1059_Dec
CALIBRATION C	ERTIFICATI	E	
Object	D6.5GHzV2 - SN	l:1059	
Calibration procedure(s)	QA CAL-22.v6		
	Calibration Proce	edure for SAR Validation Source	s between 3-10 GHz
Calibration date:	December 01, 20	021	
		robability are given on the following pages arry facility: environment temperature $(22 \pm 3)^{\circ}$	
All calibrations have been conduct Calibration Equipment used (M&TI	ed in the closed laborator	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards	ed in the closed laborator E critical for calibration)		
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP	ed in the closed laborator E critical for calibration)	ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91	ed in the closed laborator E critical for calibration) ID # SN: 104778	ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291)	C and humidity < 70%. Scheduled Calibration Apr-22
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T	ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination	ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 100967	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 100967 SN: BH9394 (20k)	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03243) 09-Apr-21 (No. 217-03344)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03243) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 100967 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03243) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21
	ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 100967 SN: BH3394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908 ID #	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G	ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 100967 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908 ID # SN: 669	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03294) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house) 28-Mar-17 (in house check Dec-18)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Dec-21
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G	ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 100967 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908 ID # SN: 669 SN: 101093	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house) 28-Mar-17 (in house check Dec-18) 10-May-12 (in house check Dec-18)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Dec-21 In house check: Dec-21
All calibrations have been conduct Calibration Equipment used (M&TI Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor R&S NRP33T Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator Anapico APSIN20G Network Analyzer R&S ZVL13	ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 100967 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7405 SN: 908 ID # SN: 669 SN: 101093	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 08-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03293) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-7405_Dec20) 24-Jun-21 (No. DAE4-908_Jun21) Check Date (in house) 28-Mar-17 (in house check Dec-18) 10-May-12 (in house check Dec-18)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Dec-21 In house check: Dec-21

Certificate No: D6.5GHzV2-1059_Dec21

Page 1 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
 body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.0	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom		
Distance Dipole Center - TSL	5 mm	with Spacer	
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)	
Frequency	6500 MHz ± 1 MHz		

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	6.13 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	29.0 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	289 W/kg ± 24.7 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	5.33 W/kg	

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 6.2 jΩ		
Return Loss	- 23.5 dB		

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	289 W/m ²
APD measured	normalized to 1W 2890 W/m ² ± 29.2 %	
APD averaged over 4 cm ²	condition	
APD averaged over 4 cm ² APD measured	condition 100 mW input power	130 W/m²

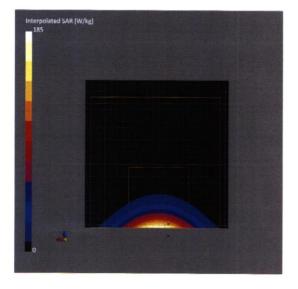
*The reported APD values have been derived using psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

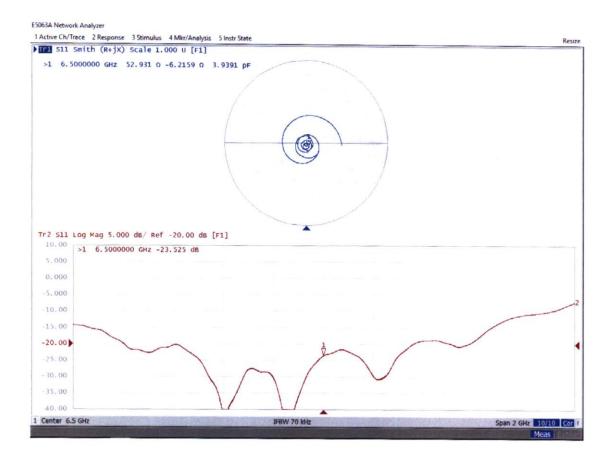
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY6 Validation Report for Head TSL

Measurement Report for D6.5GHz-1059, UID 0 -, Channel 6500 (6500.0MHz)


Device under T	est Properties						
Name, Manufa	cturer Di	mensions	[mm] IM	EI	DUT Type	2	
D6.5GHz	16	5.0 x 6.0 x 3	300.0 SN	: 1059	- "	_	
Exposure Cond	itions						
Phantom	Position, Test	Band	Group,	Frequency	Conversion	TSL Cond.	TSL
Section, TSL	Distance [mm]		UID	[MHz]	Factor	[S/m]	Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.75	6.13	34.3
Hardware Setu	p						
Phantom	TS	iL.		Probe, Calib	oration Date	DAE, Calib	ration Date
MFP V8.0 Cente	er - 1182 HI	BBL600-10	000V6	EX3DV4 - SM	7405, 2020-12-30		08, 2021-06-24
Scan Setup				Measureme	ent Results		
			Zoom Scan				Zoom Scan
Grid Extents [r	nm]		22.0 x 22.0 x 22.0	Date		20	021-12-01, 13:15
Grid Steps [mr	n]		3.4 x 3.4 x 1.4	psSAR1g [\	N/Kg]		29.0
Sensor Surface	e [mm]		1.4	psSAR10g	[W/Kg]		5.33
Graded Grid			Yes	Power Drif	ft [dB]		-0.00
Grading Ratio			1.4	Power Sca	ling		Disabled
MAIA			N/A	Scaling Fac	tor [dB]		
Surface Detect	tion		VMS + 6p	TSL Correc	tion		No correction
Scan Method			Measured	M2/M1 [%	5]		51.1
				Dist 3dB P	eak [mm]		4.8

Certificate No: D6.5GHzV2-1059_Dec21

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D6.5GHzV2-1059_Dec21

Page 6 of 6

10G Dipole Calibration Certificate

Engineering AG Zeughausstrasse 43, 8004 Zurio	ory of ch, Switzerland	S S S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredite The Swiss Accreditation Servic Multilateral Agreement for the r	e is one of the signat	tories to the EA	reditation No.: SCS 0108
CTTL (Auden)		Certificate No:	5G-Veri10-1005_Jan23
CALIBRATION	CERTIFICA	ATE	
Object	5G Verificatio	on Source 10 GHz - SN: 1005	
Calibration procedure(s)	QA CAL-45.v Calibration pr	4 rocedure for sources in air above 6 GH	z
Calibration date:	January 11, 2	2023	
	analinties with confiden	o national standards, which realize the physical units of the probability are given on the following pages and a pratory facility: environment temperature (22 ± 3)°C ar	re part of the certificate.
Calibration Equipment used (M&T			nd humidity < 70%.
	1	,	
Primary Standards	ID #	Cal Date (Certificate No.)	
	ID # SN: 9374	Cal Date (Certificate No.) 2023-01-03(No. ELImmWV/3-0374, 10023)	Scheduled Calibration
Reference Probe EUmmWV3		Cal Date (Certificate No.) 2023-01-03(No. EUmmWV3-9374_Jan23) 2022-06-27 (No. DAE4ip-1602_Jun22)	Scheduled Calibration Jan-24 Jun-23
Reference Probe EUmmWV3 DAE4ip	SN: 9374 SN: 1602	2023-01-03(No. EUmmWV3-9374_Jan23) 2022-06-27 (No. DAE4ip-1602_Jun22)	Jan-24 Jun-23
Reference Probe EUmmWV3 DAE4ip econdary Standards	SN: 9374 SN: 1602	2023-01-03(No. EUmmWV3-9374_Jan23) 2022-06-27 (No. DAE4ip-1602_Jun22) Check Date (in house)	Jan-24 Jun-23 Scheduled Check
eference Probe EUmmWV3 AE4ip econdary Standards F generator R&S SMF100A	SN: 9374 SN: 1602 ID # SN: 100184	2023-01-03(No. EUmmWV3-9374_Jan23) 2022-06-27 (No. DAE4ip-1602_Jun22) Check Date (in house) 19-May-22 (in house check Nov-22)	Jan-24 Jun-23 Scheduled Check In house check: Nov-23
Primary Standards Reference Probe EUmmWV3 DAE4ip Recondary Standards RF generator R&S SMF100A Yower sensor R&S NRP18S-10	SN: 9374 SN: 1602	2023-01-03(No. EUmmWV3-9374_Jan23) 2022-06-27 (No. DAE4ip-1602_Jun22) Check Date (in house)	Jan-24 Jun-23 Scheduled Check
Reference Probe EUmmWV3 DAE4ip econdary Standards IF generator R&S SMF100A ower sensor R&S NRP18S-10	SN: 9374 SN: 1602 ID # SN: 100184 SN: 101258	2023-01-03(No. EUmmWV3-9374_Jan23) 2022-06-27 (No. DAE4ip-1602_Jun22) Check Date (in house) 19-May-22 (in house check Nov-22) 31-May-22 (in house check Nov-22)	Jan-24 Jun-23 Scheduled Check In house check: Nov-23
Reference Probe EUmmWV3 DAE4ip Secondary Standards IF generator R&S SMF100A	SN: 9374 SN: 1602 ID # SN: 100184 SN: 101258	2023-01-03(No. EUmmWV3-9374_Jan23) 2022-06-27 (No. DAE4ip-1602_Jun22) Check Date (in house) 19-May-22 (in house check Nov-22) 31-May-22 (in house check Nov-22)	Jan-24 Jun-23 Scheduled Check In house check: Nov-23 In house check: Nov-23
Reference Probe EUmmWV3 DAE4ip Secondary Standards IF generator R&S SMF100A Yower sensor R&S NRP18S-10	SN: 9374 SN: 1602 ID # SN: 100184 SN: 101258	2023-01-03(No. EUmmWV3-9374_Jan23) 2022-06-27 (No. DAE4ip-1602_Jun22) Check Date (in house) 19-May-22 (in house check Nov-22) 31-May-22 (in house check Nov-22)	Jan-24 Jun-23 Scheduled Check In house check: Nov-23 In house check: Nov-23

Certificate No: 5G-Veri10-1005_Jan23

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

CW Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- *Measurement Conditions: (1) 10 GHz:* The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. *(2) 30, 45, 60 and 90 GHz*. The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 5G-Veri10-1005_Jan23

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
XY Scan Resolution	dx, dy = 7.5 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture to Measured Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m ²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	86.1	153	1.27 dB	57.5	53.5	1.28 dB
Distance Horn Aperture to Measured Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	86.1	153	1.27 dB	55.4, 58.4, 58.6	51.6, 54.2, 54.6	1.28 dB

Square Averaging

Distance Horn Aperture to Measured Plane	Prad' (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m ²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	86.1	153	1.27 dB	57.5	53.4	1.28 dB
Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	86.1	153	1.27 dB	55.4, 58.4, 58.6	51.5, 54.1, 54.5	1.28 dB

Max Power Density

Distance Horn Aperture to Measured Plane	Prad' (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density Sn, Stot, Stot (W/m ²)	Uncertainty (k = 2)
10 mm	86.1	153	1.27 dB	57.0, 60.2, 60.3	1.28 dB

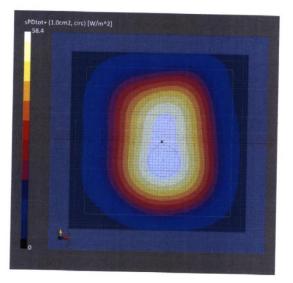
¹ Assessed ohmic and mismatch loss plus numerical offset: 0.55 dB

Certificate No: 5G-Veri10-1005_Jan23

Page 3 of 7

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Pro Name, Manufacturer		sions (mm)	19.471		
5G Verification Source 10 G		x 100.0 x 172.0	IMEI SN: 1005	DUT Type	
Exposure Conditions					
Phantom Section	Position, Test I [mm]	Distance Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	d CW	10000.0, 10000	1.0
Hardware Setup Phantom mmWave Phantom - 1002	Mediu Air	m	Probe, Calibrat EUmmWV3 - St 2022-01-03	N9374_F1-55GHz,	DAE, Calibration Date DAE4ip Sn1602, 2022-06-27


Scan Setup

	5G Scan	
Grid Extents [mm]	120.0 x 120.0	Date
Grid Steps [lambda]	0.25 x 0.25	Avg. Area [cm ²]
Sensor Surface [mm] MAIA	10.0	Avg. Type
MAIA	MAIA not used	psPDn+ [W/m ²]
		psPDtot+ [W/m ²]
		psPDmod+ [W/m ²]
		Max(Sn) [W/m ²]
		Max(Stot) [W/m ²]
		Max(Stot) [W/m ²]
		E _{max} [V/m]
		Power Drift [dB]

Probe, Calil	bration Date	
EUmmWV3	- SN9374_F1-55GHz,	
2022-01-03		

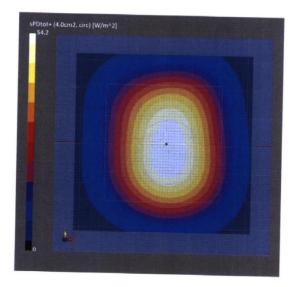
Measurement Results

5G Scan
2023-01-11, 08:25
1.00
Circular Averaging
55.4
58.4
58.6
57.0
60.2
60.3
153
-0.00

Certificate No: 5G-Veri10-1005_Jan23

Page 4 of 7

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

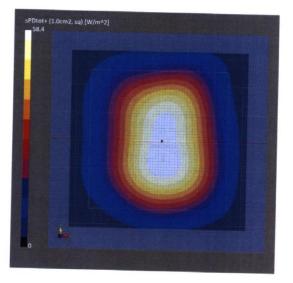

Device under Test Pro Name, Manufacturer 5G Verification Source 10 G	Dimensions (mm		IMEI SN: 1005	DUT Type	
Exposure Conditions Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	cw	10000.0, 10000	1.0

Hardware Setup

Medium Air	Probe, Calibration Date EUmmWV3 - SN9374_F1-55GHz, 2022-01-03	DAE, Calibration Date DAE4ip Sn1602, 2022-06-27
		2022-00-27
		Air EUmmWV3 - SN9374_F1-55GHz,

Scan Setup

Scan Setup		Measurement Results	
Grid Extents [mm] Grid Steps [lambda] Sensor Surface [mm] MAIA	5G Scan 120.0 x 120.0 0.25 x 0.25 10.0 MAIA not used	Date Avg. Area [cm ²] Avg. Type psPDn+ [W/m ²] psPDtot+ [W/m ²] Max(Sn) [W/m ²] Max(Stot) [W/m ²] Max(Stot]) [W/m ²] E _{max} [V/m] Power Drift [dB]	5G Scan 2023-01-11, 08:25 4.00 Circular Averaging 51.6 54.2 54.6 57.0 60.2 60.3 153 -0.00



Certificate No: 5G-Veri10-1005_Jan23

Page 5 of 7

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Pro	operties				
Name, Manufacturer	Dimensions (mm	n]	IMEI		
5G Verification Source 10 G	iHz 100.0 x 100.0 x 1		SN: 1005	DUT Type	
Exposure Conditions					
Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0
Hardware Setup Phantom mmWave Phantom - 1002	Medium Air		Probe, Calibration Da EUmmWV3 - SN9374 2022-01-03		DAE, Calibration Date DAE4ip Sn1602, 2022-06-27
Scan Setup			Measurement Re	esults	
Grid Extents (mm) Grid Steps [lambda] Sensor Surface (mm) MAIA		56 Sca 120.0 x 120 0.25 x 0.2 10 MAIA not use	.0 Date 25 Avg. Area [cm ²] .0 Avg. Type		5G Scan 2023-01-11, 08:25 1.00 Square Averaging 55.4 58.4 58.6 57.0 60.2 60.3 153 -0.00

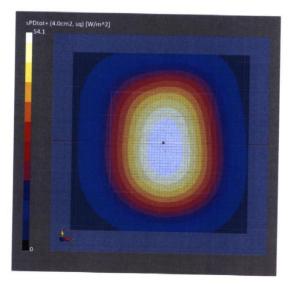
Certificate No: 5G-Veri10-1005_Jan23

Page 6 of 7

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Pro Name, Manufacturer 5G Verification Source 10 C	Dimensions (mm		IMEI SN: 1005	DUT Type	
Exposure Conditions Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup


Phantom mmWave Phantom - 1002	Medium Air	Probe, Calibration Date EUmmWV3 - SN9374_F1-55GHz, 2022-01-03	DAE, Calibration Date DAE4ip Sn1602, 2022-06-27
			1011-00-27

Scan Setup

	5G Scan	
Grid Extents [mm]	120.0 × 120.0	
Grid Steps [lambda]	0.25 x 0.25	
Sensor Surface [mm]	10.0	
MAIA	MAIA not used	
		1

Measurement Results

	5G Scan
Date	2023-01-11, 08:25
Avg. Area [cm ²]	4.00
Avg. Type psPDn+ [W/m²]	Square Averaging
psPDtot+ [W/m ²]	51.5
psPDmod+ [W/m ²]	54.1 54.5
Max(Sn) [W/m ²]	57.0
Max(Stot) [W/m ²]	60.2
Max(Stot) [W/m²] E _{max} [V/m]	60.3
Power Drift [dB]	153
	-0.00

Certificate No: 5G-Veri10-1005_Jan23

Page 7 of 7

13 MHz Dipole Calibration Certificate

ccredited by the Swiss Accreditation he Swiss Accreditation Service i		s to the EA	Accreditation No.: SCS 0108
ultilateral Agreement for the rec	ognition of calibration		CLA13-1009_May23
Beijing			02410 1000_may20
ALIBRATION C	ERTIFICATE		
Dbject	CLA13 - SN: 100	9	
	04 041 15 v10		
Calibration procedure(s)	QA CAL-15.v10	dure for SAR Validation Sources	below 700 MHz
	Calibration 11000	dure for SATT validation Sources	
Calibration date:	May 19, 2023		
Il calibrations have been conducte	d in the closed laborator	obability are given on the following pages any facility: environment temperature (22 \pm 3)°C	
Il calibrations have been conducte	d in the closed laborator		
NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	d in the closed laborator critical for calibration)		
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2	d in the closed laborator critical for calibration) ID # SN: 104778	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805)	C and humidity < 70%. Scheduled Calibration Mar-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
Il calibrations have been conducte calibration Equipment used (M&TE trimary Standards tower meter NRP2 tower sensor NRP-Z91 tower sensor NRP-Z91 teference 20 dB Attenuator type-N mismatch combination teference Probe EX3DV4	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
Il calibrations have been conducte Calibration Equipment used (M&TE trimary Standards cower meter NRP2 cower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 DAE4	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03810) 06-Jan-23 (No. EX3-3877_Jan23)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24
Il calibrations have been conducte Calibration Equipment used (M&TE trimary Standards Tower meter NRP2 Tower sensor NRP-Z91 Neterence 20 dB Attenuator type-N mismatch combination teference Probe EX3DV4 NAE4 Secondary Standards Tower meter NRP2	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 06-Jan-23 (No. EX3-3877_Jan23) 27-Jan-23 (No. DAE4-654_Jan23)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Jan-24
Il calibrations have been conducte calibration Equipment used (M&TE trimary Standards lower meter NRP2 lower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination teference Probe EX3DV4 VAE4 lecondary Standards lower meter NRP2 lower sensor NRP-Z91	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 654 ID # SN: 107193 SN: 100922	Y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 06-Jan-23 (No. 217-03810) 06-Jan-23 (No. 217-03810) 06-Jan-23 (No. 217-03810) 06-Jan-23 (No. DAE4-654_Jan23) 27-Jan-23 (No. DAE4-654_Jan23) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Jan-24 Jan-24 Scheduled Check
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe EX3DV4 PAE4 Recondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100922 SN: 100418	Y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 06-Jan-23 (No. DAE4-654_Jan23) Z7-Jan-23 (No. DAE4-654_Jan23) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Jan-24 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Dec-24
Il calibrations have been conducte calibration Equipment used (M&TE trimary Standards lower meter NRP2 lower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 VAE4 lecondary Standards lower meter NRP2 lower sensor NRP-Z91 lower sensor NRP-Z91 lower sensor NRP-Z91 lower sensor NRP-Z91 lF generator HP 8648C	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 022552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100922 SN: 100418 SN: US3642U01700	Y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 06-Jan-23 (No. 217-03810) 06-Jan-23 (No. EX3-3877_Jan23) 27-Jan-23 (No. DAE4-654_Jan23) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22) 04-Aug-99 (in house check Jun-22)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Jan-24 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Dec-24 In house check: Jun-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference Probe Standards	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100922 SN: 100418	Y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 06-Jan-23 (No. DAE4-654_Jan23) Z7-Jan-23 (No. DAE4-654_Jan23) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Jan-24 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Dec-24
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Becondary Standards Power meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Power sensor NRP-291 Regenerator HP 8648C Retwork Analyzer Agilent E8358A	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 022552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100922 SN: 100418 SN: US3642U01700 SN: US41080477 Name	Y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 06-Jan-23 (No. EX3-3877_Jan23) 27-Jan-23 (No. DAE4-654_Jan23) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22) 01-Jan-04 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Jan-24 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Dec-24 In house check: Jun-24
Il calibrations have been conducte calibration Equipment used (M&TE trimary Standards lower meter NRP2 lower sensor NRP-291 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 VAE4 lecondary Standards lower meter NRP2 lower sensor NRP-291 lower sensor NRP-291 lower sensor NRP-291 lower sensor NRP-291 lower sensor NRP-291 legenerator HP 8648C letwork Analyzer Agilent E8358A	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 022552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100922 SN: 100418 SN: US3642U01700 SN: US41080477	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 06-Jan-23 (No. EX3-3877_Jan23) 27-Jan-23 (No. DAE4-654_Jan23) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Scheduled Check In house check: Dec-24 In house check: Oct-24 Signature
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 RF generator HP 8648C Network Analyzer Agilent E8358A Calibrated by:	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 022552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: 107193 SN: 100922 SN: 100922 SN: 100418 SN: US3642U01700 SN: US41080477 Name	Y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 06-Jan-23 (No. EX3-3877_Jan23) 27-Jan-23 (No. DAE4-654_Jan23) Check Date (in house) 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22) 01-Jan-04 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Scheduled Check In house check: Dec-24 In house check: Oct-24 Signature
	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 654 ID # SN: 107193 SN: 107193 SN: 100922 SN: 100418 SN: US3642U01700 SN: US41080477 Name Jeton Kastrati	y facility: environment temperature (22 ± 3)°C <u>Cal Date (Certificate No.)</u> 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03806) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 06-Jan-23 (No. DAE4-654_Jan23) <u>Check Date (in house)</u> 08-Nov-21 (in house check Dec-22) 15-Dec-09 (in house check Dec-22) 01-Jan-04 (in house check Dec-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22) Function Laboratory Technician	C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Jan-24 Scheduled Check In house check: Dec-24 In house check: Dec-24 In house check: Dec-24 In house check: Dec-24 In house check: Oct-24

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA13-1009_May23

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4	
Extrapolation	Advanced Extrapolation		
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm	
EUT Positioning	Touch Position		
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)	
Frequency	13 MHz ± 1 MHz		

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	55.0	0.75 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	0.72 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	0.558 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.573 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	1 W input power	0.344 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.353 W/kg ± 18.0 % (k=2)

Certificate No: CLA13-1009_May23

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 1.7 jΩ	
Return Loss	- 35.2 dB	

Additional EUT Data

Manufactured by	SPEAG

Certificate No: CLA13-1009_May23

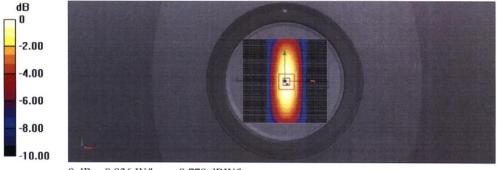
Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 19.05.2023

Test Laboratory: SPEAG, Zurich, Switzerland

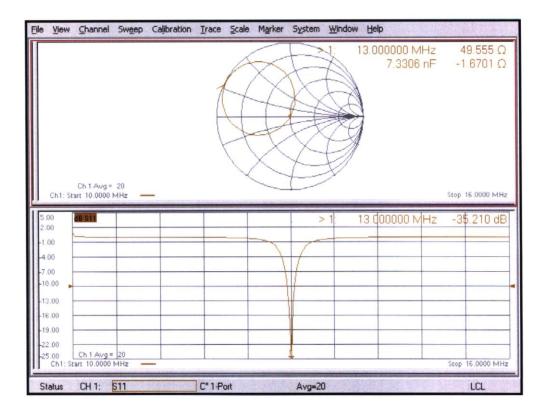
DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1009


Communication System: UID 0 - CW; Frequency: 13 MHz Medium parameters used: f = 13 MHz; σ = 0.72 S/m; ϵ_r = 53.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 06.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27.01.2023
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 31.63 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.17 W/kg SAR(1 g) = 0.558 W/kg; SAR(10 g) = 0.344 W/kg Smallest distance from peaks to all points 3 dB below = 15.2 mm Ratio of SAR at M2 to SAR at M1 = 77.5%Maximum value of SAR (measured) = 0.836 W/kg

0 dB = 0.836 W/kg = -0.778 dBW/kg

Certificate No: CLA13-1009_May23

Impedance Measurement Plot for Head TSL

Certificate No: CLA13-1009_May23

Page 6 of 6

ANNEX I Sensor Triggering Data Summary

Folder	Closed ANT1:	
1 01001	0100001/11111	

	Rear	13(mm)
SAR Sensor	Right	12(mm)
	Bottom	12(mm)

Folder Closed ANT2:

SAR Sensor	Front	12(mm)
SAR Sensor	Тор	12(mm)

Folder Closed ANT4:

SAR Sensor	Bottom	12(mm)

Folder Closed ANT7:

SAR Sensor	Front	12(mm)
SAR Sensor	Тор	12(mm)

Folder Open ANT1:

	Front	10(mm)
SAR Sensor	Rear	13(mm)
SAR Selisoi	Right	12(mm)
	Bottom	12(mm)

Folder Open ANT4:

	Front	9(mm)
SAR Sensor	Rear	12(mm)
	Bottom	12(mm)

Front, Rear, Top, Bottom and Right of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

Folder Closed ANT1:

Rear

Moving device toward the phantom:

	The power state											
Distance [mm] 18 17 16 15 14 13 12 11 10 9 8											8	
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	

Moving device away from the phantom:

	The power state												
Distance [mm] 8 9 10 11 12 13 14 15 16 17 18													
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal		

Right

Moving device toward the phantom:

The power state												
Distance [mm] 17 16 15 14 13 12 11 10 9 8 7												
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	
Maxima	Maxing davies away from the abortant											

Moving device away from the phantom:

The power state												
Distance [mm] 7 8 9 10 11 12 13 14 15 16 17												
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal	

Bottom

Moving device toward the phantom:

The power state												
Distance [mm] 17 16 15 14 13 12 11 10 9 8 7												
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	
Moving do	Moving device away from the phantom:											

Moving device away from the phantom:

	The power state												
Distance [mm] 7 8 9 10 11 12 13 14 15 16 17													
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal		

Folder Closed ANT2/7:

Front

Moving device toward the phantom:

The power state												
Distance [mm] 17 16 15 14 13 12 11 10 9 8 7											7	
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	

Moving device away from the phantom:

				T	he powe	er state					
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Тор

Moving device toward the phantom:

	The power state													
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7			
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low			
Moving de	Moving device away from the phantom:													
	The power state													
Distance [mm]	7	8	9 10) 11	12	13	14	1	5	16	17			

Low

Normal Normal

Normal Normal

Normal

Low

Folder Closed ANT4:

Bottom

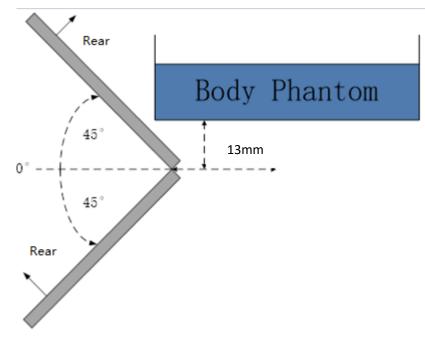
Main antenna

Moving device toward the phantom:

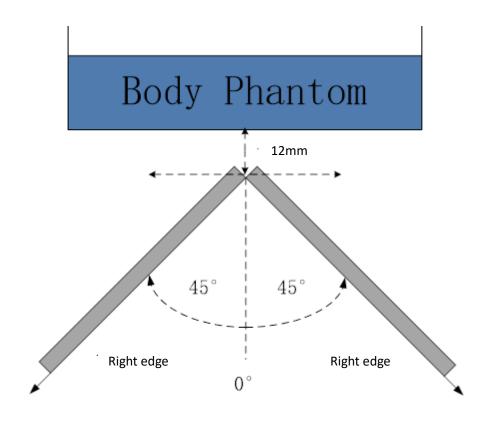
Low

Low

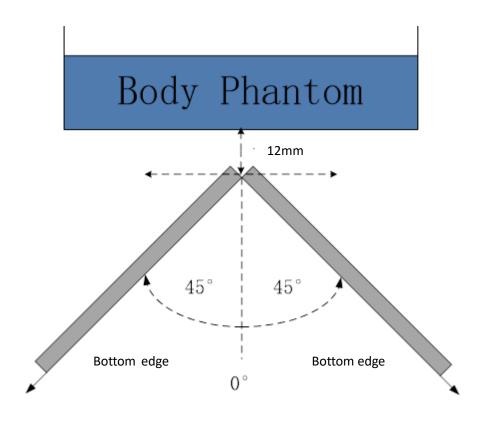
Low

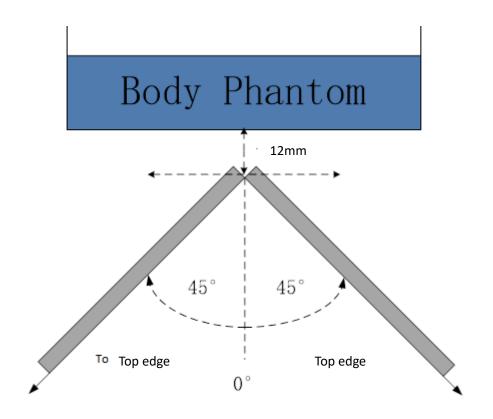

Low

				The pow	ver state						
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low
Movina de	vice away	from the	nhantom:								


Moving device away from the phantom:

				TI	he powe	er state					
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal


The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in \leq 10° increments until the tablet is ±45° or more from the vertical position at 0°.


The Rear evaluation

The Right edge evaluation

The Bottom edge evaluation

The Top edge evaluation

Folder Closed ANT1:

Front

Moving device toward the phantom:

				The pow	ver state						
Distance [mm]	15	14	13	12	11	10	9	8	7	6	5
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

				T	he powe	er state					
Distance [mm]	5	6	7	8	9	10	11	12	13	14	15
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Rear

Moving device toward the phantom:

			٦	The power	⁻ state						
Distance [mm]	18	17	16	15	14	13	12	11	10	9	8
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

				Th	ne powe	r state					
Distance [mm]	8	9	10	11	12	13	14	15	16	17	18
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Right

Moving device toward the phantom:

				The pow	/er state						
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low
Moving de	vice away	from the	nhantom:								

Moving device away from the phantom:

				T	he powe	er state					
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Bottom

Moving device toward the phantom:

				The pow	er state						
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

				T	he powe	er state					
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Folder Closed ANT4:

Front

Moving device toward the phantom:

The power state													
Distance [mm]	14	13	12	11	10	9	8	7	6	5	4		
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low		

Moving device away from the phantom:

The power state													
Distance [mm]	4	5	6	7	8	9	10	11	12	13	14		
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal		

Rear

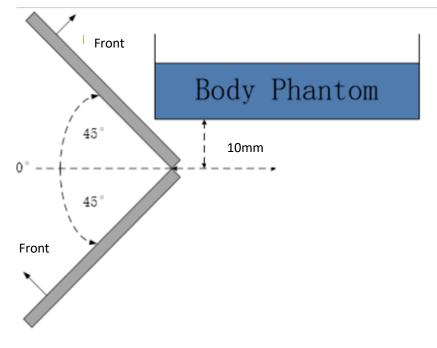
Moving device toward the phantom:

	The power state													
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7			
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low			

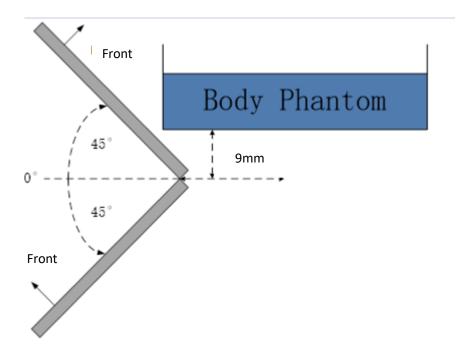
Moving device away from the phantom:

The power state													
Distance [mm]	istance [mm] 7 8 9 10 11 12 13 14 15 16							17					
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal		

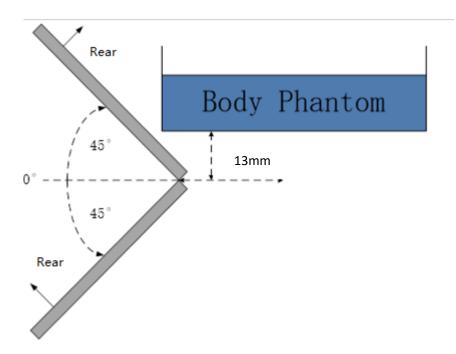
Bottom

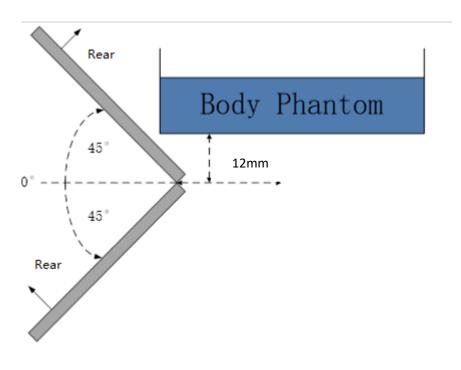

Moving device toward the phantom:

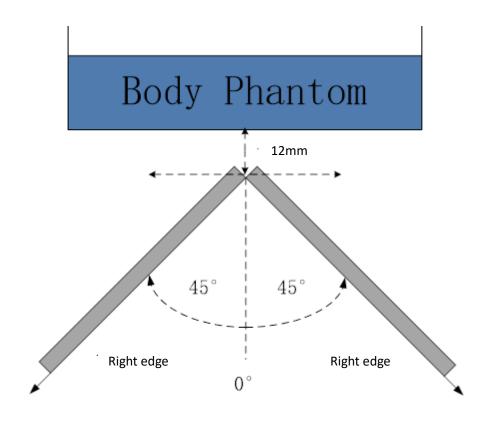
The power state														
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7			
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low			
Moving do	Moving device away from the phantom:													

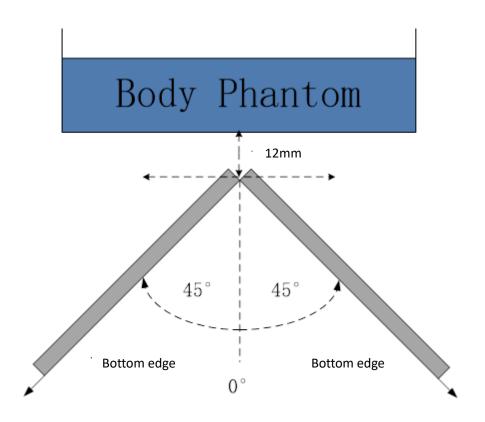

Moving device away from the phantom:

The power state													
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17		
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal		


The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in \leq 10° increments until the tablet is ±45° or more from the vertical position at 0°.




The Front evaluation for ANT4



The Rear evaluation for ANT4

The Right edge evaluation for ANT1

The Bottom edge evaluation

ANNEX J Accreditation Certificate

