

HAC RF TEST REPORT

No. I23Z60155-SEM01

For

OnePlus Technology (Shenzhen) Co., Ltd.

Mobile Phone

Model Name: CPH2513,CPH2515

With

Hardware Version: 11

Software Version: OxygenOS 13.1

FCC ID: 2ABZ2-AA534

Issued Date: 2023-2-28

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 51, Xueyuan Road, Haidian District, Beijing, P. R. China 100191. Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504 Email: <u>cttl_terminals@caict.ac.cn</u>, website: <u>www.caict.ac.cn</u>

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I23Z60155-SEM01	Rev.0 2023-2-28 Initial creation of		Initial creation of test report

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT	
1.3 PROJECT DATA	
1.4 Signature	
2 CLIENT INFORMATION	6
2.1 Applicant Information	
2.2 MANUFACTURER INFORMATION	6
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1 About EUT	
3.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
3.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
3.4 AIR INTERFACES / BANDS INDICATING OPERATING MODES	
4 MAXIMUM OUTPUT POWER.	8
5 REFERENCE DOCUMENTS	8
5.1 Reference Documents for testing	8
6 OPERATIONAL CONDITIONS DURING TEST	9
6.1 HAC MEASUREMENT SET-UP	9
6.2 PROBE SPECIFICATION	10
6.3 TEST ARCH PHANTOM & PHONE POSITIONER	11
6.4 ROBOTIC SYSTEM SPECIFICATIONS	11
7 EUT ARRANGEMENT	12
7.1 WD RF EMISSION MEASUREMENTS REFERENCE AND PLANE	12
8 SYSTEM VALIDATION	13
8.1 VALIDATION PROCEDURE	13
8.2 VALIDATION RESULT	13
9 EVALUATION OF MIF	14
9.1 Introduction	14
9.2 MIF MEASUREMENT WITH THE AIA	
9.3 TEST EQUIPMENT FOR THE MIF MEASUREMENT	
9.4 DUT MIF RESULTS	15
10 EVALUATION FOR LOW-POWER EXEMPTION	16
10.1 Product testing threshold	
10.2 CONDUCTED POWER	
10.3 CONCLUSION	16
11 RF TEST PROCEDUERES	17
©Copyright. All rights reserved by CTTL. Page 3 of	53

CAICT No.I23Z60155-SEM01

12 MEASU	REMENT RESULTS (E-FIELD)	18
13 ANSIC 6	63.19-2011 LIMITS	18
14 MEASU	REMENT UNCERTAINTY	19
15 MAIN TI	EST INSTRUMENTS	20
ANNEX A	TEST LAYOUT	21
ANNEX B	TEST PLOTS	22
ANNEX C	SYSTEM VALIDATION RESULT	24
ANNEX D	PROBE CALIBRATION CERTIFICATE	25
ANNEX E	DIPOLE CALIBRATION CERTIFICATE	48

1 Test Laboratory

1.1 Testing Location

CompanyName:	CTTL(Shouxiang)
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,
	Beijing, P. R. China100191

1.2 Testing Environment

Temperature:	18°C~25°C,		
Relative humidity: 30%~ 70%			
Ground system resistance:	< 0.5 Ω		
Ambient noise is checked and found very low and in compliance with requirement of standards.			
Reflection of surrounding objects is minimized and in compliance with requirement of standards			

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	February 10, 2023
Testing End Date:	February 10, 2023

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

5 268 3

Lu Bingsong Deputy Director of the laboratory (Approved this test report)

2 Client Information

2.1 Applicant Information

Company Name:	OnePlus Technology (Shenzhen) Co., Ltd.		
Address/Post:	18C02, 18C03, 18C04, and 18C05, Shum Yip Terra Building, Binhe Avenue North,		
Address/Post.	Futian District, Shenzhen, Guangdong, P.R. China.		
Contact Person: Ariel Cheng			
Contact Email: chenglijun1@oppo.com			
Telephone: (86)75561882366			

2.2 Manufacturer Information

Company Name:	OnePlus Technology (Shenzhen) Co., Ltd.		
Address/Post:	18C02, 18C03, 18C04, and 18C05, Shum Yip Terra Building, Binhe Avenue North,		
	Futian District, Shenzhen, Guangdong, P.R. China.		
Contact Person:	Ariel Cheng		
Contact Email:	chenglijun1@oppo.com		
Telephone:	(86)75561882366		

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

Description:	Mobile Phone
Model name:	CPH2513,CPH2515
Operating mode(s):	LTE Band 48

3.2 Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	
EUT	869320060046747	11	OxygenOS 13.1	

*EUT ID: is used to identify the test sample in the lab internally.

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer	
AE1	Battery	BLP989	١	Dongguan NVT Technology Co. Ltd	
AE2	Battery	BLP989	\	Sunwoda Electronic Co., Ltd.	

*AE ID: is used to identify the test sample in the lab internally.

3.4 Air Interfaces / Bands Indicating Operating Modes

Air- interface	Band(MHz)	Туре	C63.19/test ed	Simultaneo us Transmiss ions	Name of Voice Service	Power Reduction
					VoLTE,	
LTE (TDD)	Band48	V/D	Yes	No	Google	No
					duo	

VO: Voice CMRS / PSTN Service Only

VD : Voice CMRS / PSTN and Data Service

DT : Digital Transport

HAC Rating was not based on concurrent voice and data modes , Non-current mode was found to represent worstcase rating for both M and T rating

CAICT No.I23Z60155-SEM01

4 Maximum Output Power.

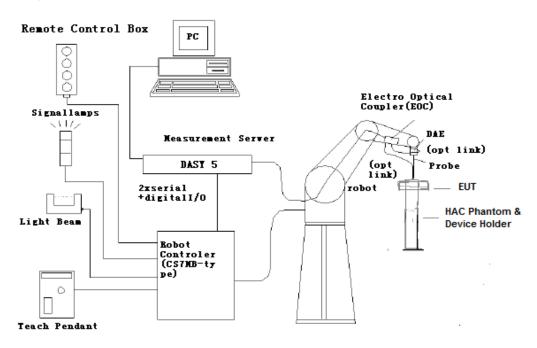
LTE Dand 49	Conducted Power (dBm)									
LTE Band48 QPSK	Channel 56640	Channel 55340								
QF3N	23.8	23.8	23.8							
	Conducted Power (dBm)									
LTE Band48 16QAM	Channel 56640	Channel 55990	Channel 55340							
	22.8	22.8	22.8							
LTE Dand 49	Conducted Power (dBm)									
LTE Band48 64QAM	Channel 56640	Channel 55990	Channel 55340							
04QAIVI	21.8	21.8	21.8							

5 Reference Documents

5.1 Reference Documents for testing

The following document listed in this section is referred for testing.

Reference	Title	Version
ANSI C63.19-2011	American National Standard for Methods of Measurement of	2011
	Compatibility between Wireless Communication Devices and	Edition
	Hearing Aids	
FCC 47 CFR §20.19	Hearing Aid Compatible Mobile Headsets	2015
		Edition
KDB285076	Equipment Authorization Guidance for Hearing Aid Compatibility	2022
D01 v06r02		Edition



6 OPERATIONAL CONDITIONS DURING TEST

6.1 HAC MEASUREMENT SET-UP

These measurements are performed using the DASY5 NEO automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. A cell controller system contains the power supply, robot controller, teach pendant (Joystick),and remote control, is used to drive the robot motors. The PC consists of the HP Intel Core21.86 GHz computer with Windows XP system and HAC Measurement Software DASY5 NEO, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE)circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

6.2 Probe Specification

E-Field Probe Description

Construction	One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges PEEK enclosure material In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%, k=2)	F
Frequency	40 MHz to > 6 GHz (can be extended to < 20 MHz) Linearity: ± 0.2 dB (100 MHz to 3 GHz)	[ER3DV6]
Directivity	± 0.2 dB in air (rotation around probe axis) ± 0.4 dB in air (rotation normal to probe axis)	
Dynamic Range	2 V/m to > 1000 V/m; Linearity: \pm 0.2 dB	
Dimensions	Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.5 mm	
Application	General near-field measurements up to 6 GHz Field component measurements Fast automatic scanning in phantoms	

6.3 Test Arch Phantom & Phone Positioner

The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: $370 \times 370 \times 370 \text{ mm}$).

The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field < \pm 0.5 dB.

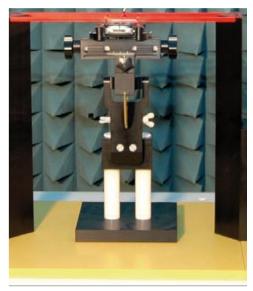


Fig. 2 HAC Phantom & Device Holder

6.4 Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX160L Repeatability: ±0.02 mm No. of Axis: 6 Data Acquisition Electronic (DAE) System Cell Controller Processor: Intel Core2 Clock Speed: 1.86GHz Operating System: Windows XP Data Converter Features:Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY5 software Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

7 EUT ARRANGEMENT

7.1 WD RF Emission Measurements Reference and Plane

Figure 4 illustrates the references and reference plane that shall be used in the WD emissions measurement.

- The grid is 5 cm by 5 cm area that is divided into 9 evenly sized blocks or sub-grids.
- The grid is centered on the audio frequency output transducer of the WD (speaker or T-coil).

The grid is located by reference to a reference plane. This reference plane is the planar area that contains the highest point in the area of the WD that normally rests against the user's ear
The measurement plane is located parallel to the reference plane and 15 mm from it, out from the phone. The grid is located in the measurement plane.



Fig. 3 WD reference and plane for RF emission measurements

8 SYSTEM VALIDATION

8.1 Validation Procedure

Place a dipole antenna meeting the requirements given in ANSI C63.19 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical output. Position the E-field probes so that:

•The probes and their cables are parallel to the coaxial feed of the dipole antenna

•The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions

• The center point of the probe element(s) are 15 mm from the closest surface of the dipole elements.

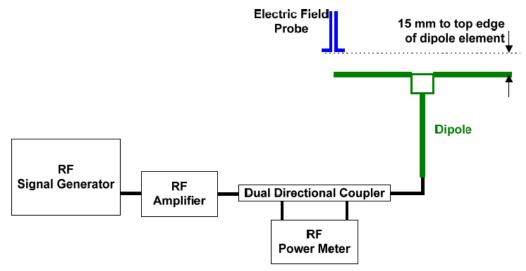


Fig. 4 Dipole Validation Setup

8.2 Validation Result

	E-Field Scan								
Mode	Frequency (MHz)	Input Power (mW)	Measured ¹ Value(dBV/m)	Target ² Value(dBV/m)	Deviation ³ (%)	Limit⁴ (%)			
CW	3500	100	38.6	38.59	0.12	±25			

Notes:

1. Please refer to the attachment for detailed measurement data and plot.

2. Target value is provided by SPEAD in the calibration certificate of specific dipoles.

3. Deviation (%) = 100 * (Measured value minus Target value) divided by Target value.

4. ANSI C63.19 requires values within \pm 25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty. Values independently validated for the dipole actually used in the measurements should be used, when available.

9 Evaluation of MIF

9.1 Introduction

The MIF (Modulation Interference Factor) is used to classify E-field emission to determine Hearing Aid Compatibility (HAC). It scales the power-averaged signal to the RF audio interference level and is characteristic to a modulation scheme. The HAC standard preferred "indirect" measurement method is based on average field measurement with separate scaling by the MIF. With an Audio Interference Analyzer (AIA) designed by SPEAG specifically for the MIF measurement, these values have been verified by practical measurements on an RF signal modulated with each of the waveforms. The resulting deviations from the simulated values are within the requirements

of the HAC standard.

The AIA (Audio Interference Analyzer) is an USB powered electronic sensor to evaluate signals in the frequency range 698MHz - 6 GHz. It contains RMS detector and audio frequency circuits for sampling of the RF envelope.

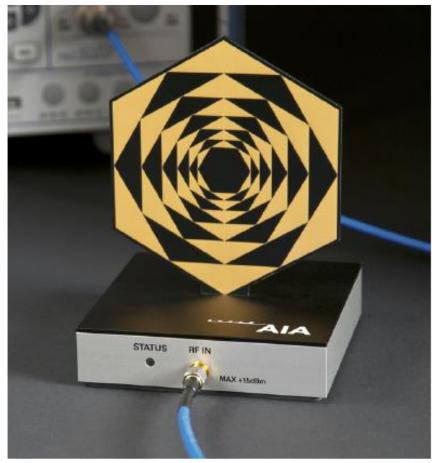


Fig. 5 AIA Front View

9.2 MIF measurement with the AIA

The MIF is measured with the AIA as follows:

- 1. Connect the AIA via USB to the DASY5 PC and verify the configuration settings.
- 2. Couple the RF signal to be evaluated to an AIA via cable or antenna.
- 3. Generate a MIF measurement job for the unknown signal and select the measurement port and timing settings.
- 4. Document the results via the post processor in a report.

9.3 Test equipment for the MIF measurement

No.	Name	Туре	Serial Number	Manufacturer
01	Signal Generator	E4438C	MY49070393	Agilent
02	AIA	SE UMS 170 CB	1029	SPEAG
03	BTS	CMW500	166370	R&S

9.4 DUT MIF results

Based on the KDB285076D01v06r02, the handset can also use the MIF values predetermined by the test equipment manufacturer. MIF values applied in this test report were provided by the HAC equipment provider of SPEAG, and the worst values for all air interface are listed below to be determine the Low-power Exemption.

Typical MIF levels in ANSI C63.19-2011						
Transmission protocol	Modulation interference					
	factor					
LTE-TDD (SC-FDMA, 1RB, 20MHz, QPSK)	-1.62 dB					
LTE-TDD (SC-FDMA, 1RB, 20MHz, 16QAM)	-1.44 dB					
LTE-TDD (SC-FDMA, 1RB, 20MHz, 64QAM)	-1.54 dB					

10 Evaluation for low-power exemption

10.1 Product testing threshold

There are two methods for exempting an RF air interface technology from testing. The first method requires evaluation of the MIF for the worst-case operating mode. An RF air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is \leq 17 dBm for any of its operating modes. The second method does not require determination of the MIF. The RF emissions testing exemption shall be applied to an RF air interface technology in a device whose peak antenna input power, averaged over intervals \leq 50 μ s20, is \leq 23 dBm. An RF air interface technology that is exempted from testing by either method shall be rated as M4.

The first method is used to be exempt from testing for the RF air interface technology in this report.

Band	Average power (dBm)	MIF (dB)	Sum (dBm)	C63.19 Tested
LTE Band 48 QPSK	23.8	-1.62	22.18	Yes
LTE Band 48 16QAM	22.8	-1.44	21.36	Yes
LTE Band 48 64QAM	21.8	-1.54	20.26	Yes

10.2 Conducted power

10.3 Conclusion

According to the above table, it is measured for LTE TDD bands.

11 RF TEST PROCEDUERES

The evaluation was performed with the following procedure:

- 1) Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system.
- 2) Position the WD in its intended test position. The gauge block can simplify this positioning.
- 3) Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters (e.g., test mode), as intended for the test.
- 4) The center sub-grid shall centered on the center of the T-Coil mode axial measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the50 mm by 50 mm grid, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception.
- 5) Record the reading.
- 6) Scan the entire 50 mm by 50 mm region in equally spaced increments and record the reading at each measurement point. The distance between measurement points shall be sufficient to assure the identification of the maximum reading.
- 7) Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is the lowest of all available choices. This eliminates the three sub-grids with the maximum readings. Thus, the six areas to be used to determine the WD's highest emissions are identified.
- 8) Identify the maximum field reading within the non-excluded sub-grids identified in Step 7)
- 9) Evaluate the MIF and add to the maximum steady-state rms field-strength reading to obtain the RF audio interference level..
- 10) Compare this RF audio interference level with the categories and record the resulting WD category rating.

Free	quency	Measured		Catamama						
MHz	Channel	Value(dBV/m)	Power Drift (dB)	Category						
	LTE Band 48 QPSK									
3690	56640	18.93	-0.03	M4(see Fig B.1)						
3625	55990	17.02	-0.08	M4						
3560	55340	17.15	0.12	M4						
		LTE Band 48	16QAM							
3690	56640	18.07	-0.05	M4						
3625	55990	16.40	-0.02	M4						
3560	55340	16.24	0.04	M4						
		LTE Band 48	64QAM							
3690	56640	17.06	0.14	M4						
3625	55990	14.98	0.06	M4						
3560	55340	14.81	0.06	M4						

12 Measurement Results (E-Field)

13 ANSIC 63.19-2011 LIMITS

WD RF audio interference level categories in logarithmic units

Emission categories	< 960 MHz E	-field emissions
Category M1	50 to 55	dB (V/m)
Category M2	45 to 50	dB (V/m)
Category M3	40 to 45	dB (V/m)
Category M4	< 40	dB (V/m)
Emission categories	> 960 MHz E	field emissions
Category M1	40 to 45	dB (V/m)
Category M2	35 to 40	dB (V/m)
Category M3	30 to 35	dB (V/m)
Category M4	< 30	dB (V/m)

14 MEASUREMENT UNCERTAINTY

No.	Error source	Туре	Uncertainty Value(%)	Prob. Dist.	k	ciE	Standard Uncertainty (%) $\mu_i^{(*)}$ (%)E	Degree of freedom V _{eff} or <i>v</i> i
Meas	surement System		<u>_</u>					L
1	Probe Calibration	В	5.	Ν	1	1	5.1	∞
2	Axial Isotropy	В	4.7	R	$\sqrt{3}$	1	2.7	×
3	Sensor Displacement	В	16.5	R	$\sqrt{3}$	1	9.5	×
4	Boundary Effects	В	2.4	R	$\sqrt{3}$	1	1.4	×
5	Linearity	В	4.7	R	$\sqrt{3}$	1	2.7	ø
6	Scaling to Peak Envelope Power	В	2.0	R	$\sqrt{3}$	1	1.2	ø
7	System Detection Limit	В	1.0	R	$\sqrt{3}$	1	0.6	∞
8	Readout Electronics	В	0.3	N	1	1	0.3	∞
9	Response Time	В	0.8	R	$\sqrt{3}$	1	0.5	∞
10	Integration Time	В	2.6	R	$\sqrt{3}$	1	1.5	×
11	RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.7	ø
12	RF Reflections	В	12.0	R	$\sqrt{3}$	1	6.9	×
13	Probe Positioner	В	1.2	R	$\sqrt{3}$	1	0.7	∞
14	Probe Positioning	А	4.7	R	$\sqrt{3}$	1	2.7	∞
15	Extra. And Interpolation	В	1.0	R	$\sqrt{3}$	1	0.6	×
Test	Sample Related							
16	Device Positioning Vertical	В	4.7	R	$\sqrt{3}$	1	2.7	ø
17	Device Positioning Lateral	В	1.0	R	$\sqrt{3}$	1	0.6	×
18	Device Holder and Phantom	В	2.4	R	$\sqrt{3}$	1	1.4	ø
19	Power Drift	В	5.0	R	$\sqrt{3}$	1	2.9	ø

20	AIA measurement	В	12	R	$\sqrt{3}$	1	6.9	ø
Pha	ntom and Setup related							
21	Phantom Thickness	В	2.4	R	$\sqrt{3}$	1	1.4	×
Com	pined standard uncertainty(%)						16.2	
Expanded uncertainty (confidence interval of 95 %)		l	$u_e = 2u_c$	Ν	k=:	2	32.4	

15 MAIN TEST INSTRUMENTS

Table 1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period		
01	Signal	E4492C	E4483C MY49070393 May 17, 2022		E4492C MY40070202 M		One Year
01	Generator	E4403C	MT49070393	Way 17, 2022	One real		
02	Power meter	NRP2	106276	May 10, 2022	One year		
03	Power sensor	NRP6A	101369	Way 10, 2022	One year		
04	Amplifier	60S1G4	0331848	No Calibration Requested			
05	E-Field Probe	EF3DV3	4060	May 13, 2022	One year		
06	DAE	SPEAG DAE4	1524	October 17, 2022	One year		
07	HAC Dipole	CD3500V3	1008	August 25, 2022	One year		
08	BTS	CMW500	166370	June 28,2022	One year		
09	AIA	SE UMS 170 CB	1029	No Calibration Requested			

END OF REPORT BODY

ANNEX A TEST LAYOUT

Picture A1:HAC RF System Layout

ANNEX B TEST PLOTS

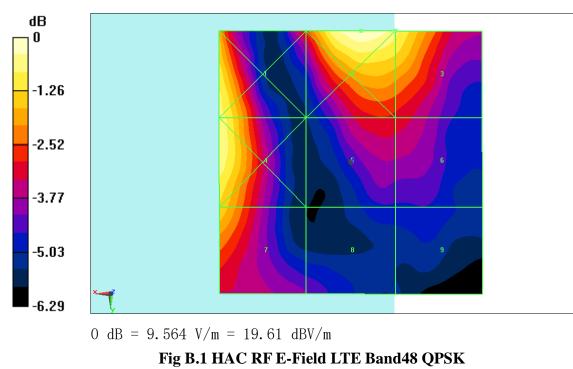
HAC RF E-Field LTE Band48 QPSK

Date: 2023-2-10 Electronics: DAE4 Sn1524 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.0°C Communication System: LTE Band48; Frequency: 3560 MHz; Duty Cycle: 1:1.58 Probe: EF3DV3 - SN4060;ConvF(1, 1, 1)

E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the

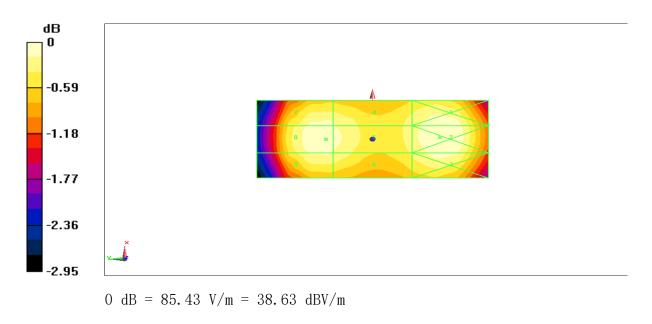
Device/Hearing Aid Compatibility Test (101x101x1): Interpolated

grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 8.971 V/m; Power Drift = -0.03 dB Applied MIF = -3.52 dB RF audio interference level = 18.93 dBV/m


Emission category: M4

Grid 1	M4	Grid 2	M4	Grid 3	M4
18. 98	dBV/m	19.61	dBV/m	18.93	dBV/m
Grid 4	M4	Grid 5	M4	Grid 6	M4
19. 14	dBV/m	16.68	dBV/m	16. 57	dBV/m
Grid 7	M4	Grid 8	M4	Grid 9	M4
18.31	dBV/m	15. 49	dBV/m	15.01	dBV/m

MIF scaled E-field



ANNEX C SYSTEM VALIDATION RESULT

E SCAN of Dipole 3500 MHz Date: 2023-2-10 Electronics: DAE4 Sn1524 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Communication System: CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Probe: EF3DV3 - SN4060 Dipole E-Field measurement (E-field scan for ANSI C63.19-2007 & -2011 compliance)/E Scan - measurement distance from the probe sensor center to CD3500 = 15mm/Hearing Aid Compatibility Test at 15mm distance (41x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 36.28 V/m; Power Drift = 0.06 dB Applied MIF = 0.00 dBRF audio interference level = 38.60 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2 38.59 dBV/m	
Grid 4 M2 38.46 dBV/m	
Grid 7 M2 38.5 dBV/m	

ANNEX D PROBE CALIBRATION CERTIFICATE

	ch, Switzerland		Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
credited by the Swiss Accredit the Swiss Accreditation Servic ultilateral Agreement for the	ce is one of the signatories t	o the EA	editation No.: SCS 0108
ient CTTL (Auden)		Certificate No:	EF3-4060_May22
ALIBRATION	CERTIFICATE		
Dbject	EF3DV3- SN:4060		
Calibration procedure(s)	QA CAL-02.v9, QA Calibration proceed evaluations in air	CAL-25.v7 ure for E-field probes optimized for	or close near field
Calibration date:	May 13, 2022		
The measurements and the unc		facility: environment temperature (22 ± 3)°C a	
All calibrations have been condu	ucted in the closed laboratory		
All calibrations have been condications for the condition Equipment used (Ma	ucted in the closed laboratory	facility: environment temperature (22 ± 3)°C a	
NI calibrations have been cond Calibration Equipment used (Ma Primary Standards	ucted in the closed laboratory		nd humidity < 70%.
Il calibrations have been cond Calibration Equipment used (Ma Primary Standards Power meter NRP	ucted in the closed laboratory &TE critical for calibration)	facility: environment temperature (22 ± 3)°C a	nd humidity < 70%.
Il calibrations have been condi- alibration Equipment used (M4 Primary Standards Power meter NRP Power sensor NRP-Z91	ucted in the closed laboratory &TE critical for calibration) ID SN: 104778	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524)	nd humidity < 70%. Scheduled Calibration Apr-23
All calibrations have been condi Calibration Equipment used (M4 Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ID SN: 104778 SN: 103244	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524)	nd humidity < 70%. Scheduled Calibration Apr-23 Apr-23
All calibrations have been condi Calibration Equipment used (MA Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ID SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 24-Dec-21 (No. DAE4-789_Dec21)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22
All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4	ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
All calibrations have been condi- Calibration Equipment used (M& Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ER3DV6	ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 789 SN: 2328	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 24-Dec-21 (No. DAE4-789_Dec21) 08-Oct-21 (No. ER3-2328_Oct21)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Oct-22
All calibrations have been condent Calibration Equipment used (Ma Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ER3DV6 Secondary Standards	Uncted in the closed laboratory in the closed	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 24-Dec-21 (No. DAE4-789_Dec21) 08-Oct-21 (No. ER3-2328_Oct21) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Oct-22 Scheduled Check
Il calibrations have been condi Calibration Equipment used (Ma Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ER3DV6 Secondary Standards Power meter E4419B	LID SN: 104778 SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 789 SN: 2328 ID SN: GB41293874	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 24-Dec-21 (No. DAE4-789_Dec21) 08-Oct-21 (No. ER3-2328_Oct21) Check Date (in house) 06-Apr-16 (in house check Jun-20)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Oct-22
All calibrations have been condent Calibration Equipment used (Ma Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ER3DV6 Secondary Standards Power meter E4419B Power sensor E4412A	Uncted in the closed laboratory in the closed	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 24-Dec-21 (No. DAE4-789_Dec21) 08-Oct-21 (No. ER3-2328_Oct21) Check Date (in house)	nd humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Oct-22 Scheduled Check In house check: Jun-22
All calibrations have been condu	Uncted in the closed laboratory in STE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 789 SN: 2328 ID SN: GB41293874 SN: MY41498087	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 24-Dec-21 (No. DAE4-789_Dec21) 08-Oct-21 (No. ER3-2328_Oct21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	nd humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Oct-22 Scheduled Check In house check: Jun-22 In house check: Jun-22
All calibrations have been condi- Calibration Equipment used (M4 Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ER3DV6 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ucted in the closed laboratory i &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 789 SN: 2328 ID SN: GB41293874 SN: MY41498087 SN: 000110210	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 24-Dec-21 (No. DAE4-789_Dec21) 08-Oct-21 (No. ER3-2328_Oct21) 04-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	nd humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Oct-22 Oct-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
All calibrations have been condi- Calibration Equipment used (M4 Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ER3DV6 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	Uncted in the closed laboratory in STE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 789 SN: 2328 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 24-Dec-21 (No. DAE4-789_Dec21) 08-Oct-21 (No. ER3-2328_Oct21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	nd humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Oct-22 Oct-22 Scheduled Check In house check: Jun-22 In house check: Oct-22
All calibrations have been condi- Calibration Equipment used (M4 Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ER3DV6 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	Uncted in the closed laboratory is STE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 789 SN: 2328 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 24-Dec-21 (No. DAE4-789_Dec21) 08-Oct-21 (No. ER3-2328_Oct21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	nd humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Oct-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
All calibrations have been condi- Calibration Equipment used (M4 Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ER3DV6 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8648C	Uncted in the closed laboratory in STE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 789 SN: 2328 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 24-Dec-21 (No. DAE4-789_Dec21) 08-Oct-21 (No. ER3-2328_Oct21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	nd humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Oct-22 Oct-22 Scheduled Check In house check: Jun-22 In house check: Oct-22
All calibrations have been condi- Calibration Equipment used (M4 Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator DAE4 Reference Probe ER3DV6 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	Uncted in the closed laboratory is STE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 789 SN: 2328 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 24-Dec-21 (No. DAE4-789_Dec21) 08-Oct-21 (No. ER3-2328_Oct21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20)	nd humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Oct-22 Oct-22 Scheduled Check In house check: Jun-22 In house check: Oct-22

Certificate No: EF3-4060_May22

Page 1 of 23

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
En	incident E-field orientation normal to probe axis
Ep	incident E-field orientation parallel to probe axis
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005
- b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.1.1, May 2017

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EF3-4060_May22

Page 2 of 23

May 13, 2022

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4060

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²)	0.80	0.74	1.29	± 10.1 %
DCP (mV) ^B	94.7	96.7	93.6	

Calibration results for Frequency Response (30 MHz - 6 GHz)

Frequency MHz	Target E-Field V/m	Measured E-field (En) V/m	Deviation E-normal in %	Measured E-field (Ep) V/m	Deviation E-normal in %	Unc (k=2) %
30	77.1	77.3	0.2%	76.9	-0.3%	± 5.1 %
100	77.0	78.0	1.2%	77.9	1.1%	± 5.1 %
450	77.1	78.0	1.1%	78.0	1.2%	± 5.1 %
600	77.2	77.6	0.5%	77.6	0.6%	± 5.1 %
750	77.2	77.3	0.1%	77.2	0.1%	± 5.1 %
1800	143.1	139.7	-2.4%	139.7	-2.4%	± 5.1 %
2000	134.9	129.1	-4.3%	129.3	-4.1%	± 5.1 %
2200	127.7	124.4	-2.5%	125.4	-1.8%	± 5.1 %
2500	125.4	119.9	-4.4%	121.0	-3.5%	± 5.1 %
3000	79.0	75.6	-4.3%	76.7	-2.9%	± 5.1 %
3500	256.1	256.6	0.2%	253.2	-1.1%	± 5.1 %
3700	249.6	246.9	-1.1%	245.0	-1.8%	± 5.1 %
5200	50.8	50.7	-0.1%	51.0	0.4%	± 5.1 %
5500	49.6	48.7	-1.7%	47.4	-4.4%	± 5.1 %
5800	48.9	47.9	-2.0%	49.0	0.3%	± 5.1 %

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EF3-4060_May22

Page 3 of 23

May 13, 2022

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4060

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	128.5	± 2.5 %	± 4.7 %
		Y	0.00	0.00	1.00		161.6		
		Z	0.00	0.00	1.00		126.0	1	
10352-	Pulse Waveform (200Hz, 10%)	X	2.86	66.73	10.11	10.00	60.0	± 2.7 %	± 9.6 %
AAA		Y	3.19	67.88	10.96		60.0		
		Z	2.92	66.86	10.24		60.0		_
10353-	Pulse Waveform (200Hz, 20%)	X	1.64	64.88	8.36	6.99	80.0	± 1.1 %	± 9.6 %
AAA		Y	1.94	66.74	9.54		80.0		
		Z	1.54	64.64	8.24		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	0.95	64.46	7.35	3.98	95.0	±0.9%	± 9.6 %
AAA		Y	1.89	70.07	9.92		95.0		
		Z	0.67	62.65	6.36		95.0	1	
10355-	Pulse Waveform (200Hz, 60%)	X	20.00	83.48	12.24	2.22	120.0	± 0.9 %	± 9.6 %
AAA		Y	20.00	88.16	14.35		120.0		
		Z	0.51	63.43	5.89		120.0		
10387-	QPSK Waveform, 1 MHz	X	2.22	73.26	18.56	1.00	150.0	± 2.2 %	± 9.6 %
AAA		Y	1.80	69.14	16.22		150.0		
		Z	1.87	70.42	16.69		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.71	72.48	18.53	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.34	69.47	16.72		150.0	1	
		Z	2.39	70.19	17.11		150.0	1	
10396-	64-QAM Waveform, 100 kHz	X	2.23	68.63	18.88	3.01	150.0	± 2.2 %	± 9.6 %
AAA		Y	1.81	65.44	17.77	1	150.0	1	
		Z	2.18	68.07	18.09		150.0	1	
10399-	64-QAM Waveform, 40 MHz	X	3.72	68.50	16.96	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	3.49	67.25	16.05		150.0	1	
		Z	3.54	67.62	16.30		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.78	65.89	16.06	0.00	150.0	± 2.5 %	± 9.6 %
AAA		Y	4.77	65.81	15.78	1	150.0	1	
		Z	4.63	65.46	15.68	1	150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EF3-4060_May22

Page 4 of 23

May 13, 2022

DASY/EASY - Parameters of Probe: EF3DV3 - SN:4060

Sensor Frequency Model Parameters

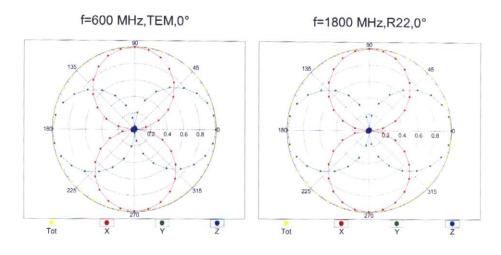
	Sensor X	Sensor Y	Sensor Z
Frequency Corr. (LF)	0.11	0.19	4.60
Frequency Corr. (HF)	2.82	2.82	2.82

Sensor Model Parameters

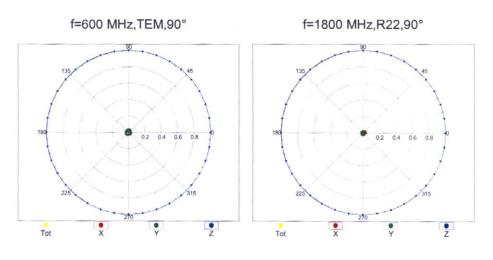
	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V⁻1	Т6
Х	38.6	259.37	38.06	6.78	0.04	4.96	0.19	0.13	1.00
Y	38.1	250.89	36.65	4.87	0.03	4.98	0.00	0.00	1.01
Z	35.7	239.69	37.83	4.44	0.04	4.97	0.47	0.08	1.00

Other Probe Parameters

Sensor Arrangement	Rectangular
Connector Angle (°)	145.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	12 mm
Tip Length	25 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	1.5 mm
Probe Tip to Sensor Y Calibration Point	1.5 mm
Probe Tip to Sensor Z Calibration Point	1.5 mm


Certificate No: EF3-4060_May22

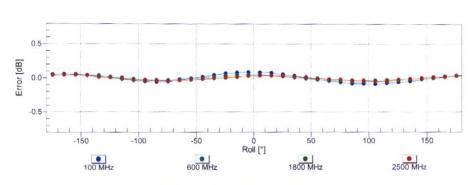
Page 5 of 23



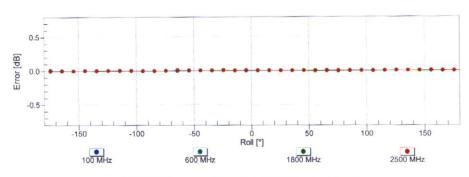
May 13, 2022

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$


Certificate No: EF3-4060_May22

Page 6 of 23


May 13, 2022

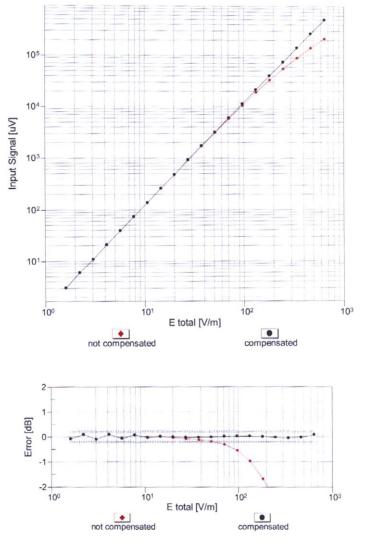
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), ϑ = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

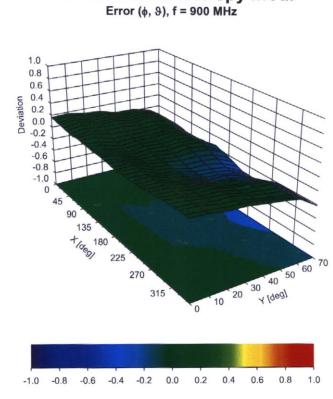
Certificate No: EF3-4060_May22


Page 7 of 23

May 13, 2022

Dynamic Range f(E-field) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EF3-4060_May22

Page 8 of 23

May 13, 2022

Deviation from Isotropy in Air

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EF3-4060_May22

Page 9 of 23

May 13, 2022

UID	Rev	Odulation Calibration Parameters Communication System Name	Group	PAR (dB)	Unc ^E (k=2)
0	-	CW	CW	0.00	± 4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 9
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 9
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 °
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 °
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 °
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 °
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 °
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6 °
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6
10046	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6
10065	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6
10066	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6
10072	-	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6
10074	-	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6
10075	-	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6
10076		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6
10070	-	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6
10081	-	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6
10081	-	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6
10082	-	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6
10090		UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6
10097	-	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6
10098	-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6

Certificate No: EF3-4060_May22

Page 10 of 23

May 13, 2022

10100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
10101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6 %
10105	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6 %
10108	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	± 9.6 %
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAD	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 °
10115	CAD	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 °
10116	CAD	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
		IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6 °
10117	CAD	IEEE 802.11n (HT Mixed, 13.5 Mbps, 5F 5K)	WLAN	8.59	± 9.6 °
10118	CAD		WLAN	8.13	± 9.6 °
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 °
10140	CAE		LTE-FDD	6.53	± 9.6 °
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)			± 9.6 °
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	-
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 °
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 °
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 °
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 °
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.73	± 9.6

Certificate No: EF3-4060_May22

Page 11 of 23

May 13, 2022

0182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
0183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
0184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
0186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 9
0187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
0188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 °
0189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 °
0193	CAD	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 °
0194	CAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 °
0195	CAD	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6
0196	CAD	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6
0197	CAD	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 °
0198	CAD	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6
0219	CAD	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 °
0220	CAD	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 °
0221	CAD	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6
0222	CAD	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	± 9.6
0223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	± 9.6
10224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	± 9.6
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6
10226	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	± 9.6
10227	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6
10228	CAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	± 9.6
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6
10229	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6
10230	CAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6
10231	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6
10232	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6
10233	CAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6
10234	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6
10236	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6
10230	CAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	± 9.6
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	± 9.6
10240	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6
10241	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6
	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, GFSK)	LTE-TDD	10.06	± 9.6
10244	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 10-QAM)	LTE-TDD	10.06	± 9.6
10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6
10246	CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 10-QAM)	LTE-TDD	10.09	± 9.6
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6
10249	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 10-QAM)	LTE-TDD	10.17	± 9.6
	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6
10252	-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.24	± 9.6
10253		LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 10-QAW)	LTE-TDD	10.14	± 9.6
10254	-				-
10255		LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6
10256	-	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD		± 9.6
10257 10258	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)		10.08	± 9.6
	CAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6

Certificate No: EF3-4060_May22

Page 12 of 23

May 13, 2022

10261	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 9
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 9
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 9
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 9
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 °
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 °
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS		± 9.6
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	11.81	± 9.6
10290	AAB	CDMA2000, RC1, S055, Full Rate	CDMA2000	12.18	± 9.6
10291	AAB	CDMA2000, RC3, SO55, Full Rate		3.91	-
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.46	± 9.6
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6
			CDMA2000	3.50	± 9.6
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6
10298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6
10299	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6
10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WiMAX	12.03	± 9.6
10302	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WiMAX	12.57	± 9.6
10303	AAA	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WiMAX	12.52	± 9.6
10304	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WiMAX	11.86	± 9.6
10305	AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	WiMAX	15.24	± 9.6
10306	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC)	WiMAX	14.67	± 9.6
10307	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WiMAX	14.49	± 9.6
10308	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WiMAX	14.46	± 9.6
10309	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3)	WiMAX	14.58	± 9.6
10310	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3	WiMAX	14.57	± 9.6
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6
10313	AAA	iDEN 1:3	iDEN	10.51	± 9.6
10314	AAA	iDEN 1:6	iDEN	13.48	± 9.6
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	± 9.6
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6
10317	AAD	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN	8.36	± 9.6
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9.6
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	± 9.6
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	± 9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	± 9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.6
10400	AAE	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN		± 9.6
10400	AAE	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN	8.37	-
10401	AAE	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)	WLAN	8.60	± 9.6
10402	AAB	CDMA2000 (1xEV-DO, Rev. 0)		8.53	± 9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A) CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000 CDMA2000	3.77	± 9.6
		UDWA2000, ROS, SOSZ, SCHU, FUII Rate	L CUMA/UUU	1 3 //	I I 9.0

Certificate No: EF3-4060_May22

Page 13 of 23

May 13, 2022

10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	± 9.6 %
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	± 9.6 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10417	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	± 9.6 9
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short)	WLAN	8.19	± 9.6 9
10422	AAC	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	± 9.6 9
10423	AAC	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 °
10424	AAC	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 9
10425	AAC	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.6 9
10426	AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	± 9.6 °
10427	AAC	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	± 9.6 °
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	± 9.6
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6
10432	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 °
10433	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 9
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	± 9.6
10448	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	± 9.6
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	± 9.6
10449	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)			± 9.6
	AAA		LTE-FDD	7.48	
10451		W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	± 9.6
10453	AAD	Validation (Square, 10ms, 1ms)	Test		± 9.6
10456	AAC	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc)	WLAN	8.63	± 9.6
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	± 9.6
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6
10461	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6
10462	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.30	± 9.6
10463	AAB	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	± 9.6
10464	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6
10465	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6
10466	AAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6
10467	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6
10468	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6
10469	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.56	± 9.6
10470	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6
10471	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6
10472	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.82	± 9.6
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.32	± 9.6
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.57	± 9.6
10479	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6
10480	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.18	± 9.6
10481	AAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6
10482	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.71	± 9.6
10483	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub)	LTE-TDD	8.39	± 9.6
10484	AAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.47	± 9.6
10485	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.59	± 9.6
10486	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub)	LTE-TDD	8.38	± 9.6
10487	AAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub)	LTE-TDD	8.60	± 9.6
10488	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub)	LTE-TDD	7.70	± 9.6

Certificate No: EF3-4060_May22

Page 14 of 23

May 13, 2022

0489	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.31	± 9.6 %
0490	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6 %
0491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 %
0492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.41	± 9.6 %
0493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6 %
0494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6 °
0495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.37	± 9.6 °
0496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.54	± 9.6
10497	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6
10498	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub)	LTE-TDD	8.40	± 9.6
10499	AAB	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub)	LTE-TDD	8.68	± 9.6
10500	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub)	LTE-TDD	7.67	± 9.6
10501	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub)	LTE-TDD	8.44	± 9.6
10502	AAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub)	LTE-TDD	8.52	± 9.6
10502	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub)	LTE-TDD	7.72	± 9.6
10503	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, GF SK, 6E Sub)	LTE-TDD	8.31	± 9.6
	AAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 10-QAM, 0L Sub)	LTE-TDD	8.54	± 9.6
10505		LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub)			± 9.6
10506	AAF		LTE-TDD	7.74	-
10507	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub)	LTE-TDD	8.36	± 9.6
10508	AAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub)	LTE-TDD	8.55	± 9.6
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub)	LTE-TDD	7.99	± 9.6
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub)	LTE-TDD	8.49	± 9.6
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub)	LTE-TDD	8.51	± 9.6
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub)	LTE-TDD	7.74	± 9.6
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)	LTE-TDD	8.42	± 9.6
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub)	LTE-TDD	8.45	± 9.6
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc)	WLAN	1.58	± 9.6
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc)	WLAN	1.57	± 9.6
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc)	WLAN	1.58	± 9.6
10518	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc)	WLAN	8.23	± 9.6
10519	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc)	WLAN	8.39	± 9.6
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc)	WLAN	8.12	± 9.6
10521	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc)	WLAN	7.97	± 9.6
10522	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc)	WLAN	8.45	± 9.6
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc)	WLAN	8.08	± 9.6
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc)	WLAN	8.27	± 9.6
10525	AAC	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc)	WLAN	8.36	± 9.6
10526	AAC	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc)	WLAN	8.42	± 9.6
10527	AAC	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc)	WLAN	8.21	± 9.6
10528	AAC	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc)	WLAN	8.36	± 9.6
10529	AAC	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc)	WLAN	8.36	± 9.6
10531	AAC	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc)	WLAN	8.43	± 9.6
10532	AAC	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc)	WLAN	8.29	± 9.6
10533	AAC	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc)	WLAN	8.38	± 9.6
10534	AAC	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.45	± 9.6
10535	AAC	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc)	WLAN	8.45	± 9.6
10536	AAC	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc)	WLAN	8.32	± 9.6
10537	AAC	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)	WLAN	8.44	± 9.6
10538	AAC	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc)	WLAN		± 9.6
10540	AAC	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc)		8.54	
10540	AAC	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc)	WLAN	8.39	± 9.6
	AAC	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc)	WLAN	8.46	± 9.6
10542			WLAN	8.65	± 9.6
10543	AAC	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc)	WLAN	8.65	± 9.6
10544	1 4141	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc)	WLAN	8.47	± 9.6
10544 10545	AAC	IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc)	WLAN	8.55	± 9.6

Certificate No: EF3-4060_May22

Page 15 of 23

May 13, 2022

10547	AAC	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc)	WLAN	8.49	± 9.6 %
10548	AAC	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc)	WLAN	8.37	± 9.6 %
10550	AAC	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc)	WLAN	8.39	± 9.6 %
10551	AAC	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc)	WLAN	8.50	± 9.6 %
10552	AAC	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc)	WLAN	8.42	± 9.6 %
10553	AAC	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc)	WLAN	8.45	± 9.6 °
10554	AAD	IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc)	WLAN	8.48	± 9.6 °
10555	AAD	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc)	WLAN	8.47	± 9.6 °
10556	AAD	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc)	WLAN	8.50	± 9.6 °
10557	AAD	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc)	WLAN	8.52	± 9.6 °
10558	AAD	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc)	WLAN	8.61	± 9.6
10560	AAD	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc)	WLAN	8.73	± 9.6
10561	AAD	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc)	WLAN	8.56	± 9.6
10562	AAD	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc)	WLAN	8.69	± 9.6
10563	AAD	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc)	WLAN	8.77	± 9.6 °
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc)	WLAN	8.25	± 9.6
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc)	WLAN	8.45	± 9.6 °
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc)	WLAN	8.13	± 9.6
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 10 Mbps, 99pc dc)	WLAN	8.00	± 9.6
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc)	WLAN	8.37	± 9.6
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc)	WLAN	8.10	± 9.6
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 40 Mbps, 99pc dc)	WLAN	8.30	± 9.6
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS-OF DM, 54 Mibps, 35pc dc)	WLAN	1.99	± 9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc)	WLAN	1.99	± 9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mips, sope dc)	WLAN	1.98	± 9.6
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 0.5 Wibps, 90pc dc)	WLAN	1.98	± 9.6
	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc)	WLAN	8.59	± 9.6
10575		IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mips, 90pc dc)	WLAN	8.70	± 9.6
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, sope dc)	WLAN	8.49	± 9.6
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mipps, 50pc dc)	WLAN	8.36	± 9.6
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 50pc dc)	WLAN	8.76	± 9.6
10580	AAA		WLAN	8.35	± 9.6
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc)	WLAN	8.67	± 9.6
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc)	WLAN	8.59	± 9.6
10583	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc)			-
10584	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc)	WLAN	8.60	± 9.6
10585	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc)	WLAN	8.70	± 9.6
10586	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc)	WLAN	8.49	± 9.6
10587	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc)	WLAN	8.36	± 9.6
10588	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc)	WLAN	8.76	± 9.6
10589	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc)	WLAN	8.35	± 9.6
10590	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc)	WLAN	8.67	± 9.6
10591	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc)	WLAN	8.63	± 9.6
10592	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc)	WLAN	8.79	± 9.6
10593	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc)	WLAN	8.64	± 9.6
10594	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc)	WLAN	8.74	± 9.6
10595	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc)	WLAN	8.74	± 9.6
10596	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc)	WLAN	8.71	± 9.6
10597	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc)	WLAN	8.72	± 9.6
10598	AAC	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc)	WLAN	8.50	± 9.6
10599	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc)	WLAN	8.79	± 9.6
10600	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc)	WLAN	8.88	± 9.6
10601	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc)	WLAN	8.82	± 9.6
10602	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc)	WLAN	8.94	± 9.6
10603	AAC	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc)	WLAN	9.03	± 9.6

Certificate No: EF3-4060_May22

Page 16 of 23