

FCC RF Test Report

APPLICANT	:	OnePlus Technology (Shenzhen) Co., Ltd.
EQUIPMENT	:	Mobile Phone
BRAND NAME	:	1+, ONEPLUS
MODEL NAME	:	CPH2451
FCC ID	:	2ABZ2-AA516
STANDARD	:	FCC Part 15 Subpart C §15.225
CLASSIFICATION	:	(DXX) Low Power Communication Device Transmitter
TEST DATE(S)	:	Dec. 01, 2022 ~ Dec. 12, 2022

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

TABLE	E OF CONTENTS	2
REVIS	ION HISTORY	3
SUMM	ARY OF THE TEST RESULT	4
1. GEN	IERAL DESCRIPTION	5
1.1	Applicant	5
1.2	Manufacturer	5
1.3	Product Feature of Equipment Under Test	5
1.4	Product Specification of Equipment Under Test	5
1.5	Modification of EUT	6
1.6	Testing Location	6
1.7	Test Software	6
1.8	Applicable Standards	
2. TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
2.1	Descriptions of Test Mode	-
2.2	Connection Diagram of Test System	
2.3	Table for Supporting Units	
2.4	EUT Operation Test Setup	
3. TES	T RESULTS	
3.1	AC Power Line Conducted Emissions Measurement	
3.2	20dB and 99% OBW Spectrum Bandwidth Measurement	
3.3	Frequency Stability Measurement	
3.4	Field Strength of Fundamental Emissions and Mask Measurement	
3.5	Radiated Emissions Measurement	
3.6	Antenna Requirements	-
	OF MEASURING EQUIPMENT	
5. UNC	ERTAINTY OF EVALUATION	22
APPEN	NDIX A. TEST RESULTS OF CONDUCTED EMISSION TEST	
APPEN	NDIX B. TEST RESULTS OF CONDUCTED TEST ITEMS	
B1.	Test Result of 20dB Spectrum Bandwidth	

B2. Test Result of Frequency Stability

APPENDIX C. TEST RESULTS OF RADIATED TEST ITEMS

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

APPEDNIX D. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR2O2001D	Rev. 01	Initial issue of report	Dec. 21, 2022

SUMMARY OF THE TEST RESULT

Report Section	FCC Rule	Description of Test	Result	Remark
3.1	15.207	AC Power Line Conducted Emissions	Complies	Under limit 12.43 dB at 1.150MHz
	15.215(c)	20dB Spectrum Bandwidth	Complies	-
3.2	-	99% OBW Spectrum Bandwidth	Complies	-
3.3	15.225(e)	Frequency Stability	Complies	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Complies	Max level 56.30 dBµV/m at 13.56 MHz
3.5	15.225(d) & 15.209 Emissions		Complies	Under limit 12.44 dB at 943.740MHz
3.6	15.203	Antenna Requirements	Complies	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1. General Description

1.1 Applicant

OnePlus Technology (Shenzhen) Co., Ltd.

18C02, 18C03, 18C04, and 18C05, Shum Yip Terra Building, Binhe Avenue North, Futian District, Shenzhen, Guangdong, P.R. China.

1.2 Manufacturer

OnePlus Technology (Shenzhen) Co., Ltd.

18C02, 18C03, 18C04, and 18C05, Shum Yip Terra Building, Binhe Avenue North, Futian District, Shenzhen, Guangdong, P.R. China.

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment	Mobile Phone		
Brand Name	1+, ONEPLUS		
Model Name	CPH2451		
FCC ID 2ABZ2-AA516			
IMEI Code	Conducted: 864921060035658/864921060035641 Conduction: 864921060029230/864921060029222 Radiation: 864921060029156/864921060029149		
HW Version	11		
SW Version OxygenOS 13.0			
EUT Stage	Production Unit		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	13.553 ~ 13.567MHz		
Channel Number	1		
20dBW	2.576 KHz		
99%OBW	2.188 KHz		
Antenna Type	Loop Antenna		
Type of Modulation	ASK		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications

or user's manual for more detailed description.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Site	Sporton International Inc. (ShenZhen)							
Test Site Location	518055 People's TEL: +86-755-86	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595						
Test Site No.	Sporton Site No.		FCC Designation No.	FCC Test Firm Registration No.				
	TH01-SZ	CO01-SZ						
Test Engineer	Ma Jie	Yuki Tang						
Temperature	22-24°C	21-24 ℃	CN1256	421272				
Relative Humidity	53-55%							

Test Site	Sporton International Inc. (ShenZhen)						
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province China 518103 TEL: +86-755-33202398						
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.				
	03CH04-SZ						
Test Engineer	neer ZhouLiangPing						
Temperature	24-25°C CN1256 421272						
Relative Humidity	48-49%						

1.7 Test Software

ltem	Site	Manufacturer	Name	Version
1.	03CH04-SZ	AUDIX	E3	6.2009-8-24
2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.225
- ANSI C63.10-2013

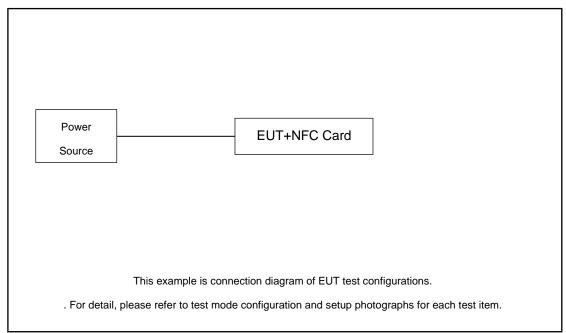
2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

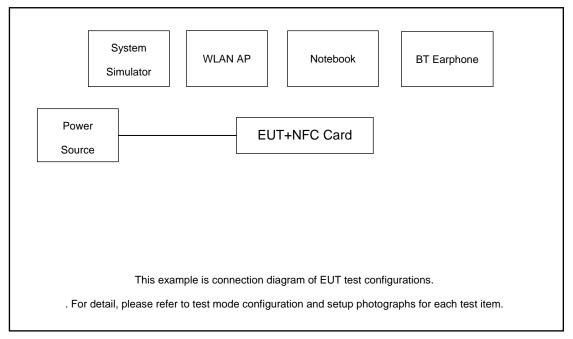
Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.

Test Items				
AC Power Line Conducted Emissions	Field Strength of Fundamental Emissions			
20dB Spectrum Bandwidth	Frequency Stability			
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz			


The EUT pre-scanned in four NFC type, A, B, F, V. The worst type (type A) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.

	Test Cases					
AC Conducted Emission	Mode 1: GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable (Charging From Adaptor) + NFC Tx					
Remark: 1. For Radiated Test Cases, The tests were performed with Adapter and USB Cable						



2.2 Connection Diagram of Test System

<Radiated Emission >

< AC Conducted Emission >

2.3 Table for Supporting Units

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Samsung	EO-MG900	N/A	N/A	N/A
2.	WLAN AP	D-Link	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m
3.	NFC Card	N/A	N/A	N/A	N/A	N/A
4.	Power Supply	GWINSTEK	PSS-2002	N/A	N/A	Unshielded,1.8m
5.	Notebook	Lenovo	E540	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
6.	Base Station	Anritsu	MT8821C	N/A	N/A	Unshielded,1.8m

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

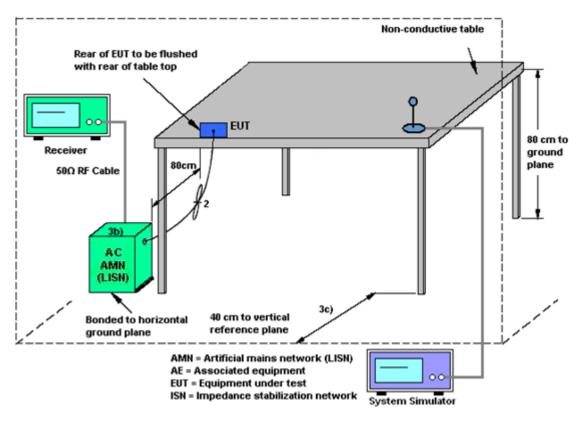
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)						
(MHz)	Quasi-Peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

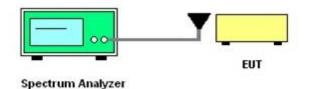
3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

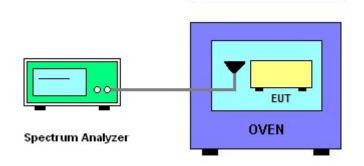
3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

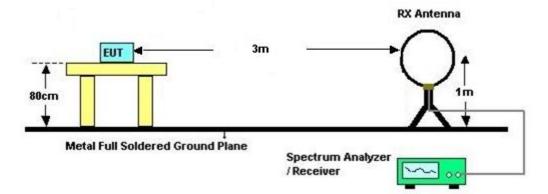
3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225								
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.								
Freq. of Emission (MUIT)	Field Strength	Field Strength	Field Strength	Field Strength					
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m					
1.705~13.110	30	29.5	48.58	69.5					
13.110~13.410	106	40.5	59.58	80.5					
13.410~13.553	334	50.5	69.58	90.5					
13.553~13.567	15848	84.0	103.08	124.0					
13.567~13.710	334	50.5	69.58	90.5					
13.710~14.010	106	40.5	59.58	80.5					
14.010~30.000	30	29.5	48.58	69.5					

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.



3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- Compliance with the spectrum mask is tested with RBW set to 9kHz.
 Note: Emission level (dBμV/m) = 20 log Emission level (μV/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

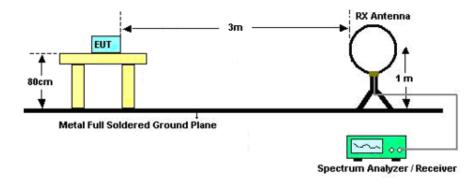
See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

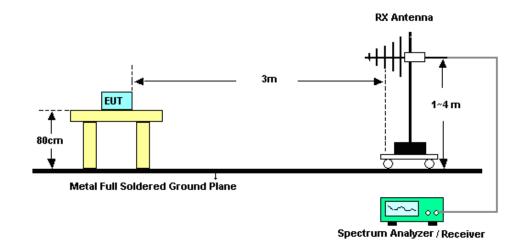
The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. Antenna Requirements



3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Remark:

- 1. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.
- 2. Tested for radiated below 30 MHz using a loop antenna in accordance with C63.10, the antenna was positioned in three antenna orientations: parallel, perpendicular, and ground-parallel. Pre-scanned the three antenna orientations, the worst case is parallel & perpendicular polarization, and test data of two mode was reported. (Parallel: The loop antenna is placed vertical axis and aligned along the site axis; Perpendicular: The loop antenna is placed vertical axis and orthogonal to the axis; ground-parallel: The loop antenna is placed horizontal axis and parallel with the ground)

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 07, 2022	Dec. 01, 2022	Apr. 06, 2023	Conducted (TH01-SZ)
Thermal Chamber	Ten Billion Hongzhangrou p	LP-150U	H2014081 803	-40~+150°C	Jul. 14, 2022	Dec. 01, 2022	Jul. 13, 2023	Conducted (TH01-SZ)
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz	Oct. 19, 2022	Dec. 05, 2022	Oct. 18, 2023	Radiation (03CH04-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Jul. 07, 2022	Dec. 05, 2022	Jul. 06, 2023	Radiation (03CH04-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jun. 28, 2022	Dec. 05, 2022	Jun. 27, 2023	Radiation (03CH04-SZ)
Bilog Antenna	TeseQ	CBL6111D	41909	30MHz~1GHz	Apr. 27, 2022	Dec. 05, 2022	Apr. 26, 2023	Radiation (03CH04-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01 ~3000MHz	Oct. 19, 2022	Dec. 05, 2022	Oct. 18, 2023	Radiation (03CH04-SZ)
AC Power Source	APC	AFV-S-600B	F11905001 9	N/A	Nov. 10, 2022	Dec. 05, 2022	Nov. 09, 2023	Radiation (03CH04-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Dec. 05, 2022	NCR	Radiation (03CH04-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Dec. 05, 2022	NCR	Radiation (03CH04-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 07, 2022	Dec. 12, 2022	Jul. 06, 2023	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Sep. 15, 2022	Dec. 12, 2022	Sep. 14, 2023	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 17, 2022	Dec. 12, 2022	Oct. 16, 2023	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 07, 2022	Dec. 12, 2022	Jul. 06, 2023	Conduction (CO01-SZ)

NCR: No Calibration Required

5. Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Occupied Channel Bandwidth	0.012MHz

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.94 dB
--	---------

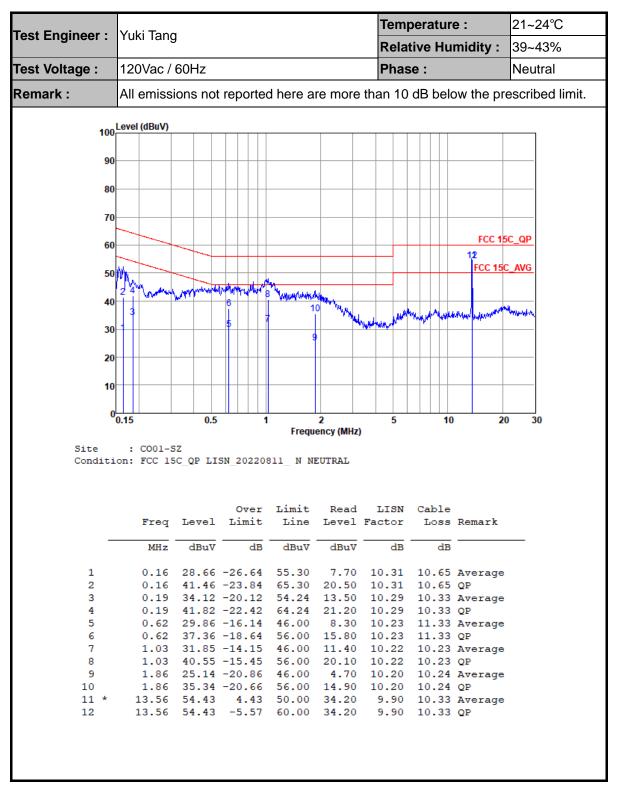
Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	2.8 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	E 1 dD
of 95% (U = 2Uc(y))	5.1 dB

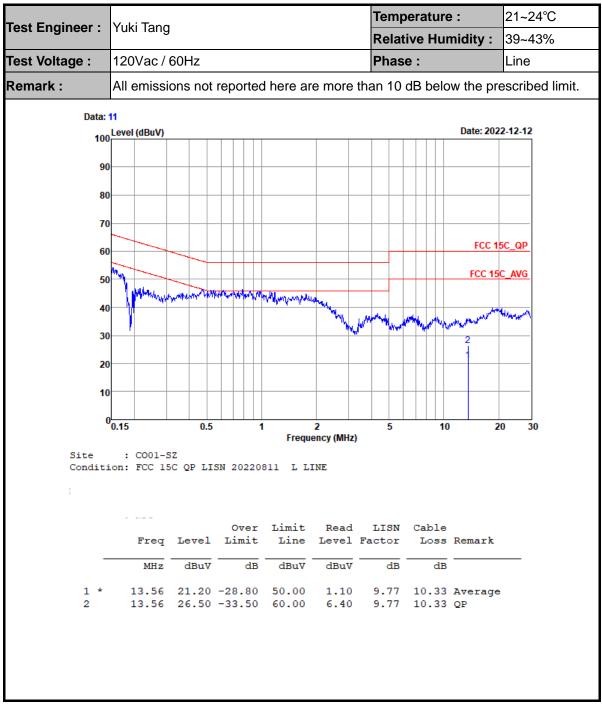
----- THE END ------


Appendix A. Test Results of Conducted Emission Test

Foot Engineer .	V.L.	Yuki Tang								Ter	Temperature :					21~2	24°C	
Test Engineer :	YUKI	ruki lang								Re	Relative Humidity :				y :	39~4	43%	
Fest Voltage :	120V	120Vac / 60Hz								Ph	Phase :					Line		
Remark :	All en	All emissions not reported here are more than 10 dB below th									v th	e pre	scrib	oed li	mit.			
10	0 Level (d	BuV)							_								_	
0																		
90																		
80	0							_			+		++				_	
7(
60	0													1:	FCC 1	5C_Q	<u>4</u>	
50	O WIT-														FCC 15	C_AV	G	
	4	5 × ×	and the second	-	rethind	8 46	n Andre	ي الم		_	-							
40	0	5			++-			The second		out		Altra L		. 1.	Haldharrow	Warness .	.	
3(1 11			_		Цľ		_	14	<i>s</i> 11	nee.	-	"" ["] "	/rminge	mr .		_	
20	0																_	
-																		
10	0																_	
	0 0.15		0.9	5		1	From	2	/ILI-7)		5		10			20	30	
	0 <mark>0.15</mark>	001-SZ	0.5	5		1	Frequ	2 Jency (N	VHz)		5		10		:	20	30	
Site	0 <mark>0.15</mark>					-		iency (N	/Hz)		5		10		:	20	30	
Site	0 <mark>0.15</mark> : CC					-		iency (N	MHz)		5		10		:	20	30	
Site	0 <mark>0.15</mark> : CC			ISN 2	0220	811	LL	IENCY (N			-	Cak			:	20	30	
Site	00.15 : CC ion: FC		QP LI	ISN 20	0220 ver)811 L	L L imit	IENCY (N	ad	LI	SN	Cak	ole		nark	20	30	
Site	0.15 : CC ion: FC	req 1	QP L] Level	ISN 2 0 . Li:	0220 ver mit)811 L	L L imit Line	INE Rea Leve	ad el	LI Fact	SN		le			20	30	
Site Condit.	000.15 : CC ion: FC	req 1 	QP L1 Level dBuV	O Lin	ver mit dB)811 L	L L imit Line dBuV	INE Rea Leve	ad el uV	LI Fact	SN or dB	Lo	ole oss dB	Rei	nark		30	
Site Condit. -	000.15 : CC ion: FC	req 1 MHz .	QP L1 Level dBuV 39.65	O 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ver mit dB)811 L	L L imit Line dBuV 6.00	INE Real Leva dB	ad el uV 60	LI Fact	SN or dB 20	Lo 10.	ole ss dB 85	Rer			30	
Site Condit.	000.15 : CC ion: FC F 0 0	req 1 	QP L1 Level dBuV 39.65 51.75	O Lin 16 14	0220 ver mit dB .35 .25	0811 L 5 6	L L Line dBuV 6.00 6.00	INE Rea Leva dBa 18. 30.	ad e1 uV 60 70	LI Fact 10.	SN or dB 20 20	10. 10.	ole oss dB 85	Rer — Ave QP	nark erage	÷	30	
Site Condit 1 2 3 4	000.15 : CCC ion: FC F 0 0 0 0 0 0 0 0	req 1 	QP L1 Level dBuV 39.65 51.75 27.97 45.67	O Lin - 16 - 16 - 14 - 26 - 19	ver mit dB .35 .25 .71 .01	D811 L 5 6 5 6	L L imit Line dBuV 6.00 6.00 4.68 4.68	Real Leve 18. 30. 7. 25.	ad el uV 60 70 30 00	LI Fact 10. 10. 10. 10.	SN or dB 20 20 20	10. 10. 10. 10.	ole oss dB 85 85 47 47	Rer 	ark erage	÷	30	
Site Condit 1 2 3 4 5		req 1 	QP L1 Level dBuV 39.65 51.75 27.97 45.67 34.14	O Lin 16 14 26 19 18	ver mit dB .35 .25 .71 .01)811 L 5 6 5 6 5	L L imit Line dBuV 6.00 6.00 4.68 4.68 2.26	Real Leve 18. 30. 7. 25. 13.	ad el uV 60 70 30 00 50	LI Fact 10. 10. 10. 10. 10.	SN or dB 20 20 20 20	10. 10. 10. 10. 10.	ole oss dB 85 85 47 47 45	Rer QP Ave QP	ark erage	÷	30	
Site Condit. 1 2 3 4 5 6	000.15 : CC ion: FC F 0 0 0 0 0 0 0 0 0 0 0 0 0	req 1 MHz	QP L1 Level dBuV 39.65 51.75 27.97 45.67 34.14 41.04	O Lin 16 14 26 19 18 18 21	ver mit .35 .71 .01 .22	D811 L 5 6 5 6 5 6 5 6	L L imit Line dBuV 6.00 6.00 4.68 4.68 2.26 2.26	Real Lev.	ad el uV 60 70 30 00 50 40	LI Fact 10. 10. 10. 10. 10. 10.	SN or dB 20 20 20 19 19	10. 10. 10. 10. 10. 10.	ole oss dB 85 47 47 45 45	Rer QP Ave QP Ave QP	ark erage erage	3	30	
Site Condit. 1 2 3 4 5 6 7		req 1 MHz	QP L1 Level dBuV 39.65 51.75 27.97 45.67 34.14 41.04 33.87	O Lin 6 -16 6 -14 7 -26 7 -19 8 -21 7 -12	ver mit .35 .71 .12 .22 .13	5 6 5 6 5 6 4	L L imit Line dBuV 6.00 6.00 4.68 4.68 2.26 2.26 6.00	Real Level 18. 30. 7. 25. 13. 20. 13.	ad el uV 60 70 30 00 50 40 50	LI Fact 10. 10. 10. 10. 10. 10. 10.	SN or dB 20 20 20 19 19 12	10. 10. 10. 10. 10. 10. 10.	dB 85 85 47 45 45 25	Rei QP Ave QP Ave QP Ave	ark erage	3	30	
Site Condit. 1 2 3 4 5 6 7 8	000.15 : CC ion: FC F. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	req 1 MHz	QP L1 Level dBuV 39.65 51.75 27.97 45.67 34.14 41.04 33.87 41.87	O Lin - Lin 16 14 26 19 18 18 21 12 14	ver mit dB .35 .71 .12 .22 .13 .13	L 5 6 5 6 5 6 4 5	L L imit Line dBuV 6.00 4.68 4.68 2.26 2.26 6.00 6.00	Real Level (No. 1997) 18. 1997 18. 1997 18. 1997 18. 1997 13. 1997 14.	ad el uV 60 70 30 00 50 40 50 50	LI Fact 10. 10. 10. 10. 10. 10. 10. 10.	SN or dB 20 20 20 19 19 12 12	10. 10. 10. 10. 10. 10. 10.	dB 85 47 45 25 25	Rer QP Ave QP Ave QP Ave QP	ark erage erage erage		30	
Site Condit. 1 2 3 4 5 6 7 8 9	000.15 : CC ion: FC F 0 0 0 0 0 0 0 0 0 0 0 0 0	req 1 MHz	QP L1 Level dBuV 39.65 51.75 27.97 45.67 34.14 41.04 33.87 41.87 33.57	O Lin - 16 - 16 - 14 - 26 - 19 - 18 - 21 - 12 - 14 - 12	ver mit .35 .25 .71 .12 .22 .13 .13 .43	5 6 5 6 4 5 4	L L imit Line dBuV 6.00 4.68 4.68 2.26 2.26 6.00 6.00 6.00	Real Level (No. 1997) Real Level (No. 1997) 18. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30	ad el uV 60 70 30 00 50 40 50 50 20	LI Fact 10. 10. 10. 10. 10. 10. 10. 10. 10.	SN or dB 20 20 20 19 19 12 12 14	10. 10. 10. 10. 10. 10. 10. 10.	ole oss dB 85 47 45 25 25 23	Rer QP Ave QP Ave QP Ave QP Ave	ark erage erage		30	
Site Condit. 1 2 3 4 5 6 7 8 9 10		req 1 MHz	QP L1 dBuV 39.65 51.75 27.97 45.67 34.14 41.04 41.04 33.87 41.87 33.57 41.37	O Lin - 16 - 16 - 14 - 26 - 14 - 26 - 19 - 18 - 21 - 12 - 14 - 12 - 14	ver mit .35 .25 .71 .01 .12 .22 .13 .13 .43 .63	5 6 5 6 5 6 4 5 4 5 4 5	L L imit Line dBuV 6.00 4.68 4.68 2.26 6.00 6.00 6.00 6.00	Real Level 18. 30. 7. 25. 13. 21. 13. 21.	ad el uV 60 70 30 00 50 40 50 50 20 00	LI Fact 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	SN or dB 20 20 20 19 19 12 12 14 14	10. 10. 10. 10. 10. 10. 10. 10. 10.	dB 85 47 45 25 23 23	Rer QP Ave QP Ave QP Ave QP Ave QP	arage erage erage erage		30	
Site Condit. 1 2 3 4 5 6 7 8 9 10 11 *		req 1 MHz	QP L1 dBuV 39.65 51.75 27.97 45.67 41.04 33.87 41.87 33.57 41.37 54.60	O Lin - 16 - 16 - 14 - 26 - 14 - 26 - 14 - 21 - 14 - 12 - 14 - 12 - 14 - 12 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	ver mit dB .35 .25 .71 .01 .12 .13 .43 .63 .60	5 6 5 6 5 6 4 5 4 5 5 5 5 5 5 5 5 5 5 5	L L imit Line dBuV 6.00 4.68 4.68 2.26 6.00 6.00 6.00 6.00 6.00 0.00	Real Level (No. 1997) 18. 1997 18. 1997 18. 1997 18. 1997 18. 1997 18. 1997 1997 1997 1997 1997 1997 1997 1997	ad el uV 60 70 30 00 50 40 50 20 00 50	LI Fact 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	asn or dB 20 20 20 20 19 12 12 14 14 77	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	dB 85 47 45 25 23 33	Rer QP Ave QP Ave QP Ave QP Ave QP Ave	ark erage erage erage		30	
Site Condit. 1 2 3 4 5 6 7 8 9 10		req 1 MHz	QP L1 dBuV 39.65 51.75 27.97 45.67 41.04 33.87 41.87 33.57 41.37 54.60	O Lin - 16 - 16 - 14 - 26 - 14 - 26 - 14 - 21 - 14 - 12 - 14 - 12 - 14 - 12 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	ver mit dB .35 .25 .71 .01 .12 .13 .43 .63 .60	5 6 5 6 5 6 4 5 4 5 5 5 5 5 5 5 5 5 5 5	L L imit Line dBuV 6.00 4.68 4.68 2.26 6.00 6.00 6.00 6.00 6.00 0.00	Real Level (No. 1997) 18. 1997 18. 1997 18. 1997 18. 1997 18. 1997 18. 1997 1997 1997 1997 1997 1997 1997 1997	ad el uV 60 70 30 00 50 40 50 20 00 50	LI Fact 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	asn or dB 20 20 20 20 19 12 12 14 14 77	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	dB 85 47 45 25 23 33	Rer QP Ave QP Ave QP Ave QP Ave QP Ave	arage erage erage erage		30	
Site Condit. 1 2 3 4 5 6 7 8 9 10 11 *		req 1 MHz	QP L1 dBuV 39.65 51.75 27.97 45.67 41.04 33.87 41.87 33.57 41.37 54.60	O Lin - 16 - 16 - 14 - 26 - 14 - 26 - 14 - 21 - 14 - 12 - 14 - 12 - 14 - 12 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	ver mit dB .35 .25 .71 .01 .12 .13 .43 .63 .60	5 6 5 6 5 6 4 5 4 5 5 5 5 5 5 5 5 5 5 5	L L imit Line dBuV 6.00 4.68 4.68 2.26 6.00 6.00 6.00 6.00 6.00 0.00	Real Level (No. 1997) 18. 1997 18. 1997 18. 1997 18. 1997 18. 1997 18. 1997 1997 1997 1997 1997 1997 1997 1997	ad el uV 60 70 30 00 50 40 50 20 00 50	LI Fact 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	asn or dB 20 20 20 20 19 12 12 14 14 77	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	dB 85 47 45 25 23 33	Rer QP Ave QP Ave QP Ave QP Ave QP Ave	arage erage erage erage		30	

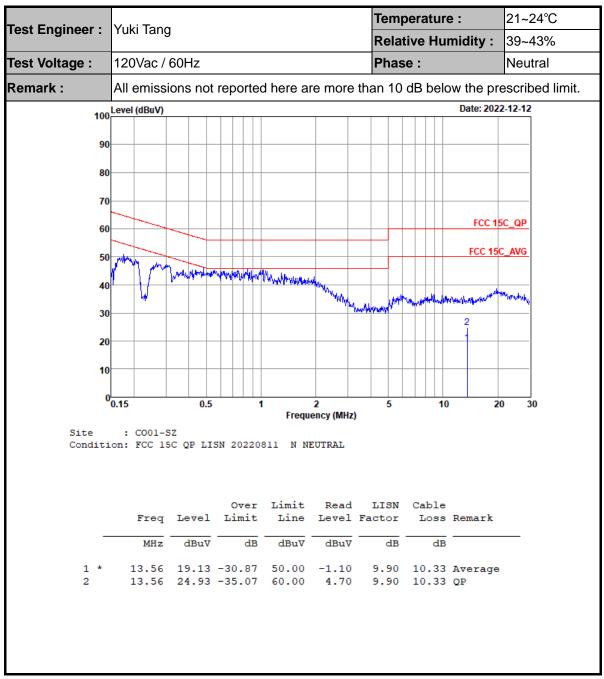
(1) with antenna

Remark: 13.560MHz is the NFC RF fundamental signal.



(1) with antenna

Remark: 13.560MHz is the NFC RF fundamental signal.

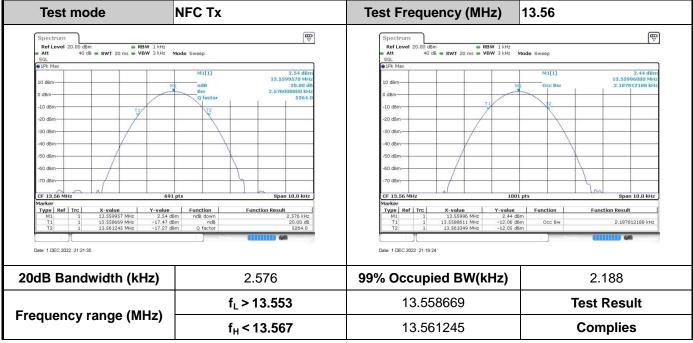


(2) With dummy load

Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.

(2) With dummy load

Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.

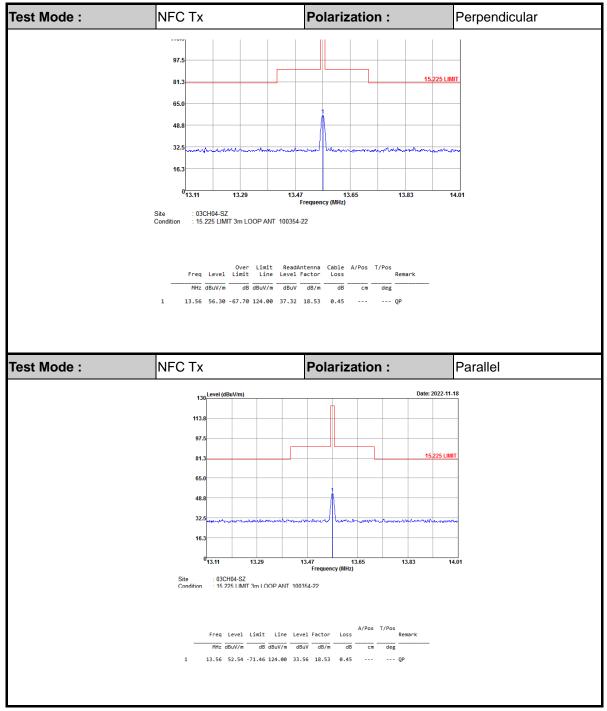

Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix B. Test Results of Conducted Test Items

B1. Test Result of 20dB Spectrum Bandwidth

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.



B2. Test Result of Frequency Stability

Voltage vs. Freq	uency Stability	Temperature vs. Frequency Stability							
Voltage (Vdc)	Measurement Frequency (MHz)	Temperature (°C)	Time (Minute)	Measurement Frequency (MHz)					
6.6	13.559957	-20	0	13.559950					
7.78	13.559957		2	13.559950					
8.96	13.559957		5	13.559950					
			10	13.559950					
		-10	0	13.559950					
			2	13.559950					
			5	13.559950					
			10	13.559950					
		0	0	13.559950					
			2	13.559950					
			5	13.559942					
			10	13.559942					
		10	0	13.559942					
			2	13.559942					
			5	13.559942					
			10	13.559942					
		20	0	13.559942					
			2	13.559942					
			5	13.559942					
			10	13.559942					
		30	0	13.559942					
			2	13.559942					
			5	13.559942					
			10	13.559942					
		40	0	13.559942					
			2	13.559942					
			5	13.559942					
			10	13.559942					
	1	50	0	13.559942					
			2	13.559942					
			5	13.559942					
			10	13.559942					
Max.Deviation (MHz)	-0.000043	Max.Deviation (MH		-0.000058					
Max.Deviation (ppm)	-3.1711	Max.Deviation (ppr		-4.2773					
Limit	FS < ±100 ppm	Limit	- İ	FS < ±100 ppm					
Test Result	PASS	Test Result		PASS					

Appendix C. Test Results of Radiated Test Items

C1. Test Result of Field Strength of Fundamental Emissions

Note:

- 1. Level(dBµV/m) = Read Level(dBµV) + Antenna Factor(dB/m) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

Test Mode :	st Mode : NFC Tx			Polariz	ation :	Perpendicular					
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark		
	(dD)//m)	Limit			Factor		Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)			
0.01818	55.09	-67.32	122.41	35.83	19.2	0.06	-	-	Average		
0.07572	46.1	-63.92	110.02	27.13	18.9	0.07	-	-	Average		
0.10098	43.31	-64.21	107.52	24.38	18.86	0.07	-	-	QP		
0.12621	41.64	-63.94	105.58	22.73	18.83	0.08	-	-	Average		
0.50335	40.04	-33.53	73.57	21.17	18.77	0.1	-	-	QP		
2.084	37.38	-32.62	70	18.48	18.79	0.11	-	-	QP		
12.872	33.32	-36.68	70	14.36	18.52	0.44	-	-	QP		
16.81	33.68	-36.32	70	14.57	18.61	0.5	-	-	QP		
29.625	34.01	-35.99	70	14.45	18.82	0.74	-	-	QP		

Test Mode : NFC Tx			Polariz	ation :	Para	Parallel				
Frequency	Level	Over	Limit	Read	Antenna	Cable	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Pos	Pos		
(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)		
0.01828	50.91	-71.45	122.36	31.66	19.19	0.06	-	-	Average	
0.06558	42.39	-68.88	111.27	23.4	18.92	0.07	-	-	Average	
0.10095	36.31	-71.21	107.52	17.38	18.86	0.07	-	-	QP	
0.12324	29.39	-76.4	105.79	10.47	18.84	0.08	-	-	Average	
0.5163	38.93	-34.42	73.35	20.06	18.77	0.1	-	-	QP	
2.174	37.25	-32.75	70	18.37	18.78	0.1	-	-	QP	
9.736	33.65	-36.35	70	14.66	18.61	0.38	-	-	QP	
24.991	34.3	-35.7	70	14.38	19.22	0.7	-	-	QP	
29.76	33.93	-36.07	70	14.4	18.79	0.74	-	-	QP	

Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Test Mode	e: 1	NFC Tx			Polarizati	ion :	Horizor	Horizontal			
						L					
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBµV/n	n) (dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
30.97	23.49	-16.51	40	29.49	25.29	0.54	31.83	-	-	Peak	
54.25	16.46	-23.54	40	34.18	13.46	0.73	31.91	-	-	Peak	
296.75	28.34	-17.66	46	37.8	19.86	1.79	31.11	-	-	Peak	
648.86	28.99	-17.01	46	30.79	26.5	2.65	30.95	-	-	Peak	
860.32	31.28	-14.72	46	30.32	28.91	3.07	31.02	-	-	Peak	
943.74	33.56	-12.44	46	30.25	30.93	3.22	30.84	-	-	Peak	

Test Mode : NFC Tx					Polarization :		Vertical			
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
30.97	25.14	-14.86	40	31.14	25.29	0.54	31.83	-	-	Peak
40.67	24.91	-15.09	40	35.94	19.58	0.62	31.23	-	-	Peak
54.25	25.32	-14.68	40	43.04	13.46	0.73	31.91	-	-	Peak
303.54	25.24	-20.76	46	34.54	19.99	1.81	31.1	-	-	Peak
755.56	30	-16	46	29.47	28.57	2.86	30.9	-	-	Peak
954.41	33.18	-12.82	46	29.64	31.07	3.24	30.77	-	-	Peak

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.