N48(10M)_DFT-s-
OFDM_BPSK_Outer_Full_Low_CH

N48(10M)_DFT-s-
OFDM_QPSK_Outer_Full_Low_CH

N48(10M)_DFT-s-
OFDM_BPSK_Edge_1RB_Left_Mid_CH

N48(10M)_DFT-s-
OFDM_BPSK_Edge_1RB_Right_Mid_CH

N48(10M)_DFT-s-
OFDM_QPSK_Edge_1RB_Right_Mid_CH

N48(10M)_DFT-s-
OFDM_BPSK_Outer_Full_Mid_CH

N48(10M)_DFT-s-
OFDM_QPSK_Outer_Full_Mid_CH

N48(10M)_DFT-s-
OFDM_BPSK_Edge_1RB_Left_High_CH

N48(10M)_DFT-s-
OFDM_QPSK_Edge_1RB_Left_High_CH

N48(10M)_DFT-s-
OFDM_BPSK_Edge_1RB_Right_High_CH

N48(10M)_DFT-s-
OFDM_QPSK_Edge_1RB_Right_High_CH

N48(10M)_DFT-s-
OFDM_BPSK_Outer_Full_High_CH

N48(10M)_DFT-s-
OFDM_QPSK_Outer_Full_High_CH

N48(20M)_DFT-s-
OFDM_BPSK_Edge_1RB_Left_Low_CH

N48(20M)_DFT-s-
OFDM_QPSK_Edge_1RB_Left_Low_CH

N48(20M)_DFT-s-
OFDM_BPSK_Edge_1RB_Right_Low_CH

N48(20M)_DFT-s-
OFDM_QPSK_Edge_1RB_Right_Low_CH

N48（20M）＿DFT－s－
OFDM＿BPSK＿Outer＿Full＿Low＿CH

N48（20M）＿DFT－s－
OFDM＿QPSK＿Outer＿Full＿Low＿CH

N48（20M）＿DFT－s－
OFDM＿QPSK＿Outer＿Full＿Low＿CH＿CHP＿PAss

N48（20M）＿DFT－s－
OFDM＿BPSK＿Edge＿1RB＿Left＿Mid＿CH

N48（20M）＿DFT－s－
OFDM＿QPSK＿Edge＿1RB＿Left＿Mid＿CH

N48（20M）＿DFT－s－
OFDM＿BPSK＿Edge＿1RB＿Right＿Mid＿CH

N48(20M)_DFT-s-
OFDM_QPSK_Edge_1RB_Right_Mid_CH

N48(20M)_DFT-s-
OFDM_BPSK_Outer_Full_Mid_CH

N48(20M)_DFT-s-
OFDM_QPSK_Outer_Full_Mid_CH

N48(20M)_DFT-s-
OFDM_BPSK_Edge_1RB_Left_High_CH

N48(20M)_DFT-s-
OFDM_QPSK_Edge_1RB_Left_High_CH

N48(20M)_DFT-s-
OFDM_BPSK_Edge_1RB_Right_High_CH

N48(20M)_DFT-s-
OFDM_QPSK_Edge_1RB_Right_High_CH

N48(20M)_DFT-s-
OFDM_BPSK_Outer_Full_High_CH

N48(20M)_DFT-s-
OFDM_QPSK_Outer_Full_High_CH

OFDM_QPSK_Outer_Full_High_CH_CHP_PA
SS

N48(40M)_DFT-s-
OFDM_BPSK_Edge_1RB_Left_Low_CH

N48(40M)_DFT-s-
OFDM_BPSK_Outer_Full_Low_CH

N48(40M)_DFT-s-
OFDM_QPSK_Outer_Full_Low_CH

N48(40M)_DFT-s-
OFDM_BPSK_Edge_1RB_Left_Mid_CH

N48(40M)_DFT-s-
OFDM_QPSK_Edge_1RB_Left_Mid_CH

N48(40M)_DFT-s-
OFDM_BPSK_Outer_Full_Mid_CH

N48(40M)_DFT-s-
OFDM_QPSK_Outer_Full_Mid_CH

N48(40M)_DFT-s-
OFDM_QPSK_Edge_1RB_Left_High_CH

N48(40M)_DFT-s-
OFDM_QPSK_Outer_Full_High_CH_CHP_PA
SS

Appendix B. Test Results of Radiated Test

Radiated Spurious Emission

Test Engineer :	Shiwei Wen	Temperature :	$22 \sim 25^{\circ} \mathrm{C}$
		$48 \sim 52 \%$	

Note: Pre-scanned harmonic for the different antenna combinations, we choose the worst antenna mode to perform final test.

SA 5G NR n 48 / 10MHz / QPSK / ANT6(NR)									
Channel	$\begin{gathered} \text { Frequency } \\ \text { (MHz) } \end{gathered}$	$\begin{aligned} & \text { EIRP } \\ & \text { (dBm) } \end{aligned}$	$\begin{aligned} & \text { Limit } \\ & (\mathrm{dBm}) \end{aligned}$	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	$\begin{gathered} \text { TX Cable } \\ \text { loss } \\ \text { (dB) } \\ \hline \hline \end{gathered}$	TX Antenna Gain (dBi)	Polarization (H/V)
Lowest	7104.00	-57.97	-40	-17.97	-57.11	-61.30	8.25	11.58	H
	10656.00	-53.93	-40	-13.93	-57.67	-55.48	10.45	12.00	H
	14208.00	-55.49	-40	-15.49	-64.89	-57.20	11.74	13.45	H
	7104.00	-56.66	-40	-16.66	-56.21	-59.99	8.25	11.58	V
	10656.00	-47.38	-40	-7.38	-50.66	-48.93	10.45	12.00	V
	14208.00	-56.28	-40	-16.28	-65.23	-57.99	11.74	13.45	V
Middle	7212.80	-57.87	-40	-17.87	-65.73	-61.17	8.30	11.60	H
	10819.20	-54.44	-40	-14.44	-67.57	-55.96	10.48	12.00	H
	14425.60	-54.61	-40	-14.61	-68.97	-56.31	11.80	13.50	H
	7212.80	-56.15	-40	-16.15	-66.14	-59.45	8.30	11.60	V
	10819.20	-48.35	-40	-8.35	-63.09	-49.87	10.48	12.00	V
	14425.60	-55.59	-40	-15.59	-69.51	-57.29	11.80	13.50	V
Highest	7320.00	-57.70	-40	-17.70	-65.94	-61.00	8.32	11.62	H
	10980.00	-52.39	-40	-12.39	-66.11	-54.07	10.52	12.20	H
	14640.00	-54.52	-40	-14.52	-69.50	-56.22	11.85	13.55	H
	7320.00	-56.64	-40	-16.64	-65.63	-59.94	8.32	11.62	V
	10980.00	-52.17	-40	-12.17	-66.64	-53.85	10.52	12.20	V
	14640.00	-54.83	-40	-14.83	-69.72	-56.53	11.85	13.55	V

Remark: Spurious emissions within $30-1000 \mathrm{MHz}$ were found more than 20 dB below limit line.

