Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.4	$5.22 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$33.9 \pm 6 \%$	$5.10 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$.---

SAR result with Head TSL at 5750 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.18 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$81.0 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$2.30 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \% \mathbf{(k = 2)}$

Head TSL parameters at 5800 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.3	$5.27 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$33.8 \pm 6 \%$	$5.15 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots-{ }^{2}$	---

SAR result with Head TSL at 5800 MHz

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.19 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$81.1 \mathrm{~W} / \mathrm{kg} \pm 19.9 \%(\mathrm{k}=2)$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	100 mW input power	$2.31 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \% \mathbf{(k = 2)}$

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	$47.6 \Omega-6.2 \mathrm{j} \Omega$
Return Loss	-23.3 dB

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	$46.9 \Omega-4.8 \mathrm{j} \Omega$
Return Loss	-24.5 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	$46.2 \Omega-3.3 \mathrm{j} \Omega$
Return Loss	-25.6 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	$49.1 \Omega-4.2 \mathrm{j} \Omega$
Return Loss	-27.3 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$53.9 \Omega+0.4 \mathrm{j} \Omega$
Return Loss	-28.4 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$51.8 \Omega-0.8 \mathrm{j} \Omega$
Return Loss	-34.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	$50.9 \Omega-2.7 \mathrm{j} \Omega$
Return Loss	-31.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the
"Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5250 MHz , Frequency: 5300 MHz , Frequency: 5500 MHz , Frequency: 5600 MHz , Frequency: 5750 MHz , Frequency: 5800 MHz Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=4.54 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=4.59 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5300 \mathrm{MHz} ; \sigma=4.64 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.6 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5500 \mathrm{MHz} ; \sigma=4.85 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=4.95 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=34.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=5.1 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=33.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5800 \mathrm{MHz} ; \sigma=5.15 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=33.8 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz , $\operatorname{ConvF}(5.5,5.5,5.5) @ 5250 \mathrm{MHz}$, ConvF(5.49, 5.49, 5.49) @ $5300 \mathrm{MHz}, \operatorname{ConvF}(5.25,5.25,5.25) @ 5500 \mathrm{MHz}, \operatorname{ConvF}(5.1,5.1,5.1)$ @ $5600 \mathrm{MHz}, \operatorname{ConvF}(5.08,5.08,5.08) @ 5750 \mathrm{MHz}, \operatorname{ConvF}(5.01,5.01,5.01) @ 5800 \mathrm{MHz}$; Calibrated: 30.12.2020
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5200 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=78.84 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.03 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=28.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.04 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.29 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=69.1 \%$
Maximum value of SAR (measured) $=18.5 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5250 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=80.04 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.01 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.29 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=70.3 \%$
Maximum value of SAR (measured) $=18.2 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5300 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=80.15 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=28.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.25 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.35 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=69.1 \%$
Maximum value of SAR $($ measured $)=19.1 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5500 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=80.07 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=33.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.80 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.47 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.4 \%$
Maximum value of SAR (measured) $=20.9 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5600 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0 : Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=80.82 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.00 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=30.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.45 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.40 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=67.5 \%$
Maximum value of SAR (measured) $=19.9 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5750 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=78.22 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.01 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=31.8 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.18 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.30 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=65.8 \%$
Maximum value of SAR $($ measured $)=19.5 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}$, $\mathrm{f}=5800 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=77.53 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=31.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.19 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.31 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.4 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=65.4 \%$
Maximum value of SAR $($ measured $)=19.2 \mathrm{~W} / \mathrm{kg}$

$0 \mathrm{~dB}=20.9 \mathrm{~W} / \mathrm{kg}=13.20 \mathrm{dBW} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL (5200, 5500, 5800 MHz)

Impedance Measurement Plot for Head TSL (5250, 5300, 5600, 5750 MHz)

ANNEX I Sensor Triggering Data Summary

The DUT has the proximity sensors to reduce the output power. The position of the sensor and antenna are as shown in the graphic.

Antenna number	Sensing surface	Trigger distance N
ANT1	Front	5 mm
	Back	14 mm
	Top	11 mm
	bottom	1
	right	left

Antenna number	Sensing surface	Trigger distance N
ANTO	Front	8 mm
	Back	13 mm
	Top	1
	bottom	11 mm
	right	1
	left	5 mm

Antenna number	Sensing surface	Trigger distance N
ANT7	Front	5 mm
	Back	10 mm
	Top	9 mm
	bottom	1
	right	13 mm

Rear, Front, Bottom,Left ,Right and Top of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power

The DUT featured a visual indicator on its display that showed the status of the proximity sensor (Triggered or not triggered). This was used to determine the status of the sensor during the proximity sensor assessment as monitoring the output power directly was not practical without affecting the measurement. It was confirmed separately that the output power according to locking the proximity sensor status.

Blue arrow: Direction of DUT travel for determination of power reduction triggering point.
Green arrow: Direction of DUT travel for determination of normal power triggering point
When the visual indicator display is "Channel_1 NEAR", indicates that the status of the proximity sensor ANTO is triggered, when the visual indicator display is "Channel_2 NEAR", indicates that the status of the proximity sensor ANT1 is triggered, when the visual indicator display is "Channel_0 NEAR", indicates that the status of the proximity sensor ANT7 is triggered (see the figure below),

Fig1.sensor is triggered

When the visual indicator display is "Channel_0, Channel_1 and Channel_2 FAR", indicates that the status of the proximity sensor ANT0 and sensor ANT1 is not triggered

Fig2. sensor ANT0 and sensor ANT1 is not triggered

ANT 1

Front Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[m m]$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
ANT1	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
ANT1	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Rear Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance [mm]	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$
ANT1	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[m m]$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$
ANT1	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Top Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$
ANT1	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
ANT1	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Left Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[\mathbf{m m}]$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
ANT1	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathbf{m m}]$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
ANT1	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

ANT 0

Front Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[\mathbf{m m}]$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$
ANTO	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
ANTO	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Rear Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[m m]$	19	18	17	16	15	14	13	12	11	$\mathbf{1 0}$	$\mathbf{9}$
ANTO	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[m m]$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$
ANT0	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Bottom Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[\mathbf{m m}]$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$
ANTO	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[m m]$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
ANTO	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Left Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[m m]$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
ANTO	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
ANTO	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

ANT 7

Front Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[\mathbf{m m}]$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
ANT1	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
ANT1	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Rear Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance [mm]	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$
ANT1	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[m m]$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
ANT1	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Top Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$
ANT1	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$
ANT1	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Right Edge

Moving device toward the phantom:

sensor triggered (YES or NO)											
Distance $[m m]$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$
ANT1	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor triggered (YES or NO)											
Distance $[\mathrm{mm}]$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
ANT1	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distanceby rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0°.
ANTO

The Rear evaluation

The Front edge evaluation

The Left edge evaluation

The Bottom edge evaluation

ANT1

The Rear evaluation

The Front edge evaluation

The Left edge evaluation

The Top edge evaluation

ANT7

The Rear evaluation

The Front edge evaluation

The Right edge evaluation

The Top edge evaluation

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J Accreditation Certificate

